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Motivation: Co-Simulation for Security
• Former FFG project ”ODYSSEUS”: Security of interconnected critical infrastructures,

including (but not limited to):
– electricity
– water
– medical care and supplies
– telecommunication
– traffic
– . . .

• For many (not all) domains, we have simulation tools
• Each delivering accurate simulations of how environments respond to external stimuli by

events/incidents (e.g., power shortages, road blockings upon accidents, . . . )
• Incidents or events thereby have impacts over several infrastructures. Taking the

infrastructures as connected via a graph topology (edges being interdependencies in a
supply/demand relation), the incident percolates through the graph.

• We call this a ”cascading effect”
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Problems and a Solution Approach 1

The challenge:
• Simulation tools are, mostly, standalone software
• Difficult (if possible) to script, and interface with
• requires wrappers programmed around the simulator to connect with other simulators
• not substantially less effort than writing one’s own simulation from scratch

The solution:
• Instead of interconnecting different simulators, resort to emulation. . .
• . . . by training deep neural networks to mimic the response dynamics, learned from

extensive simulation (data)
The problems:

• Where to get the data from? This, and simulation tools (if any), are in possession of
critical infrastructure providers
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Problems and a Solution Approach 2

• Classified, highly sensitive, information → strictly forbidden to give away
• Neither can a CI provider admit outside links to others (for security reason)

The solution proposal:
• Let the infrastructure provider run the simulation in its own premises, in high-security

environments
• Do the training within these closed walls and give away only the trained deep-net

The CI provider’s reply was concerned
The data we trained in is still sensitive and classified. How do we know that this information
will not leak from a trained machine learning (ML) model?

⇒ this gave us a research question!
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Research Question

• Obviously, given an ML model f : Rn → R trained upon a (huge) set of input-output
pairs (xi , yi) ∈ Rn ×R, we can compute as many input-putput pairs of our own choice
→ training data is only confidential to some extent (e.g., measured by the ”recall”)

• Attacker could try to recover the training data from the ML model f (·, p∗), and claim to
have recovered a certain data set T ′ = {(xi , yi) | i = 1, 2, . . . , N}. This is an
optimization problem:

T ′ = argmin ∥(yi − f (xi , p∗))n
i=1∥

Research Question
Can we plausibly deny that the attacker’s finding T ′ is correct (even if it was)?
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A High-Level View

As a workflow, plausible deniability can be
interpreted to be a certain sequence of
events, as shown on the right →

The goal of this work is showing that the
honest party can succeed here!

honest party adversary

training data (xi, yi)
N
i=1

norm ‖·‖ (secret)

machine learning
algorithm ML(·; ‖·‖)

f(·,p∗) f(·,p∗)

training data recovery
using ML(·; ‖·‖adv)

guess

(x′
i, y

′
i)

N
i=1

xi = x′
i,

yi = y′i
∀i?

yes no

construct decoy
data set →
plausible
deniability

conclude that the
recovery failed
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Formalizing the Problem 1

• Let formally approach the training problem: given a family

ML =
{

fp : Rm → R
∣∣∣ p ∈ Rd

}
,

parameterized by some vector p, the training algorithm is yet just another function
train : Rn×(m+1) ×Rd → ML, mapping a training data matrix with n records
(xi , yi) ∈ Rm+1.

• The training algorithm is an(other) optimization

min ∥(yi − f (xi , p))n
i=1∥ over p, (1.1)
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Why Norms? 1

. . . because many of the usual error metrics are expressible as norms, such as:
1) Mean squared error

MSE = 1
n

n∑
i=1

(yi − ŷi)2 = 1
n ∥y − ŷ∥2

2

2) Root mean squared error

RMSE =
√

MSE = 1√
n ∥y − ŷ∥2

3) Mean absolute error

MAE = 1
n

n∑
i=1

|yi − ŷi | = 1
n · ∥y − ŷ∥1
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Why Norms? 2

Also, norms are “more plausible” to argue, since trivial solutions would be obviously suspicious:
the function below has a global minimum at some desired point. . . but very much looks (and in
fact is) crafted towards this global optimum
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A First Solution 1

• For deniability, it is already enough if the training function is not injective (in a strong
sense):

• If every ML model f ∈ ML has at least two pre-images T , T ′, i.e., training sets that
would map to the same (target) model f , then whenever the adversary extracts T , we
can claim the correct result to have been T ′ (and vice versa)

• A sufficient condition is Theorem 1.1.
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A First Solution 2

Theorem 1.1 ([RKW+21])

Let the (unknown) training data come from a random source Z with entropy H(Z ) bits, and
let the function f require (at least) k bits to encode, and assume that f has been trained from
n unknown records.
If the number n exceeds

n >
k

H(Z ) ,

then any candidate training data extracted from f is deniable

Proof (Idea only): If a lot of L bits of training data map to a (smaller) ML model taking only
ℓ < L bits to encode, there must be at least two different training sets mapping to the same
ML model (pigeon hole principle) □
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A Better Solution

• What about smaller training sets that would, theoretically, fit into the size of the ML
models description?

• We can extend the notion of plausible deniability to training sets of any size, if we
manipulate the error metric in (1.1) accordingly.

• Let us:
– Choose an arbitrary decoy data set T ′ = {(x′

1, y ′
1), . . . , (x′

n, y ′
n)} to later claim having trained

the given model f (·, p∗) from it.
– Compute the error vector e = (f (x′

i , p∗) − y ′
i )n

i=1
– And define a semi-norm b(x) := ∥B · x∥, where the matrix B is chosen have exactly x as its

nullspace (∥ ∥ is a (full) norm herein).
– This ensures that b(x) = 0 if x = λ · e for some λ ∈ R, and b(x) > 0 otherwise.

• This is close to what we want, but has a multitude of minima other than at the desired
location p∗, to which we have crafted the error vector e.

• However, with some additional assumptions, we can assure local optimality at p∗; this is
Lemma 1.1.
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Constructing a Semi-Norm (is easy) 1

Lemma 1.1 ([RKW+21])

Let f : Rm ×Rd → R be parameterized by a vector p ∈ Rd and map an input value vector x
to a vector y = f (x, p). Let p∗ ∈ Rd be given as fixed, and let us pick arbitrary training data
(x1, y1), . . . , (xn, yn). Finally, define the error vector e = (yi − f (xi , p∗))n

i=1 ∈ Rn.
Let for all xi the functions f (xi , ·) be totally differentiable w.r.t. p at p = p∗ with derivative
di = Dp(f (xi , p))(p∗) ∈ Rd . Put all d⊤

i for i = 1, 2, . . . , n as rows into a matrix M ∈ Rn×d

and assume that it satisfies the rank condition

rank(M|e) > rank(M). (1.2)

Then, there exists a semi-norm ∥·∥ on Rn such that p∗ locally minimizes ∥e(p∗)∥, i.e., there is
an open neighborhood U of p∗ inside which ∥e(p∗)∥ ≤ ∥e(p)∥ for all p ∈ U.
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Constructing a Semi-Norm (is easy) 2

Proof (Sketch; idea only):

The rank condition essentially implies that
any (small) displacement p ̸= p∗ will lead
outwards of span(e), and hence make the
semi-norm b(p) > 0.
This implies (local) optimality at the
desired point p∗, which is our target ML
model.

□
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Constructing a (full) Norm 1

• We can convert the semi-norm into a full toplogical norm, without additional
requirements (only with slightly more effort on the proof):

Theorem 1.1 ([RKW+21])

Under the hypotheses of Lemma 1.1, there exists a norm ∥·∥ on Rn such that p∗ locally
minimizes ∥e(p)∥ as a function of p.

• Theorem 1.1 has several corollaries:
– Generalization to vector-valued models f mapping into Rk → Corollary 1.1; Appendix (S. 1-29)

– Representation of the error metric in terms of a mean absolute error, rather than a
“suspicious” norm → Corollary 1.2; Appendix (S. 1-30)
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Constructing a (full) Norm 2

Proof (Sketch; idea only):
The sought norm will be

∥x∥ := ∥x∥e + b(x), (1.3)

with a norm ∥·∥e that depends on the
vector e. It is constructed from two other
norms, one on the orthogonal subspace of
span(e), the other on a 1-dimensional
complement space that is linearly
independent of span(e) →

 linearly
independent

of 

 obtained from 

This norm ∥·∥e then (only) needs to satisfy ∥e(p∗) − e(p)∥e ≤ b(e(p)) to preserve local
optimality (this is the more difficult part of the proof). □
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Experiment: Regression Model 1

We demonstrate the construction as follows:
1) Instantiate a linear regression model with coefficients p∗ = (β0, . . . , βd−1) chosen at

random:
f (x, p∗) = β0 + β1 · x1 + β2 · x2 + . . . + βd−1 · xd−1 + ε, (1.4)

2) Sample from the linear model to get data that “fits well”. This is the original training
data, which is xi ∼ U({1, 2, . . . , 8}m), and yi := f (xi , p∗) + ε, for i = 1, 2, . . . , m; with ε
being random noise.

3) Then, generate decoy training data X′
i ∼ U({1, . . . , 8}m), and another set of random, and

hence unrelated, response values Y ′
i ∼ U({1, . . . , 8}).

Note that:
– the decoy data is stochastically independent
– the decoy’s response variable y ′ has nothing to do with the decoy x ′-values.

Secure Systems Group – S. Rass On Privacy in Machine Learning by Plausible Deniability SS 2022 1-18



Experiment: Regression Model 2

4) Next, craft the norm as the proof of Theorem 1.1 prescribes – it is a constructive
argument.
This model is nice to use, since it admits a closed form expression for the Jacobian to
check the hypothesis of Lemma 1.1.

5) And finally, let an optimizer run to re-create the model (1.4) using the crafted norm as
error metric and the decoy data.
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Results: Regression Model

original vector p p as trained from decoy data T ′

-0.57104 -0.56936
-1.53456 -1.53402
-2.45770 -2.45657
-2.12341 -2.12261
-1.26093 -1.25992
-1.91170 -1.91082

• This indicates that the idea and construction works quite well,
• so let us check another model of machine learning.
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Experiment: Logistic Regression

• Like before, we pick a random regression model, compute the log-odds, and pick random
data as decoy to craft a norm to.

• The model is similar to the linear model, only has a sigmoid function
σ(x) = (1 + exp(−x))−1 applied afterwards:

y = σ
(
β0 + β⊤ · x

)
, (1.5)

with β = (β1, . . . , βd) and p = (β0, β).
• Like as for regression, the Jacobian can be worked out analytically (for Lemma 1.1.
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Results: Logistic Regression 1

• The construction works, and the logistic regression model is recovered from the unrelated
decoy data → Table 1

• However, in some cases, the optimizer drifts far off the desired location → Table 2
• Nonetheless, if the optimizer starts from the target p∗, it does not move → Table 3

This indicates (experimentally) that p∗ is apparently a local optimum (as desired)

original vector p p as trained from decoy data T ′ starting point
-36.452 -36.451 -36.408
16.448 16.447 16.504
13.043 13.044 13.045
24.545 24.546 24.571
40.418 40.419 40.489
-33.886 -33.887 -33.869

Table 1: Logistic Regression: Hitting the Target Model
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Results: Logistic Regression 2

original vector p p as trained from decoy data T ′ starting point
-22.604 -7.6157e+03 -22.560
25.976 2.3044e+04 26.007
29.200 4.0411e+03 29.210
9.7599 1.8252e+04 9.7835
42.462 -7.5179e+04 42.481
-44.693 2.6841e+04 -44.674

Table 2: Logistic Regression: Missing the Target Model
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Results: Logistic Regression 3

original vector p p as trained from decoy data T ′ starting point = p
-44.774 -44.774 -44.774
-17.186 -17.186 -17.186
28.215 28.215 28.215
39.373 39.373 39.373
-39.419 -39.419 -39.419
-22.533 -22.533 -22.533

Table 3: Logistic Regression: No move if we start from p
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Experiment: Neural Network

• With the same setup again, let us consider a feed-forward neural network

y = σℓ(Wℓ · σℓ−1(Wℓ−1 · σℓ−2(· · · σ1(W1 · x) · · · ))), (1.6)

where
– ℓ is the total number of layers in the network,
– each matrix Wi with 1 ≤ i ≤ ℓ is the individual weighting between the output of the previous

and input of the next layer, which row-wise gives the net value that goes into the activation
functions, collected in the vector-valued function σi for the i-th layer.

– we took σi = (tanh, tanh, . . . , tanh) for all layers,
– and let each inner layer have the same dimension, with the final function σℓ outputting only

a single real value.
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Results: Neural Network

Long story short: Results were as for the logistic regression but further instructive
• Model could be successfully re-created from the decoy data
• But the solver, in more yet not all cases, drifted away from the target
• Taking a look at the eigenvalues of the (approximate) Hessian at p∗, we found them to

be in the range < 3.1058 × 10−3 up to ≈ 2.9067 × 104 (different for each experiment,
since everything was initialized at random)

• This indicates that the basin of attraction seems to be a very “flat” ellipsis
• This also explains why the construction generally failed (in further experiments) where we

applied a randomized optimization like stochastic gradient decent: the solver there very
likely jumps out of the basin of atttraction and drifts elsewhere
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Lessons Learned and Outlook

Plausibel deniability is a practically achievable property, and a feature to desire or to avoid,
depending on what you are looking for:

• If you are contributing your personal data to federated learning, plausible deniability
implies that there is – information-theoretically – no leakage from the machine learning
model encapsulating your sensitive data.

• If you are worried about potential misuse of your data, plausibly denied using this
construction, then the data processing entity should commit to a stochastic optimization
and publicly known and fixed error metric → avoids plausible deniability (using this
construction).

Open questions are manifold, such as the link to other security notions, or generalizations.
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Appendix
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Extension to Vector-Valued Models

Corollary 1.1

Take k, m, d ≥ 1 and let f : Rm ×Rd → Rk be parameterized by a vector p ∈ Rd , and write
fj for j = 1, . . . , k to denote the j-th coordinate function. For a fixed parameter vector p∗ and
arbitrary training data (x1, y1), . . . , (xn, yn) ∈ Rm ×Rk , define the error matrix E row-wise as
E = (y⊤

i − f (xi , p∗)⊤)n
i=1 ∈ Rn×k . In this matrix, let ej ∈ Rn be the j-th column.

For all j = 1, 2, . . . , k and all training points xi , assume that each fj(xi , p) is totally
differentiable w.r.t. p at (the same point) p = p∗, with derivative
di ,j = Dp(fj(xi , p))(p∗) ∈ Rd . For each j, define the matrix Mj = (d⊤

i ,j)n
i=1 ∈ Rn×d and let the

rank condition rank(Mj |ej) > rank(Mj) hold.
Then, there exists a matrix-norm ∥·∥ on Rn×k such that p∗ locally minimizes ∥E(p∗)∥, i.e.,
there is an open neighborhood U of p∗ s.t. ∥E(p∗)∥ ≤ ∥E(p)∥ for all p ∈ U.
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Corollary 1.2

Under the hypotheses of Theorem 1.1, there is a matrix C such that p∗ locally minimizes the
mean average error MAE (C · e) of the error vector e.
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