Faculty of Engeneering and Natural Sciences Spectral density-based and measure-preserving ABC for SDEs Research seminar: Institute of Applied Statistics, JKU Linz Irene Tubikanec Institute for Stochastics, JKU Linz Joint work with Massimiliano Tamborrino (University of Warwick) Evelyn Buckwar (JKU Linz) Slide 1/45

Reference

Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs.

- Buckwar, E., Tamborrino, M. & Tubikanec, I.
- Statistics and Computing 30, 627-648 (2020).
- Available open access: https://doi.org/10.1007/s11222-019-09909-6

Setting of interest

Stochastic differential equations (SDEs)

• We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0$$

$$X(0) = X_0.$$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \ge 0} \in \mathbb{R}^n$

Partially observed SDEs

• We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0$$

 $X(0) = X_0.$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \ge 0} \in \mathbb{R}^n$

The n-dimensional solution process X is partially observed through the one-dimensional output process

$$\mathbf{Y}_{\theta} = (Y_{\theta}(t))_{t \geq 0} = g(\mathbf{X}), \quad g : \mathbb{R}^n \to \mathbb{R}.$$

Partially observed SDEs with an invariant distribution

• We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0$$

$$X(0) = X_0.$$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \ge 0} \in \mathbb{R}^n$

The n-dimensional solution process X is partially observed through the one-dimensional output process

$$\mathbf{Y}_{\theta} = (Y_{\theta}(t))_{t \geq 0} = g(\mathbf{X}), \quad g: \mathbb{R}^n \to \mathbb{R}.$$

③ The output process \mathbf{Y}_{θ} admits an invariant distribution $\eta_{\mathbf{Y}_{\theta}}$.

Parameter inference for partially observed SDEs with an invariant distribution

• We consider the *n*-dim SDE with parameter vector $\theta = (\theta_1, ..., \theta_k)$

$$dX(t) = f(t, X(t); \theta) dt + \mathscr{G}(t, X(t); \theta) dW(t), \quad t \ge 0$$

 $X(0) = X_0.$

Stochastic solution process: $\mathbf{X} = (X(t))_{t \ge 0} \in \mathbb{R}^n$

The n-dimensional solution process X is partially observed through the one-dimensional output process

$$\mathbf{Y}_{\theta} = (Y_{\theta}(t))_{t \geq 0} = g(\mathbf{X}), \quad g : \mathbb{R}^n \to \mathbb{R}.$$

- **③** The output process \mathbf{Y}_{θ} admits an invariant distribution $\eta_{\mathbf{Y}_{\theta}}$.
- **Our goal:** Inference of θ (via ABC) based on observations of the output process \mathbf{Y}_{θ} and using $\eta_{\mathbf{Y}_{\theta}}$.

Motivating example

Stochastic Jansen and Rit Neural Mass Model (JR-NMM)¹

Model: *n* = 6-dimensional stochastic JR-NMM

$$d\begin{pmatrix}Q(t)\\P(t)\end{pmatrix} = \begin{pmatrix}P(t)\\-\Gamma^2Q(t) - 2\Gamma P(t) + G(Q(t);\theta)\end{pmatrix}dt + \begin{pmatrix}\mathbb{O}_3\\\Sigma_\theta\end{pmatrix}dW(t),$$

with parameters $\theta = (\sigma, \mu, C)$ and non-linear $G: \mathbb{R}^3 \to \mathbb{R}^3$

Solution process: $X = (Q, P)^T$ with (unobserved) components $Q = (X_1, X_2, X_3)$ and $P = (X_4, X_5, X_6)$

Output process: The process $\mathbf{X} = (\mathbf{Q}, \mathbf{P})^T$ is observed through

 $\mathbf{Y}_{\theta} = \mathbf{X}_2 - \mathbf{X}_3$ (EEG)

Property: The process \mathbf{Y}_{θ} admits an invariant distribution $\eta_{\mathbf{Y}_{\theta}}$

¹M. Ableidinger, E. Buckwar, and H. Hinterleitner.

"A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics." Journal of Mathematical Neuroscience 7(8) (2017)

Slide 9/45 — Tubikanec — Spectral density-based and measure-preserving ABC — November 12, 2020

EEG data²

Figure: T = 20 seconds of an α -rhythmic EEG segment recorded with a sampling rate of 173.61 Hz.

²Data available at:

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3

ABC Algorithm

Notation

- Observed reference data: $y = (y(t_i))$
- Simulated synthetic data: $y_{\theta} = (y_{\theta}(t_i))$
- Prior: $\pi(\theta)$
- Posterior: $\pi(\theta|y)$
- ABC posterior: $\pi(\theta|y) \approx \pi_{ABC}(\theta|y)$

Algorithm

Key ingredients

- How to choose the summaries s?
- **2** How to simulate synthetic data y_{θ} ?

Summaries

Challenge: Internal randomness of the model

Figure: 3 realisations of the output process \mathbf{Y}_{θ} .

Observed dataset: blue trajectory (simulated), $\theta_{\text{observed}} = 135$ **Synthetic datasets**: grey and red trajectories, $\theta_{\text{synthetic}} = 135/139$

Question: Which distance is smaller, d(blue,red) or d(blue,grey)?

How to choose the summaries?

Proposal 1: Use the property of an invariant distribution $\eta_{\mathbf{Y}_{\theta}}$ and map the realisation y_{θ} of the output process \mathbf{Y}_{θ} to its

- 1) Invariant density $f_{\mathbf{Y}_{\theta}}$ (kernel estimator $\hat{f}_{y_{\theta}}$)
- 2) Invariant spectral density $S_{\mathbf{Y}_{\theta}}$ (periodogram estimator $\hat{S}_{y_{\theta}}$)

Summaries: Invariant density and spectral density

Summaries: Invariant density and spectral density

Question: Which distance is smaller, d(blue,red) or d(blue,grey)?

Summaries: Invariant density and spectral density

Question: Which distance is smaller, d(blue,red) or d(blue,grey)? **Parameter values**: $\theta_{observed} = 135$, $\theta_{synthetic} = 135$, $\theta_{synthetic} = 139$

ABC distance

Data: Observed dataset y and synthetic dataset y_{θ}

Summaries: Invariant densities and spectral densities

$$s(y) := (\hat{S}_y, \hat{f}_y), \quad s(y_\theta) := (\hat{S}_{y_\theta}, \hat{f}_{y_\theta})$$

Distance: Weighted sum of the areas between the densities

$$D = d(s(y), s(y_{\theta})) := \mathsf{IAE}(\hat{S}_{y}, \hat{S}_{y_{\theta}}) + w \cdot \mathsf{IAE}(\hat{f}_{y}, \hat{f}_{y_{\theta}})$$

Integrated absolute error:

$$\mathsf{IAE}(g_1,g_2) := \int\limits_{\mathbb{R}} \left| g_1(x) - g_2(x) \right| \, dx$$

Spectral density-based ABC

Reference table acceptance-rejection ABC

Input: Observed data y resulting from M datasets y_1, \ldots, y_M **Output:** Samples from the posterior $\pi_{ABC}(\theta|y)$

- 1: Precompute the summaries $s(y_j) = (\hat{S}_{y_j}, \hat{f}_{y_j}), j = 1, ..., M$
- 2: Choose a prior distribution $\pi(\theta)$ and a percentile p
- 3: for i = 1 to N do
- 4: Draw $\theta^{i} = (\theta_{1}^{i}, ..., \theta_{k}^{i})$ from the prior $\pi(\theta)$
- 5: Conditionally on θ^i , simulate synthetic data y_{θ^i} from the output process \mathbf{Y}_{θ}
- 6: Compute $s(y_{\theta^i}) = (\hat{S}_{y_{\theta^i}}, \hat{f}_{y_{\theta^i}})$
- 7: $D_i = \text{median} \left\{ \text{IAE}(\hat{S}_{y_i}, \hat{S}_{y_{\theta^i}}) + w \cdot \text{IAE}(\hat{f}_{y_i}, \hat{f}_{y_{\theta^i}}) \right\}_{i=1}^M$

8: end for

- 9: Compute arepsilon as the percentile p of the calculated distances
- 10: If $D_i < \varepsilon$, keep θ^i as a sample from the posterior,

for i = 1, ..., N

Simulation from the model

Numerical simulation methods for SDEs

Time discretisation:

- Time interval: [0, T]
- Discrete points: t_i , i = 0, ..., n, $t_0 = 0$, $t_n = T$
- Time step: $\Delta = t_i t_{i-1}$

• Exact simulation of the process at t_i : $y_{\theta} = (Y_{\theta}(t_i))$

 $\pi(\theta|y) \approx \pi_{\mathsf{ABC}}(\theta|y)$

Approximation of the process at *t_i*: $\tilde{y}_{\theta} = (\tilde{Y}_{\theta}(t_i)) \approx (Y_{\theta}(t_i))$ $\pi(\theta|y) \approx \pi_{ABC}(\theta|y) \approx \pi_{ABC}^{num}(\theta|y)$

Numerical simulation methods for SDEs

Time discretisation:

- Time interval: [0, T]
- Discrete points: t_i , i = 0, ..., n, $t_0 = 0$, $t_n = T$
- Time step: $\Delta = t_i t_{i-1}$

• Exact simulation of the process at t_i : $y_{\theta} = (Y_{\theta}(t_i))$

$$\pi(\theta|y) \approx \pi_{\mathsf{ABC}}(\theta|y)$$

- Approximation of the process at t_i: $\tilde{y}_{\theta} = (\tilde{Y}_{\theta}(t_i)) ≈ (Y_{\theta}(t_i))$ π(θ|y) ≈ π_{ABC}(θ|y) ≈ π^{num}_{ABC}(θ|y)
- 2.1 Measure-preserving method: $Y_{\theta}(t_i) \approx \widetilde{Y}_{\theta}(t_i) \sim \eta_{\mathbf{Y}_{\theta}}$
- 2.2 Non-preserving method: $Y_{\theta}(t_i) \approx \widetilde{Y}_{\theta}(t_i) \approx \eta_{\mathbf{Y}_{\theta}}$

Challenge: Standard methods (Euler-Maruyama) may be non-preserving

$$\widetilde{X}(t_{i+1}) = \widetilde{X}(t_i) + f(t_i, \widetilde{X}(t_i); \theta) \Delta + \mathscr{G}(t_i, \widetilde{X}(t_i); \theta) \Delta W$$

Toy Model

Model: n = 2-dimensional damped stochastic harmonic oscillator

$$d\begin{pmatrix} Q(t)\\ P(t)\end{pmatrix} = \begin{pmatrix} P(t)\\ -\lambda^2 Q(t) - 2\gamma P(t) \end{pmatrix} dt + \begin{pmatrix} 0\\ \sigma \end{pmatrix} dW(t),$$

with $\theta = (\lambda, \gamma, \sigma)$ and $\lambda^2 - \gamma^2 > 0$ (weak damping)

Output process: The process $\mathbf{X} = (\mathbf{Q}, \mathbf{P})^T$ is observed through $\mathbf{Y}_{\theta} = \mathbf{Q}$

Property: The output process admits an invariant distribution $\eta_{\mathbf{Y}_{\theta}}$

Simulation: Exact

Spectral density-based ABC: Toy Model

ABC Results: $\theta = (\lambda, \gamma, \sigma)$, Exact simulation, Time step $\Delta = 10^{-2}$

ABC Setup:

- Uniform priors: $\lambda \sim U(18,22)$, $\gamma \sim U(0.01,2.01)$, $\sigma \sim U(1,3)$
- Observed data: M=10 paths, using $\Delta=10^{-2}$ and $\mathcal{T}=10^3$
- Synthetic data: $N = 2 \cdot 10^6$ paths, using the same Δ and T
- Threshold level: $\varepsilon = 0.05^{th}$ percentile

Spectral density-based and measure-preserving ABC: Toy Model

ABC Results: $\theta = (\lambda, \gamma, \sigma)$, Measure-preserving simulation, Time step $\Delta = 10^{-2}$

Can we use Euler-Maruyama?

ABC Results: $\theta = (\lambda, \gamma, \sigma)$, Measure-preserving simulation, Time step $\Delta = 10^{-2}$

Euler-Maruyama is NOT APPLICABLE for $\Delta = 10^{-2}$ $\widetilde{Y}_{\theta}(t_i) \approx \infty$ (Computer overflow)

Simplest task: Inferring only one parameter

ABC Results: $\theta = \lambda$, Different numerical methods, Smaller time step $\Delta = 10^{-3}$

ABC Setup:

- Uniform priors: $\lambda \sim U(10, 30)$
- Observed data: Same as before
- Synthetic data: $N=10^5$ paths, using a smaller $\Delta=10^{-3}$
- Threshold level: $\varepsilon = 1^{st}$ percentile

Simplest task: Inferring only one parameter

ABC Results: $\theta = \lambda$, Different numerical methods, Smaller time step $\Delta = 10^{-3}$

Even smaller Δ required for Euler-Maruyama

- \implies Highly inefficient
- \implies ABC: computationally infeasible

How to simulate from the model?

Proposal 2: Use a measure-preserving numerical method. \implies Splitting method

Measure-preserving splitting for the stochastic JR-NMM¹

Model:

$$d\begin{pmatrix}Q(t)\\P(t)\end{pmatrix} = \left(-\Gamma^2 Q(t) - 2\Gamma P(t) + \underbrace{G(Q(t);\theta)}_{nonlinear}\right) dt + \begin{pmatrix}\mathbb{O}_3\\\Sigma_\theta\end{pmatrix} dW(t)$$

Splitting:

• Equation 1: linear SDE

$$d\begin{pmatrix}Q(t)\\P(t)\end{pmatrix} = \begin{pmatrix}P(t)\\-\Gamma^2Q(t) - 2\Gamma P(t)\end{pmatrix}dt + \begin{pmatrix}\mathbb{O}_3\\\Sigma_\theta\end{pmatrix}dW(t)$$

equation 2: non-linear (but simple) ODE

$$d\begin{pmatrix}Q(t)\\P(t)\end{pmatrix} = \begin{pmatrix}0_3\\G(Q(t);\theta)\end{pmatrix}dt$$

¹M. Ableidinger, E. Buckwar, and H. Hinterleitner.

"A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics." In: Journal of Mathematical Neuroscience 7(8) (2017)

Slide 34/45 — Tubikanec — Spectral density-based and measure-preserving ABC — November 12, 2020

Measure-preserving splitting for the stochastic JR-NMM

① Equation 1: The linear SDE can be written as

dX(t) = AX(t)dt + BdW(t)

Explicit solution: Exact paths are obtained through

$$X(t_{i+1}) = e^{A\Delta}X(t_i) + \xi_i,$$

where ξ_i are 6-dimensional Gaussian vectors with mean 0_6 and variance $C(\Delta)$, where $\dot{C}(t) = AC(t) + C(t)A^T + BB^T$, $C(0) = \mathbb{O}_6$.

equation 2: non-linear (but simple) ODE

$$d\begin{pmatrix}Q(t)\\P(t)\end{pmatrix} = \begin{pmatrix}0_3\\G(Q(t);\theta)\end{pmatrix}dt$$

Explicit solution: Exact paths are obtained through

$$X(t_{i+1}) = X(t_i) + \begin{pmatrix} 0_3 \\ \Delta G(Q(t_i); \theta) \end{pmatrix}.$$

Measure-preserving splitting for the stochastic JR-NMM Splitting:

• Explicit solution of Equation 1:

$$X(t_{i+1}) = e^{A\Delta}X(t_i) + \xi_i$$

Explicit solution of Equation 2:

$$X(t_{i+1}) = X(t_i) + \begin{pmatrix} 0_3 \\ \Delta G(Q(t_i); \theta) \end{pmatrix}$$

Composition (Strang approach): Given $\widetilde{X}(t_i)$, how to obtain $\widetilde{X}(t_{i+1})$?

1:
$$X_b = \widetilde{X}(t_i) + \begin{pmatrix} 0_3 \\ \frac{\Delta}{2}G(Q(t_i);\theta) \end{pmatrix}$$

2: $X_a = e^{A\Delta}X_b + \xi_i$
3: $\widetilde{X}(t_{i+1}) = X_a + \begin{pmatrix} 0_3 \\ \frac{\Delta}{2}G(Q_a;\theta) \end{pmatrix}$

Application: Spectral density-based and measure-preserving ABC

Spectral density-based and measure-preserving ABC

Reference table acceptance-rejection ABC

Input: Observed data y resulting from M datasets y_1, \ldots, y_M **Output:** Samples from the posterior $\pi_{ABC}^{num}(\theta|y)$

- 1: Precompute the summaries $s(y_j) = (\hat{S}_{y_j}, \hat{f}_{y_j}), j = 1, ..., M$
- 2: Choose a prior distribution $\pi(\theta)$ and a percentile p
- 3: for i = 1 to N do
- 4: Draw $heta^{i} = (heta^{i}_{1},..., heta^{i}_{k})$ from the prior $\pi(heta)$
- 5: Conditionally on θ^{i} , simulate synthetic data $\tilde{y}_{\theta^{i}}$ using a measure-preserving numerical method (Splitting)

6: Compute
$$s(\tilde{y}_{\theta^i}) = (\hat{S}_{\tilde{y}_{\theta^i}}, \hat{f}_{\tilde{y}_{\theta^i}})$$

7: $D_i = \text{median} \left\{ \text{IAE}(\hat{S}_{y_j}, \hat{S}_{\tilde{y}_{\theta^i}}) + w \cdot \text{IAE}(\hat{f}_{y_j}, \hat{f}_{\tilde{y}_{\theta^i}}) \right\}_{j=1}^M$

8: end for

- 9: Compute ε as the percentile *p* of the calculated distances 10: If $D_i < \varepsilon$, keep θ^i as a sample from the posterior,
- for $i = 1, \dots, N$

Parameter inference of the JR-NMM via the proposed ABC

ABC results: $\theta = (\sigma, \mu, C)$, Using the measure-preserving splitting method

ABC Setup:

- Priors: $\sigma \sim U(1300, 2700)$, $\mu \sim U(160, 280)$, $\sigma \sim U(129, 141)$
- Observed data: M = 30 paths, using $\Delta = 2 \cdot 10^{-3}$, T = 200
- Synthetic data: $\mathit{N}=2.5\cdot10^6$ paths, using the same Δ and T
- Threshold level: $\varepsilon = 0.05^{th}$ percentile

Parameter inference based on the non-preserving Euler-Maruyama method

ABC results: $\theta = (\sigma, \mu, C)$, Using the non-preserving Euler-Maruyama method

ABC results: A comparison of splitting and Euler-Maruyama

Parameter inference from real EEG data

Figure: T = 20 seconds of an α -rhythmic EEG segment recorded with a sampling rate of 173.61 Hz.

Parameter inference from real EEG data

ABC Results: $\theta = (\sigma, \mu, C)$, Using the measure-preserving splitting method

ABC Setup:

- Priors: $\sigma \sim U(500, 3500)$, $\mu \sim U(70, 370)$, $\sigma \sim U(120, 150)$
- Observed data: $M = 3 \alpha$ -rhythmic EEG recordings, sampled with $\Delta = 173.61^{-1} \approx 5.76 \cdot 10^{-3}$ and T = 23.6 seconds
- Synthetic data: $\textit{N} = 5 \cdot 10^6$ paths, using $\Delta = 2 \cdot 10^{-3}$ and same T
- Threshold level: $\varepsilon = 0.02^{nd}$ percentile

Conclusions

- The proposed ABC approach yields successful inference when combining:
- invariant measure-based summaries (density and spectral density)
- efficient and measure-preserving numerical methods (splitting)
- The inference returned using standard non-preserving numerical methods (Euler-Maruyama) fails. Its performance may improve for "small enough" time steps => Computationally infeasible.
- Successful results under the basic acceptance-rejection ABC.
 The proposed techniques can be applied to more advanced algorithms.

Thank you for your interest

