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Setting of interest

Slide 3/45 — Tubikanec — Spectral density-based and measure-preserving ABC — November 12, 2020



J O H A N N E S K E P L E R U N I V E R S I T Y L I N Z I N S T I T U T E F O R S T O C H A S T I C S

Stochastic differential equations (SDEs)

1 We consider the n-dim SDE with parameter vector θ = (θ1, ...,θk)

dX (t) = f (t,X (t);θ) dt +G (t,X (t);θ) dW (t), t ≥ 0

X (0) = X0.

Stochastic solution process: X = (X (t))t≥0 ∈ Rn
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Partially observed SDEs

1 We consider the n-dim SDE with parameter vector θ = (θ1, ...,θk)

dX (t) = f (t,X (t);θ) dt +G (t,X (t);θ) dW (t), t ≥ 0

X (0) = X0.

Stochastic solution process: X = (X (t))t≥0 ∈ Rn

2 The n-dimensional solution process X is partially observed through
the one-dimensional output process

Yθ = (Yθ (t))t≥0 = g(X), g : Rn→ R.
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Partially observed SDEs with an invariant distribution

1 We consider the n-dim SDE with parameter vector θ = (θ1, ...,θk)

dX (t) = f (t,X (t);θ) dt +G (t,X (t);θ) dW (t), t ≥ 0

X (0) = X0.

Stochastic solution process: X = (X (t))t≥0 ∈ Rn

2 The n-dimensional solution process X is partially observed through
the one-dimensional output process

Yθ = (Yθ (t))t≥0 = g(X), g : Rn→ R.

3 The output process Yθ admits an invariant distribution ηYθ
.
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Parameter inference for partially observed SDEs with an
invariant distribution

1 We consider the n-dim SDE with parameter vector θ = (θ1, ...,θk)

dX (t) = f (t,X (t);θ) dt +G (t,X (t);θ) dW (t), t ≥ 0

X (0) = X0.

Stochastic solution process: X = (X (t))t≥0 ∈ Rn

2 The n-dimensional solution process X is partially observed through
the one-dimensional output process

Yθ = (Yθ (t))t≥0 = g(X), g : Rn→ R.

3 The output process Yθ admits an invariant distribution ηYθ
.

4 Our goal: Inference of θ (via ABC) based on observations of the
output process Yθ and using ηYθ

.
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Motivating example
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Stochastic Jansen and Rit Neural Mass Model (JR-NMM)1

Model: n = 6-dimensional stochastic JR-NMM

d

(
Q(t)
P(t)

)
=

(
P(t)

−Γ2Q(t)−2ΓP(t) +G(Q(t);θ)

)
dt +

(
O3

Σθ

)
dW (t),

with parameters θ = (σ ,µ,C) and non-linear G : R3→ R3

Solution process: X = (Q,P)T with (unobserved) components
Q = (X1,X2,X3) and P = (X4,X5,X6)

Output process: The process X = (Q,P)T is observed through

Yθ = X2−X3 (EEG)

Property: The process Yθ admits an invariant distribution ηYθ

1M. Ableidinger, E. Buckwar, and H. Hinterleitner.
”A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.”
Journal of Mathematical Neuroscience 7(8) (2017)
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EEG data2
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Figure: T = 20 seconds of an α-rhythmic EEG segment recorded with a
sampling rate of 173.61 Hz.

2Data available at:
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3
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ABC Algorithm
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Notation

• Observed reference data: y = (y(ti ))

• Simulated synthetic data: yθ = (yθ (ti ))

• Prior: π(θ)

• Posterior: π(θ |y)

• ABC posterior: π(θ |y)≈ πABC(θ |y)
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Algorithm

Reference table acceptance-rejection ABC

Input: Observed data y
Output: Samples from the posterior πABC(θ |y)

1: Precompute a vector of summary statistics s(y)
2: Choose a prior distribution π(θ) and a percentile p
3: for i = 1 to N do
4: Draw θ i = (θ i

1, ...,θ
i
k) from the prior π(θ)

5: Conditionally on θ i , simulate synthetic data yθ i

from the output process Yθ

6: Compute the summaries s(yθ i )
7: Calculate the distance Di = d(s(y),s(yθ i ))
8: end for
9: Compute ε as the percentile p of the calculated distances

10: If Di < ε, keep θ i as a sample from the posterior,
for i = 1, . . . ,N
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Key ingredients

1 How to choose the summaries s?

2 How to simulate synthetic data yθ ?
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Summaries
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Challenge: Internal randomness of the model
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Figure: 3 realisations of the output process Yθ .

Observed dataset: blue trajectory (simulated), θobserved = 135
Synthetic datasets: grey and red trajectories, θsynthetic = 135/139

Question: Which distance is smaller, d(blue,red) or d(blue,grey)?
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How to choose the summaries?

Proposal 1: Use the property of an invariant distribution ηYθ

and map the realisation yθ of the output process Yθ to its

1) Invariant density fYθ
(kernel estimator f̂yθ

)

2) Invariant spectral density SYθ
(periodogram estimator Ŝyθ

)
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Summaries: Invariant density and spectral density
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Summaries: Invariant density and spectral density
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Question: Which distance is smaller, d(blue,red) or d(blue,grey)?
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Summaries: Invariant density and spectral density
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Question: Which distance is smaller, d(blue,red) or d(blue,grey)?
Parameter values: θobserved = 135, θsynthetic = 135, θsynthetic = 139
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ABC distance

Data: Observed dataset y and synthetic dataset yθ

Summaries: Invariant densities and spectral densities

s(y) := (Ŝy , f̂y ), s(yθ ) := (Ŝyθ
, f̂yθ

)

Distance: Weighted sum of the areas between the densities

D = d(s(y),s(yθ )) := IAE(Ŝy , Ŝyθ
) +w · IAE(f̂y , f̂yθ

)

Integrated absolute error:

IAE(g1,g2) :=
∫
R

∣∣∣g1(x)−g2(x)
∣∣∣ dx
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Spectral density-based ABC

Reference table acceptance-rejection ABC

Input: Observed data y resulting from M datasets y1, . . . ,yM
Output: Samples from the posterior πABC(θ |y)

1: Precompute the summaries s(yj ) = (Ŝyj , f̂yj ), j = 1, . . . ,M
2: Choose a prior distribution π(θ) and a percentile p
3: for i = 1 to N do
4: Draw θ i = (θ i

1, ...,θ
i
k) from the prior π(θ)

5: Conditionally on θ i , simulate synthetic data yθ i from the
output process Yθ

6: Compute s(yθ i ) = (Ŝy
θ i
, f̂y

θ i
)

7: Di = median
{

IAE(Ŝyj , Ŝyθ i
) +w · IAE(f̂yj , f̂yθ i

)
}M
j=1

8: end for
9: Compute ε as the percentile p of the calculated distances

10: If Di < ε, keep θ i as a sample from the posterior,
for i = 1, . . . ,N
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Simulation from the model
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Numerical simulation methods for SDEs

Time discretisation:

• Time interval: [0,T ]

• Discrete points: ti , i = 0, . . . ,n, t0 = 0, tn = T

• Time step: ∆ = ti − ti−1

1 Exact simulation of the process at ti : yθ = (Yθ (ti ))

π(θ |y)≈ πABC(θ |y)

2 Approximation of the process at ti : ỹθ = (Ỹθ (ti ))≈ (Yθ (ti ))

π(θ |y)≈ πABC(θ |y)≈ π
num
ABC(θ |y)
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Numerical simulation methods for SDEs

Time discretisation:

• Time interval: [0,T ]

• Discrete points: ti , i = 0, . . . ,n, t0 = 0, tn = T

• Time step: ∆ = ti − ti−1

1 Exact simulation of the process at ti : yθ = (Yθ (ti ))

π(θ |y)≈ πABC(θ |y)

2 Approximation of the process at ti : ỹθ = (Ỹθ (ti ))≈ (Yθ (ti ))

π(θ |y)≈ πABC(θ |y)≈ π
num
ABC(θ |y)

2.1 Measure-preserving method: Yθ (ti )≈ Ỹθ (ti )∼ ηYθ

2.2 Non-preserving method: Yθ (ti )≈ Ỹθ (ti )� ηYθ
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Challenge: Standard methods (Euler-Maruyama) may be
non-preserving

X̃ (ti+1) = X̃ (ti ) + f (ti , X̃ (ti );θ)∆ +G (ti , X̃ (ti );θ)∆W
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Toy Model

Model: n = 2-dimensional damped stochastic harmonic oscillator

d

(
Q(t)
P(t)

)
=

(
P(t)

−λ 2Q(t)−2γP(t)

)
dt +

(
0
σ

)
dW (t),

with θ = (λ ,γ,σ) and λ 2− γ2 > 0 (weak damping)

Output process: The process X = (Q,P)T is observed through Yθ = Q

Property: The output process admits an invariant distribution ηYθ

Simulation: Exact
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Spectral density-based ABC: Toy Model

ABC Results: θ = (λ ,γ,σ),
Exact simulation, Time step ∆ = 10−2
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ABC Setup:

• Uniform priors: λ ∼ U(18,22), γ ∼ U(0.01,2.01), σ ∼ U(1,3)

• Observed data: M = 10 paths, using ∆ = 10−2 and T = 103

• Synthetic data: N = 2 ·106 paths, using the same ∆ and T

• Threshold level: ε = 0.05th percentile
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Spectral density-based and measure-preserving ABC:
Toy Model

ABC Results: θ = (λ ,γ,σ),
Measure-preserving simulation, Time step ∆ = 10−2
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Can we use Euler-Maruyama?

ABC Results: θ = (λ ,γ,σ),
Measure-preserving simulation, Time step ∆ = 10−2

Euler-Maruyama is NOT APPLICABLE for ∆ = 10−2

Ỹθ (ti )≈ ∞ (Computer overflow)
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Simplest task: Inferring only one parameter

ABC Results: θ = λ ,
Different numerical methods, Smaller time step ∆ = 10−3

ABC Setup:

• Uniform priors: λ ∼ U(10,30)
• Observed data: Same as before
• Synthetic data: N = 105 paths, using a smaller ∆ = 10−3

• Threshold level: ε = 1st percentile
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Simplest task: Inferring only one parameter

ABC Results: θ = λ ,
Different numerical methods, Smaller time step ∆ = 10−3

Even smaller ∆ required for Euler-Maruyama
=⇒ Highly inefficient
=⇒ ABC: computationally infeasible
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How to simulate from the model?

Proposal 2: Use a measure-preserving numerical method.
=⇒ Splitting method
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Measure-preserving splitting for the stochastic JR-NMM1

Model:

d

(
Q(t)
P(t)

)
=

 P(t)
−Γ2Q(t)−2ΓP(t) +G(Q(t);θ)︸ ︷︷ ︸

nonlinear

dt +

(
O3

Σθ

)
dW (t)

Splitting:

1 Equation 1: linear SDE

d

(
Q(t)
P(t)

)
=

(
P(t)

−Γ2Q(t)−2ΓP(t)

)
dt +

(
O3

Σθ

)
dW (t)

2 Equation 2: non-linear (but simple) ODE

d

(
Q(t)
P(t)

)
=

(
03

G(Q(t);θ)

)
dt

1M. Ableidinger, E. Buckwar, and H. Hinterleitner.
”A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.”
In: Journal of Mathematical Neuroscience 7(8) (2017)
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Measure-preserving splitting for the stochastic JR-NMM

1 Equation 1: The linear SDE can be written as

dX (t) = AX (t)dt +BdW (t)

Explicit solution: Exact paths are obtained through

X (ti+1) = eA∆X (ti ) + ξi ,

where ξi are 6-dimensional Gaussian vectors with mean 06 and
variance C(∆), where Ċ(t) = AC(t) +C(t)AT +BBT , C(0) =O6.

2 Equation 2: non-linear (but simple) ODE

d

(
Q(t)
P(t)

)
=

(
03

G(Q(t);θ)

)
dt

Explicit solution: Exact paths are obtained through

X (ti+1) = X (ti ) +

(
03

∆G(Q(ti );θ)

)
.
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Measure-preserving splitting for the stochastic JR-NMM

Splitting:

1 Explicit solution of Equation 1:

X (ti+1) = eA∆X (ti ) + ξi

2 Explicit solution of Equation 2:

X (ti+1) = X (ti ) +

(
03

∆G(Q(ti );θ)

)

Composition (Strang approach):

Given X̃ (ti ), how to obtain X̃ (ti+1)?

1: Xb = X̃ (ti ) +

(
03

∆
2 G(Q(ti );θ)

)
2: Xa = eA∆Xb + ξi

3: X̃ (ti+1) = Xa +

(
03

∆
2 G(Qa;θ)

)
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Application: Spectral density-based and
measure-preserving ABC
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Spectral density-based and measure-preserving ABC

Reference table acceptance-rejection ABC

Input: Observed data y resulting from M datasets y1, . . . ,yM
Output: Samples from the posterior πnum

ABC(θ |y)

1: Precompute the summaries s(yj ) = (Ŝyj , f̂yj ), j = 1, . . . ,M
2: Choose a prior distribution π(θ) and a percentile p
3: for i = 1 to N do
4: Draw θ i = (θ i

1, ...,θ
i
k) from the prior π(θ)

5: Conditionally on θ i , simulate synthetic data ỹθ i using a
measure-preserving numerical method (Splitting)

6: Compute s(ỹθ i ) = (Ŝỹ
θ i
, f̂ỹ

θ i
)

7: Di = median
{

IAE(Ŝyj , Ŝỹθ i
) +w · IAE(f̂yj , f̂ỹθ i

)
}M
j=1

8: end for
9: Compute ε as the percentile p of the calculated distances

10: If Di < ε, keep θ i as a sample from the posterior,
for i = 1, . . . ,N
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Parameter inference of the JR-NMM via the proposed ABC

ABC results: θ = (σ ,µ,C),
Using the measure-preserving splitting method
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ABC Setup:

• Priors: σ ∼ U(1300,2700), µ ∼ U(160,280), σ ∼ U(129,141)

• Observed data: M = 30 paths, using ∆ = 2 ·10−3, T = 200

• Synthetic data: N = 2.5 ·106 paths, using the same ∆ and T

• Threshold level: ε = 0.05th percentile
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Parameter inference based on the non-preserving
Euler-Maruyama method

ABC results: θ = (σ ,µ,C),
Using the non-preserving Euler-Maruyama method
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ABC results: A comparison of splitting and Euler-Maruyama
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Parameter inference from real EEG data
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Figure: T = 20 seconds of an α-rhythmic EEG segment recorded with a
sampling rate of 173.61 Hz.
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Parameter inference from real EEG data

ABC Results: θ = (σ ,µ,C),
Using the measure-preserving splitting method
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ABC Setup:

• Priors: σ ∼ U(500,3500), µ ∼ U(70,370), σ ∼ U(120,150)

• Observed data: M = 3 α-rhythmic EEG recordings,
sampled with ∆ = 173.61−1 ≈ 5.76 ·10−3 and T = 23.6 seconds

• Synthetic data: N = 5 ·106 paths, using ∆ = 2 ·10−3 and same T

• Threshold level: ε = 0.02nd percentile
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Conclusions

1 The proposed ABC approach yields successful inference when
combining:

• invariant measure-based summaries (density and spectral density)

• efficient and measure-preserving numerical methods (splitting)

2 The inference returned using standard non-preserving numerical
methods (Euler-Maruyama) fails. Its performance may improve for

”
small enough“ time steps =⇒ Computationally infeasible.

3 Successful results under the basic acceptance-rejection ABC.
=⇒ The proposed techniques can be applied to more advanced
algorithms.
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Thank you for your interest
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