# Statistik ist ein Segen für die Menschheit 

## Günter Pilz <br> 7.11.2019

## Statistics can do much more than people

 think!- Usually people think: statistics = counting and computing means
- But statistics can also find „the reason(s) why"
- Key: (Statistical) Regression

You suspect that some „factors" might have an influence on some value of your interest.

## A simple example, 1

Take a patient with unknown factors which trigger an allergy, where the usual diagnostic measures did not yield a satisfactory result. Suppose that the patient and the doctor suspect that 3 more factors $x_{1}, x_{2}, x_{3}$ might explain the allergy, e.g.,

- $x_{1}=$ exhaust air of the vacuum cleaner (measured in minutes of exposure)
- $x_{2}=$ intake of certain candies (measured in pieces), ...
- $x_{3}=$ level of stress (measured by the blood pressure)

Then a test might expose the patient for 3 minutes to the vacuum cleaner, give him 5 candies, and measure his blood pressure. After - say - one hour, the patient ranks the degree $y$ of allergy on a scale of up to 10 . For this test, we might note

$$
(3,5,145 ; 7)
$$

## A simple example, 2

After the patient gets back to normal, a second test might yield

$$
(0,2,150 ; 5)
$$

and so on.
Our dream would - at the end - be the information if and how $x_{1}, x_{2}, x_{3}$ contribute to the allergy level $y$.
Regression fulfills this dream by producing a ,formula"

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

A possible result might be

$$
y=2.5+1.2 x_{1}-0.002 x_{2}+0.01 x_{3}
$$

How should that be interpreted?

## Questions

- Which tests make sense?
- How many tests are needed?
- Is the „model"

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n}
$$

„allowed"? What if the $x_{i}$ are not „independent"?

## More examples

- Agriculture: how do fertilizers $x_{1}, x_{2}, \ldots$ influence the harvest yield $y$ ?
- How does $x_{1}=$ traffic,... influence global warming $y$ ?
- Which actions will reduce tropical diseases, and how much?
- What are the reasons $x_{1}, x_{2}, \ldots$ for a rare disease?

Rare diseases ,...
Die schlechite Nachricht: Sie haben eine äusserst seltene Krankheit, über die wir fast nichts wissen.


## First summary

Regression can give you a „formula" for (up to now) unknown connections.

So regression is like a license to print money !!!

## A personal regression

- $x_{1}, x_{2}, \ldots=$ food components (magnesium, potassium, carbohydrates, ...)
- $y=$ gain / loss of power after the intake
- Result:
$y=-0.5+8^{*}($ sodium in $g)-5^{*}($ potassium in $g)$
Example: 1 Burger brings

$$
y=-0.5+8 * 1-5 * 0.4=5.5(\mathrm{~kg})
$$

more power!

## What if 2 factors are dependent?

In this case, we should test all single and all combinations of 2 factors.
For 10 factors: $10+45=55$ tests!
Much better:
Test all single factors the same number (=r) times, AND
Test all combinations of of 2 factors the same number ( $=\lambda$ ) times.
How to do this ??? - Use operation tables!



## Incorrect computations help (!)

| $+$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $\bullet 3$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 0 | 1 | 2 | 1 | 4 | 4 | 2 |
| 2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 0 | 2 | 4 | 2 | 1 | 1 | 4 |
| 3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 0 | 3 | 6 | 3 | 5 | 5 | 6 |
| 4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 0 | 4 | 1 | 4 | 2 | 2 | 1 |
| 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 0 | 5 | 3 | 5 | 6 | 6 | 3 |
| 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 6 | 5 | 6 | 3 | 3 | 5 |

„Blocks" arise:
block 1: 1,2,4 block 8: 3,5,6
block 2: 2,3,5 block 9: 4,6,0
block 3: 3,4,6 block 10: 5,0,1
block 4: 4,5,0 block 11: 6,1,2
block 7: 0,1,3 Block 14: 2,4,5
block 1: 1,2,4. So our first test should test factors no. 1, 2, and 4 block 2: 2,3,5. So the next test should test factors no. 2, 3, and 5 and randomize!

| Tests Fact. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  | X | X | X |  |  |  |  | x | X |  | X |  |  |
| 1 | X |  | X |  |  | $\mathbf{x}$ |  | X | $\mathbf{x}$ | $\mathbf{x}$ |  |  |  |  |  |
| 2 | X | X |  |  | X | X |  |  |  |  | X | X |  |  |  |
| 3 |  | X |  |  | X |  | X | X |  | $\mathbf{X}$ |  |  |  | X |  |
| 4 | X |  |  | X |  |  | X | X |  |  |  | X | X |  |  |
| 5 |  | X | X |  |  |  |  |  | X |  |  | x | X | $\mathbf{x}$ |  |
| 6 |  |  |  | X |  | X | X |  | X |  | X |  |  | X |  |

## Design with results:

| Tests Fact. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  | x | x | X |  |  |  |  | X | x |  | x |  |  |
| 1 | x |  | x |  |  | x |  | X | x | X |  |  |  |  |  |
| 2 | x | x |  |  | x | x |  |  |  |  | x | x |  |  |  |
| 3 |  | X |  |  | $\mathbf{x}$ |  | X | X |  | X |  |  |  | x |  |
| 4 | x |  |  | x |  |  | x | x |  |  |  | x | x |  |  |
| 5 |  | X | X |  |  |  |  |  | X |  |  | $\mathbf{x}$ | X | X |  |
| 6 |  |  |  | X |  | X | X |  | X |  | X |  |  | X |  |
| Res. | 69 | 18 | -28 | 3 | 54 | -1 | 51 | 98 | -31 | 49 | -28 | -35 | -25 | 22 | 3 |

Regression gives the best estimates according to as

$$
y=3+51 x_{4}+19 x_{5}-41 x_{6} \quad \ldots . . \text { Model } 1
$$

If one also uses interaction terms („synergies"), one gets instead

$$
y=2+47 x_{4}-31 x_{6}+58 x_{2} x_{5} \ldots . \text { Model } 2
$$

Now we can compare the actual results with the predicted ones using these two models:

| Test | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rea | 49 | -2 | -28 | 3 | 54 | -1 | 51 | 98 | -31 | 69 | 18 | -35 | -25 | 22 | 3 |
| Mod. | 54 | 3 | -38 | 19 | 54 | 3 | 73 | 73 | -38 | 22 | 13 | -19 | -19 | 13 | 3 |
| Mod. 2 | 49 | -2 | -29 | 2 | 49 | 2 | 49 | 107 | -29 | 60 | 18 | -29 | -29 | 18 | 2 |

## Second summary:

So two factors can be dependent; a „synergy" is much more than just an additive overlay of two factors!

Example: Food-dependent exercise-induced anaphylaxis: The contact with some allergens might be harmless, physical exercise can help a lot, while the combination can be disastrous. So one factor is neutral for the patient, the other one positive, but the combination is really negative!


