

Reference

Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs.

- Buckwar, E., Tamborrino, M. & Tubikanec, I.
- Statistics and Computing 30, 627-648 (2020).
- Available open access: <https://doi.org/10.1007/s11222-019-09909-6>

Setting of interest

Stochastic differential equations (SDEs)

• We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$
dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0
$$

$$
X(0) = X_0.
$$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \geq 0} \in \mathbb{R}^n$

Partially observed SDEs

1 We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$
dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0
$$

$$
X(0) = X_0.
$$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \geq 0} \in \mathbb{R}^n$

 \bullet The *n*-dimensional solution process **X** is partially observed through the one-dimensional output process

$$
\mathbf{Y}_{\theta}=(Y_{\theta}(t))_{t\geq0}=g(\mathbf{X}),\quad g:\mathbb{R}^{n}\to\mathbb{R}.
$$

Partially observed SDEs with an invariant distribution

1 We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$
dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0
$$

$$
X(0) = X_0.
$$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \geq 0} \in \mathbb{R}^n$

 \odot The *n*-dimensional solution process **X** is partially observed through the one-dimensional output process

$$
\mathbf{Y}_{\theta}=(Y_{\theta}(t))_{t\geq0}=g(\mathbf{X}),\quad g:\mathbb{R}^{n}\to\mathbb{R}.
$$

 $\, {\bf 3} \,$ The output process ${\bf Y}_{\theta}$ admits an invariant distribution $\eta_{{\bf Y}_{\theta}}.$

Parameter inference for partially observed SDEs with an invariant distribution

• We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$
dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0
$$

$$
X(0) = X_0.
$$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \geq 0} \in \mathbb{R}^n$

 \odot The *n*-dimensional solution process **X** is partially observed through the one-dimensional output process

$$
\mathbf{Y}_{\theta}=(Y_{\theta}(t))_{t\geq0}=g(\mathbf{X}),\quad g:\mathbb{R}^{n}\to\mathbb{R}.
$$

- $\, {\bf 3} \,$ The output process ${\bf Y}_{\theta}$ admits an invariant distribution $\eta_{{\bf Y}_{\theta}}.$
- \odot Our goal: Inference of θ (via ABC) based on observations of the output process \textbf{Y}_θ and using $\eta_{\textbf{Y}_\theta}.$

Motivating example

Stochastic Jansen and Rit Neural Mass Model $(JR-NMM)^{1}$

Model: $n = 6$ -dimensional stochastic $IR-NMM$

$$
d\begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} P(t) \\ -\Gamma^2 Q(t) - 2\Gamma P(t) + G(Q(t); \theta) \end{pmatrix} dt + \begin{pmatrix} \mathbb{O}_3 \\ \Sigma_{\theta} \end{pmatrix} dW(t),
$$

with parameters $\theta = (\sigma, \mu, C)$ and non-linear $\mathit{G}\colon\,\mathbb{R}^3\to\mathbb{R}^3$

Solution process: $\mathsf{X}=(\mathsf{Q},\mathsf{P})^{\mathsf{T}}$ with (unobserved) components $Q = (X_1, X_2, X_3)$ and $P = (X_4, X_5, X_6)$

Output process: The process $\bm{\mathsf{X}}=(\bm{\mathsf{Q}},\bm{\mathsf{P}})^{\mathsf{T}}$ is observed through

 $Y_{\theta} = X_2 - X_3$ (EEG)

Property: The process Y_{θ} admits an invariant distribution $\eta_{Y_{\theta}}$

¹M. Ableidinger, E. Buckwar, and H. Hinterleitner.

"A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics." Journal of Mathematical Neuroscience 7(8) (2017)

 $EEG \, data^2$

Figure: $T = 20$ seconds of an α -rhythmic EEG segment recorded with a sampling rate of 173.61 Hz.

²Data available at:

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3

ABC Algorithm

Notation

- Observed reference data: $y = (y(t_i))$
- Simulated synthetic data: $y_{\theta} = (y_{\theta}(t_i))$
- Prior: $\pi(\theta)$
- Posterior: $\pi(\theta|y)$
- ABC posterior: $\pi(\theta|y) \approx \pi_{ABC}(\theta|y)$

Algorithm

Key ingredients

- \bullet How to choose the summaries s ?
- \bullet How to simulate synthetic data y_{θ} ?

Summaries

Challenge: Internal randomness of the model

Figure: 3 realisations of the output process \mathbf{Y}_θ .

t
i
ij 0.
2
5 **Observed dataset:** blue trajectory (simulated), $\theta_{\text{observed}} = 135$ **Synthetic datasets**: grey and red trajectories, $\theta_{\text{synthetic}} = 135/139$

Question: Which distance is smaller, d(<mark>blue,red</mark>) or d(blue,grey)?

How to choose the summaries?

Proposal 1: Use the property of an invariant distribution η_{Y_e} and map the realisation y_{θ} of the output process \mathbf{Y}_{θ} to its

- 1) Invariant density $\boldsymbol{\mathsf{f}}_{\boldsymbol{\mathsf{Y}}_\theta}$ (kernel estimator $\hat{f}_{{\mathsf{y}}_\theta})$
- 2) Invariant spectral density $\mathcal{S}_{\mathsf{Y}_{\theta}}$ (periodogram estimator $\hat{S}_{\mathsf{y}_{\theta}})$

Summaries: Invariant density and spectral density

Summaries: Invariant density and spectral density

Question: Which distance is smaller, d(blue,red) or d(blue,grey)?

Summaries: Invariant density and spectral density

Question: Which distance is smaller, d(blue,red) or d(blue,grey)? Parameter values: $\theta_{\text{observed}} = 135$, $\theta_{\text{synthetic}} = 135$, $\theta_{\text{synthetic}} = 139$

ABC distance

Data: Observed dataset y and synthetic dataset y_{θ}

Summaries: Invariant densities and spectral densities

$$
s(y):=(\hat{S}_y,\hat{f}_y),\quad s(y_\theta):=(\hat{S}_{y_\theta},\hat{f}_{y_\theta})
$$

Distance: Weighted sum of the areas between the densities

$$
D = d(s(y), s(y_{\theta})) := \mathsf{IAE}(\hat{S}_y, \hat{S}_{y_{\theta}}) + w \cdot \mathsf{IAE}(\hat{f}_y, \hat{f}_{y_{\theta}})
$$

Integrated absolute error:

$$
IAE(g_1,g_2):=\int\limits_{\mathbb R}\left|g_1(x)-g_2(x)\right|\,dx
$$

Spectral density-based ABC

Reference table acceptance-rejection ABC

Input: Observed data y resulting from M datasets y_1, \ldots, y_M **Output:** Samples from the posterior $\pi_{ABC}(\theta|y)$

- 1: Precompute the summaries $s(y_j)$ $=$ $(\hat S_{y_j}, \hat f_{y_j})$, j $=$ $1, \ldots, M$
- 2: Choose a prior distribution $\pi(\theta)$ and a percentile p
- 3: for $i = 1$ to N do
- 4: Draw $\theta^i = (\theta_1^i, ..., \theta_k^i)$ from the prior $\pi(\theta)$
- 5: Conditionally on θ^i , simulate synthetic data y_{θ^i} from the output process Y_{θ}
- 6: Compute $s(y_{\theta^i}) = (\hat{S}_{y_{\theta^i}}, \hat{f}_{y_{\theta^i}})$
- 7: $D_i = \text{median}\left\{\text{IAE}(\hat{S}_{\mathsf{y}_j},\hat{S}_{\mathsf{y}_{\theta^i}})+ \text{w}\cdot \text{IAE}(\hat{f}_{\mathsf{y}_j},\hat{f}_{\mathsf{y}_{\theta^i}})\right\}_{i=1}^M$ $j=1$

8: end for

- 9: Compute ε as the percentile p of the calculated distances
- 10: If $D_i < \varepsilon$, keep θ^i as a sample from the posterior,

for $i = 1, \ldots, N$

Simulation from the model

Numerical simulation methods for SDEs

Time discretisation:

- Time interval: $[0, T]$
- Discrete points: t_i , $i = 0, \ldots, n$, $t_0 = 0$, $t_n = T$
- Time step: $\Delta = t_i t_{i-1}$

D Exact simulation of the process at t_i : $y_\theta = (Y_\theta(t_i))$

$$
\pi(\theta|y) \approx \pi_{\text{ABC}}(\theta|y)
$$

@ Approximation of the process at t_i : $\tilde{y}_\theta = (Y_\theta(t_i)) \approx (Y_\theta(t_i))$ $\pi(\theta|y) \approx \pi_{\mathsf{ABC}}(\theta|y) \approx \pi_{\mathsf{ABC}}^{\mathsf{num}}(\theta|y)$

Numerical simulation methods for SDEs

Time discretisation:

- Time interval: $[0, T]$
- Discrete points: t_i , $i = 0, \ldots, n$, $t_0 = 0$, $t_n = T$
- Time step: $\Delta = t_i t_{i-1}$

D Exact simulation of the process at t_i : $y_\theta = (Y_\theta(t_i))$

$$
\pi(\theta|y) \approx \pi_{\text{ABC}}(\theta|y)
$$

- **@** Approximation of the process at t_i : $\tilde{y}_\theta = (Y_\theta(t_i)) \approx (Y_\theta(t_i))$ $\pi(\theta|y) \approx \pi_{\mathsf{ABC}}(\theta|y) \approx \pi_{\mathsf{ABC}}^{\mathsf{num}}(\theta|y)$
- 2.1 Measure-preserving method: $Y_{\theta}(t_i) \approx Y_{\theta}(t_i) \sim \eta_{\mathbf{Y}_{\theta}}$
- 2.2 Non-preserving method: $Y_{\theta}(t_i) \approx \widetilde{Y}_{\theta}(t_i) \approx \eta_{\mathbf{Y}_{\theta}}$

Challenge: Standard methods (Euler-Maruyama) may be non-preserving

$$
\widetilde{X}(t_{i+1}) = \widetilde{X}(t_i) + f(t_i, \widetilde{X}(t_i); \theta) \Delta + \mathscr{G}(t_i, \widetilde{X}(t_i); \theta) \Delta W
$$

Slide 26/45 — Tubikanec — [Spectral density-based and measure-preserving ABC](#page-0-0) — November 12, 2020

Toy Model

Model: $n = 2$ -dimensional damped stochastic harmonic oscillator

$$
d\begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} P(t) \\ -\lambda^2 Q(t) - 2\gamma P(t) \end{pmatrix} dt + \begin{pmatrix} 0 \\ \sigma \end{pmatrix} dW(t),
$$

with $\theta=(\lambda,\gamma,\sigma)$ and $\lambda^2-\gamma^2>0$ (weak damping)

Output process: The process $\mathsf{X}=(\mathsf{Q},\mathsf{P})^{\mathsf{T}}$ is observed through $\mathsf{Y}_\theta=\mathsf{Q}$

Property: The output process admits an invariant distribution $\eta_{Y_{\theta}}$

Simulation: Exact

Spectral density-based ABC: Toy Model

ABC Results: $\theta = (\lambda, \gamma, \sigma)$, Exact simulation, Time step $\Delta = 10^{-2}$

ABC Setup:

- Uniform priors: $\lambda \sim U(18,22)$, $\gamma \sim U(0.01,2.01)$, $\sigma \sim U(1,3)$
- Observed data: $M = 10$ paths, using $\Delta = 10^{-2}$ and $T = 10^{3}$
- Synthetic data: $N = 2 \cdot 10^6$ paths, using the same Δ and T
- Threshold level: $\varepsilon = 0.05^{th}$ percentile

Spectral density-based and measure-preserving ABC: Toy Model

ABC Results: $\theta = (\lambda, \gamma, \sigma)$, Measure-preserving simulation, Time step $\Delta = 10^{-2}$

Can we use Euler-Maruyama?

ABC Results: $\theta = (\lambda, \gamma, \sigma)$, Measure-preserving simulation, Time step $\Delta = 10^{-2}$

Euler-Maruyama is NOT APPLICABLE for $\Delta = 10^{-2}$ $Y_{\theta}(t_i) \approx \infty$ (Computer overflow)

Simplest task: Inferring only one parameter

ABC Results: $\theta = \lambda$.

Different numerical methods, Smaller time step $\Delta = 10^{-3}$

ABC Setup:

- Uniform priors: $\lambda \sim U(10, 30)$
- Observed data: Same as before
- Synthetic data: $N = 10^5$ paths, using a smaller $\Delta = 10^{-3}$
- Threshold level: $\varepsilon = 1^{st}$ percentile

Simplest task: Inferring only one parameter

ABC Results: $\theta = \lambda$.

Different numerical methods, Smaller time step $\Delta = 10^{-3}$

Even smaller ∆ required for Euler-Maruyama

- \implies Highly inefficient
- \implies ABC: computationally infeasible

How to simulate from the model?

Proposal 2: Use a measure-preserving numerical method. \implies Splitting method

Measure-preserving splitting for the stochastic JR-NMM¹

Model:

$$
d\begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} P(t) \\ -\Gamma^2 Q(t) - 2\Gamma P(t) + \underbrace{G(Q(t);\theta)}_{nonlinear} \end{pmatrix} dt + \begin{pmatrix} \mathbb{O}_3 \\ \Sigma_\theta \end{pmatrix} dW(t)
$$

Splitting:

Equation 1: linear SDE

$$
d\begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} P(t) \\ -\Gamma^2 Q(t) - 2\Gamma P(t) \end{pmatrix} dt + \begin{pmatrix} \mathbb{O}_3 \\ \Sigma_\theta \end{pmatrix} dW(t)
$$

2 Equation 2: non-linear (but simple) ODE

$$
d\begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} 0_3 \\ G(Q(t);\theta) \end{pmatrix} dt
$$

¹M. Ableidinger, E. Buckwar, and H. Hinterleitner.

"A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics." In: Journal of Mathematical Neuroscience 7(8) (2017)

Slide 34/45 — Tubikanec — [Spectral density-based and measure-preserving ABC](#page-0-0) — November 12, 2020

Measure-preserving splitting for the stochastic JR-NMM

Equation 1: The linear SDE can be written as

$$
dX(t) = AX(t)dt + BdW(t)
$$

Explicit solution: Exact paths are obtained through

$$
X(t_{i+1})=e^{A\Delta}X(t_i)+\xi_i,
$$

where ξ_i are 6-dimensional Gaussian vectors with mean 0_6 and variance $C(\Delta)$, where $\dot{C}(t)=AC(t)+C(t)A^{\mathsf{T}}+BB^{\mathsf{T}}$, $C(0)=\mathbb{O}_{6}.$

2 Equation 2: non-linear (but simple) ODE

$$
d\begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} 0_3 \\ G(Q(t);\theta) \end{pmatrix} dt
$$

Explicit solution: Exact paths are obtained through

$$
X(t_{i+1}) = X(t_i) + \begin{pmatrix} 0_3 \\ \Delta G(Q(t_i); \theta) \end{pmatrix}.
$$

Measure-preserving splitting for the stochastic JR-NMM Splitting:

1 Explicit solution of Equation 1:

$$
X(t_{i+1})=e^{A\Delta}X(t_i)+\xi_i
$$

● Explicit solution of Equation 2:

$$
X(t_{i+1}) = X(t_i) + \begin{pmatrix} 0_3 \\ \Delta G(Q(t_i); \theta) \end{pmatrix}
$$

Composition (Strang approach): Given $\widetilde{X}(t_i)$, how to obtain $\widetilde{X}(t_{i+1})$?

1:
$$
X_b = \widetilde{X}(t_i) + \begin{pmatrix} 0_3 \\ \frac{\Delta}{2} G(Q(t_i); \theta) \end{pmatrix}
$$

\n2: $X_a = e^{A\Delta} X_b + \xi_i$
\n3: $\widetilde{X}(t_{i+1}) = X_a + \begin{pmatrix} 0_3 \\ \frac{\Delta}{2} G(Q_a; \theta) \end{pmatrix}$

Application: Spectral density-based and measure-preserving ABC

Spectral density-based and measure-preserving ABC

Reference table acceptance-rejection ABC

Input: Observed data y resulting from M datasets y_1, \ldots, y_M **Output:** Samples from the posterior $\pi_{\mathsf{ABC}}^{\mathsf{num}}(\theta|y)$

- 1: Precompute the summaries $s(y_j)$ $=$ $(\hat S_{y_j}, \hat f_{y_j})$, j $=$ $1, \ldots, M$
- 2: Choose a prior distribution $\pi(\theta)$ and a percentile p
- 3: for $i = 1$ to N do
- 4: Draw $\theta^i = (\theta_1^i, ..., \theta_k^i)$ from the prior $\pi(\theta)$
- 5: Conditionally on θ^i , simulate synthetic data \tilde{y}_{θ^i} using a measure-preserving numerical method (Splitting)
- 6: Compute $s(\tilde{y}_{\theta^i}) = (\hat{S}_{\tilde{y}_{\theta^i}}, \hat{f}_{\tilde{y}_{\theta^i}})$
- 7: $D_i = \text{median}\left\{\text{IAE}(\hat{S}_{y_j},\hat{S}_{\tilde{y}_{\theta^i}}) + w \cdot \text{IAE}(\hat{f}_{y_j},\hat{f}_{\tilde{y}_{\theta^i}})\right\}_{i=1}^M$ j=1

8: end for

9: Compute ε as the percentile p of the calculated distances 10: If $D_i < \varepsilon$, keep θ^i as a sample from the posterior,

for $i = 1, \ldots, N$

Parameter inference of the JR-NMM via the proposed ABC

ABC results: $\theta = (\sigma, \mu, C)$, Using the measure-preserving splitting method

ABC Setup:

- Priors: $\sigma \sim U(1300, 2700)$, $\mu \sim U(160, 280)$, $\sigma \sim U(129, 141)$
- Observed data: $M = 30$ paths, using $\Delta = 2 \cdot 10^{-3}$, $T = 200$
- Synthetic data: $N = 2.5 \cdot 10^6$ paths, using the same Δ and T
- Threshold level: $\varepsilon = 0.05^{th}$ percentile

Parameter inference based on the non-preserving Euler-Maruyama method

ABC results: $\theta = (\sigma, \mu, C)$, Using the non-preserving Euler-Maruyama method

ABC results: A comparison of splitting and Euler-Maruyama

Parameter inference from real EEG data

Figure: $T = 20$ seconds of an α -rhythmic EEG segment recorded with a sampling rate of 173.61 Hz.

Parameter inference from real EEG data

ABC Results: $\theta = (\sigma, \mu, C)$,

Using the measure-preserving splitting method

ABC Setup:

- Priors: $\sigma \sim U(500, 3500)$, $\mu \sim U(70, 370)$, $\sigma \sim U(120, 150)$
- Observed data: $M = 3 \alpha$ -rhythmic EEG recordings, sampled with $\Delta = 173.61^{-1} \approx 5.76 \cdot 10^{-3}$ and $T = 23.6$ seconds
- Synthetic data: $N = 5 \cdot 10^6$ paths, using $\Delta = 2 \cdot 10^{-3}$ and same T
- Threshold level: $\varepsilon = 0.02^{nd}$ percentile

Conclusions

- **1** The proposed ABC approach yields successful inference when combining:
- invariant measure-based summaries (density and spectral density)
- efficient and measure-preserving numerical methods (splitting)
- **2** The inference returned using standard non-preserving numerical methods (Euler-Maruyama) fails. Its performance may improve for "small enough" time steps \Longrightarrow Computationally infeasible.
- **3** Successful results under the basic acceptance-rejection ABC. \implies The proposed techniques can be applied to more advanced algorithms.

Thank you for your interest

