Statistik ist ein Segen für die Menschheit

Günter Pilz 7.11.2019

Statistics can do much more than people think!

- Usually people think: statistics = counting and computing means
- But statistics can also find "the reason(s) why"
- Key: (Statistical) Regression
 You suspect that some *"*factors" might have an influence on some value of your interest.

A simple example, 1

Take a patient with unknown factors which trigger an allergy, where the usual diagnostic measures did not yield a satisfactory result. Suppose that the patient and the doctor suspect that 3 more factors x_1 , x_2 , x_3 might explain the allergy, e.g.,

- x₁ = exhaust air of the vacuum cleaner (measured in minutes of exposure)
- x_2 = intake of certain candies (measured in pieces), ...
- x_3 = level of stress (measured by the blood pressure)

Then a test might expose the patient for 3 minutes to the vacuum cleaner, give him 5 candies, and measure his blood pressure. After - say - one hour, the patient ranks the degree y of allergy on a scale of up to 10. For this test, we might note

(3, 5, 145; 7)

A simple example, 2

After the patient gets back to normal, a second test might yield (0, 2, 150; 5),

and so on.

Our dream would – at the end – be the information if and how x_1 , x_2 , x_3 contribute to the allergy level y.

Regression fulfills this dream by producing a "formula"

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

A possible result might be

$$y = 2.5 + 1.2x_1 - 0.002x_2 + 0.01x_3$$

How should that be interpreted?

Questions

- Which tests make sense?
- How many tests are needed?
- Is the "model"

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$$

"allowed"? What if the *x_i* are not "independent"?

More examples

- Agriculture: how do fertilizers x₁, x₂, ...
 influence the harvest yield y ?
- How does x₁ = traffic,... influence global warming y ?
- Which actions will reduce tropical diseases, and how much?
- What are the reasons x₁, x₂, ... for a rare disease?

Rare diseases ,...

First summary

Regression can give you a *"*formula" for (up to now) unknown connections.

So regression is like a license to print money !!!

A personal regression

- x₁, x₂, ... = food components (magnesium, potassium, carbohydrates, ...)
- y = gain / loss of power after the intake
- Result:

y = -0.5+8*(sodium in g) – 5*(potassium in g)

Example: 1 Burger brings

$$y = -0.5 + 8 * 1 - 5 * 0.4 = 5.5$$
 (kg)

more power!

What if 2 factors are dependent?

In this case, we should test all single and all combinations of 2 factors.

For 10 factors: 10+45 = 55 tests!

Much better:

- Test all single factors the same number (=r) times, AND
- Test all combinations of of 2 factors the same number (= λ) times.
- How to do this ??? Use operation tables!

Incorrect computations help (!)

+	0	1	2	3	4	5	6	•3	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6	0	0	0	0	0	0	0	0
1	1	2	3.	4	5	6	0	1	0	ł	2	1	4	4	2
2	2	3	4	5	6	0	1	2	0 =	2	4	2	1	1	4
3	3	4	5	6	0	1 -	2	3	0	3	6	3	5	5	6
4	4	5	6	0	1	2	3	4	0	4	1	4	2	2	- 1
5	5	6	0	1	2	3	4	5	0	5	3	· 5	6	6	3
6	6	0	1	2	3	.4	5	6	0	6	5	6	3	3	5

"Blocks" arise:

block 1: 1,2,4 block 8: 3,5,6 block 2: 2,3,5 block 9: 4,6,0 block 3: 3,4,6 block 10: 5,0,1 block 4: 4,5,0 block 11: 6,1,2

block 7: 0,1,3 Block 14: 2,4,5

.

.

block 1: 1,2,4. So our first test should test factors no. 1, 2, and 4 block 2: 2,3,5. So the next test should test factors no. 2, 3, and 5 and randomize!

Tests Fact.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0			X	X	X					X	X		X		
1	X		X			X		X	X	X					
2	X	X			X	X					X	X			
3		x			x		x	x		x				х	
4	X			X			X	X				X	X		
5		X	X						X			X	X	X	
6				X		X	X		X		X			X	

Design with results:

Tests Fact.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0			X	X	X					X	X		X		
1	X		X			X		X	X	X					
2	X	X			X	X					X	X			
3		X			X		X	X		X				X	
4	X			X			X	X				X	X		
5		X	X						X			X	X	X	
6				X		X	X		X		X			X	
Res.	69	18	-28	3	54	-1	51	98	-31	49	-28	-35	-25	22	3

Regression gives the best estimates according to as

 $y = 3 + 51x_4 + 19x_5 - 41x_6$ Model 1

If one also uses interaction terms ("synergies"), one gets instead

 $y = 2 + 47x_4 - 31x_6 + 58x_2x_5$ Model 2

Now we can compare the actual results with the predicted ones using these two models:

Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
real	49	-2	-28	3	54	-1	51	98	-31	69	18	-35	-25	22	3
Mod. 1	54	3	-38	19	54	3	73	73	-38	22	13	-19	-19	13	3
Mod. 2	49	-2	-29	2	49	2	49	107	-29	60	18	-29	-29	18	2

Second summary:

So two factors can be dependent; a "synergy" is much more than just an additive overlay of two factors!

Example: Food-dependent exercise-induced anaphylaxis: The contact with some allergens might be harmless, physical exercise can help a lot, while the combination can be disastrous. So one factor is neutral for the patient, the other one positive, but the combination is really negative!

