TOPICS FOR THESES AND
PRACTICAL PROJECTS

WS 2022

4

Institute for Software Systems
Engineering

http://www.isse.jku.at

JOHANNES KEPLER
UNIVERSITAT LINZ Technologies for building better software

1\
' z U — . Institute for
ﬁaﬁ Software Systems Engineering

http://www.isse.jku.at/

TOPICS

B We have many topics

B Contact the person in charge for appointment
B It is possible to do teamwork
B It is also possible for two to choose the same topic

B Languages: German and English

JXU

MEETINGS

B Four Joint Meetings
[0 Assignment and Definition of Topics
[0 Two Status Reports with Intermediate Results
[0 Final Report with a Short Demo

B Regular Individual Meetings with Advisors

BT S

Do. 13.10.2022 10:00 - 11:30 S3 218
Do. 10.11.2022 05:00 - 10:30 S3 218
Do. 15.12.2022 0S:00 - 10:30 S3 218
Do. 19.01.2023 0S:00 - 10:30 S3 218

JXU

Product Line Refactoring

PRODUCT LINES EVOLVE

V1 V2

MiniPaint

Base | | Painting Operation

‘ Rectangle | Diamond | Square Cube‘ ‘Round‘

Painting

Rectangle | Cube

Operation
™\

N

B Adding new features Challenge: Keeping feature-to-

B Revising existing features code mappings up to date

B Particularly hard when
manually creating and
maintaining them

B Merging features

B Splitting features
m ..

JXU

B E.g, annotation-based PLs

[Michelon2020, Michelon2o21]

IDEA: COMBINING THE BENEFITS OF
GIT AND ECCO

Git ECCO

B Proven and widely used B Feature-to-code mappings

B Huge ecosystem of tools created automatically

B Useful in many different B Handling fine-grained
workflows revisions and variants

B Composing new versions
based on features

Potential Use Cases
o Migrating existing systems to product lines
JX¥U ° Refactoring features of existing product lines 6

TOOL

Git Repository . O ----add Base
/\ ‘/" ?

Feature h add Rect
Tagging > add Base
add Cube
-----add Circle

Annotated
Version
History

’

_____ =

- ~ . N

+ Step 2

Model

Commits

'
’

. Checkout :

Commit .
Variants |

Base Circle Rectangle Cube JPEG PNG

ECCO Variation Control System

PRELIMINARY EVALUATION

Git Repository of a
Magic Mirror System Features
[0 Written in Java [0 Base (mand.)
~ 50 Files [Traffic
[0 Weather
LT LOC 0 18N
100 Git commits :
: . . [Settings | -
O Configuration Files: JSON, 1 RSS w1 F16%
Text, XML

[1 Static resources: JSON
O SpringBoot Application
[0 Modular

JXU

TOPIC: RESERVE CASE STUDY

TOPICS

B Apply ReSerVe on a larger system
M Select Java-based system

B Analyse evolution history

B Perform replay experiments
B Process described in existing
conference paper

Refactoring Product Lines by Replaying Version Histories

Michael Ratzenbock
Paul Griinbacher
Wesley Klewerton Guez Assungéo
Alexander Egyed

Institute of Software Systems Engineering
Johannes Kepler University Linz
4040 Linz, Austria
paul.gruenbacher@jku.at

ABSTRACT

When evolving software product lines, new features are added
over time and existing features are revised. Engineers also decide
to merge different features or split features in other cases. Such
refactoring tasks are difficult when using manually maintained
ture-to-cod ings. Intensional version control systems such
as ECCO this issue with i puted feature-
to-code mappings. Furthermore, they allow creating variants that
have not been explicitly committed before. However, such systems
are still rarely used compared to extensional version control sys-
tems like Git, which keep track of the evolution history by assigning
revisions to states of a system. This paper presents an approach
both and i 1 version control sys-
tems, which relies on the extensional version control system Git
to store versions. Developers selectively tag existing versions to
describe the evolution at the level of features. Our approach then
automatically replays the evolution history to create a repository
of the intensional variation control system ECCO. The approach
contributes to research on refactoring features of existing product
lines and migrating existing systems to product lines. We provide
an initial evaluation of the approach regarding correctness and
performance based on an existing system.

CCS CONCEPTS

- Software and its engineering — Software product lines; Soft-
ware configuration management and version control systems;
Software maintenance tools.

KEYWORDS
version control systems, refactoring, feature-level evolution

ACM Reference Format:

Michael Ratzenbéck, Paul Griinbacher, Wesley Klewerton Guez Assungéo,
Alexander Egyed, and Lukas Linsbauer. 2022. Refactoring Product Lines by
Replaying Version Histories. In Proceedings of the 16th International Working
Conference on bility Modelling of Software-I Systems (VAMOS

Permission to make digital or hard copies of all or part of this work for personal o
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this wark owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VAMOS 22, February 23-25, 2022, Florence, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9604-2/22/02....$15.00

loi.org/10.1145/3510466.3510484

For this topic please contact:
paul.gruenbacher@jku.at

Lukas Linsbauer
Institute of Software Engineering and
Automotive Informatics
Technische Universitit Braunschweig
38106 Braunschweig, Germany
Llinsbauer@tu-braunschweig.de

'22), February 23-25, 2022, Florence, Italy. ACM, New York, NY, USA, 10 pages.
http: loi.org/10.1145/3510466.3510484

1 INTRODUCTION

Product lines are subject to continuous evolution [13, 23]. Features
are added, removed, and renamed over time, and they are split
or merged to date new or changi quil [3).
These continuous changes result in many revisions of software
artifacts (7). Revisions are the result of evolution in time, e.g., when
fixing a bug. They denote sequential versions, representing a snap-
shot of the evolution of a software feature. Variants on the other
hand stem from evolution in space [2], e.g., when adding a new
feature. They denote versions of software artifacts that need to exist
concurrently. In based product lines manually
maintain fe code mappi intaining code

guarded by annotations encoding the mappings is hard [15, 21]
and it is particularly challenging to carry out changes to features
while at the same time keeping the mappings consistent [13, 22, 28].
For instance, merging features at a certain point is difficult when
done manually, since features are mapped to diverse and complex
artifacts.

Existing version control systems pursue two versioning strate-
gies [7, 18], which can be used to manage evolving product lines:
Extensional versioning assumes that all existing versions are explic-
itly enumerated. It then allows to retrieve the versions that have
been created before. Git or Subversion are examples of such tools,
which keep track of changes by assigning revisions to states of
a system over time. However, evolution is rarely just a linear se-
quence of steps and such tools thus provide branching mechanisms
for dealing with variants. For instance, short-term branches are
used to develop new features in isolation. Once a new feature is
finished, it is merged with the original artifact and the branch is
no longer used. However, at this point the new feature becomes
tangled with the rest of the artifacts and its location is not man-
aged explicitly [22]. The purpose of long-term branches, on the
other hand, is to create clones of existing artifacts, based on which
variants of the system can then be created. Nonetheless, long-term
branches quickly lead to maintenance problems as updates and
fixes need to be propagated to all variants [25]. Intensional ver-
sioning aims at overcoming these limitations with mechanisms for
managing fine-grained variants [18], thereby avoiding branches for
features of variants. Furthermore, they allow creating versions that
have not been explicitly enumerated and committed before. Such
tools use concepts like features, configurations, and construction

Intensional Versioning
Study

EXTENSIONAL VCS (E.G., GIT,

SUBVERSION)

Revisions: Evolution in Time

commit ,u4
“ovl” _(—Al ?&‘ngu 3 ¢ A A
) -
commit =r
“ ” P N 2>) T | NN N T
f'eV2 A4 P -) I 1 — o — I
)
Dieu! qu'il la fait bon re-gar - der
Tres modéré soutenu et expressif
. mf = p
e
COmmIt gu.#a'r 9 T | NS N T
“) Sopranos b s NP2 JO Y N J I T I\J O I
rev3 $ > —o—

Dieu! qu'il la fait bon re-gar - der

Variants: Evolution in Space

branch Tres modéré soutenu et expressif
“french” ¥ e
e
‘ 0 ﬁu‘nﬁ Q I | N N I
Sopranos % . uﬂ ‘,"HU- '-’i '! | D) DI N N W I
v - ~
Dicu! qu'il la faitbon re-gar - der
Tres modére soutenu et expressif
“Qel’man" ﬁu#& Q | K | N — K—K i
Sopran i S —) A — i |
v —-—

Gott! Schén hast du mein Lieb ge-macht

« Use branches for coarse-grained and annotations for fine-grained variants
« Manual updates of feature-to-code mappings
« Can retrieve only previously committed versions (e.g., rev2, french)

INTENSIONAL VCS (E.G., ECCO,
SUPERMOD)

Revisions: Evolution in Time Variants: Evolution in Space

comm it IwR.s comm it Tres modére soutenu et expressif
+set 1 oS) 1) +f h 1 mf = p
Setup. S I —_— : ! rencn. 4 H P
+notes 1 (Y Sopranos f’&“?u 3 I 1Y IL\J IL\J ™ h {
; : :
Dicu! qu'illa fait bon re-gar - der
comm it #i’L\ : Tres modéré soutenu et expressif
0 ﬁu.#u'r Q I | N N NN I commlt
+SlurS,1 il VS) 72 [M w—| 1 I + 1 "f>P
+dynamics.1 ~® , . germéii{? } 'ﬁ&#ﬁu 3, | R S S S
+lyriCS 1 Dicu! qu'il la fait bon re-gar - der OB S i > e 6 4 o ¢ &1 .
Gott! Schén hast du mein Lieb ge-macht
Tres modéré soutenu et expressif
. mf = p ,
commit T o e S e checkout setup.1, notes. 1, dynamics. 1
SOPTANos Lk 1 '"Ll [) y] [|) B} |\ |\ By)] |
+exts. 1" 1§ e et — Y mp =p
+articulations. 1 Dicu! qu'il la faitbon re-gar - der % i R e e A e
D)

« Uniform handling of revisions and variants (a.k.a. Variation Control Systems)
« Committing features with automatic updates of feature-to-code mappings
« Can compose new versions based on features of committed versions

[Linsbauer et al., 2021]

TOPIC: STUDY ON INTENSIONAL
VERSIONING AND CORRECTNESS

Correctness Levels

0,9

CL5: Compiles and runs

o
©

CL4: Compiles and runs after
removing surplus code

o
3

o
o

CL3: Compiles and runs with
runtime errors after removing
surplus code

o
~

Overall Ambiguity Reduction of Vairants

o
N

CL2: Compilation errors even
after removing surplus code

o

=}
S}

CLl: Required COde is missing Or ' 12 3 456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
1Sti 1 Fixes Applied
features cannot be distinguished ixes Applie

——Baseline e===FUV2 em=—=MVV2 FUV3 MVV3 FUV4 MVv4

For this topic * Empirical Study: Impact of fixing and committing
please contact_: incorrect variants on correctness levels
paul.gruenbacher@jku.at * Possible Artifacts: Java Code, Lilypond Music DSL, etc.

DesignSpace

LIT Exzellenzprojekt

DESIGNSPACE

— Engineers continue to work with their
respective tools and the artifacts are
synchronized automatically in = 1T g
the background with the
DesignSpace

— Linking or Error
Detection
provided by the
Designspace

support) Linking
engineers

In their daily Sharing
work

JXU

ﬂ File Edit View Navigate Code Analyze Refactor Build Run Tools DesignSpace VC Robotich - O X
RoboticArm = src - components € Arm L~ A Add Configuration.. QO P
i Pr @ = = & — © Amjava € ArmJointjava € TurningTablejava
B . & RoboticArm C:\Users\Co package components; 4 ~ v
L > I idea 2
v W sric public class TurningTable extends Joint { -
| HR components private double maxAngle; [l
WA i private double idleAngle; il
€ ArmJoint |
€ Gripper
® Gripperjoint public TurningTable(double currentAngle, double maxAngle) {4
& Joint super(currentAngle);
¢ Robot this.maxAngle = maxAngle;
'€ TurningTable }
I'm RoboticArm.iml
> Il External Libraries 12 ef public void rotate(double angle, int duration) {
"0 Scratches and Consoles if (angle >= -maxAngle && angle <= maxAngle)
O] rotate(angle, duration);
+
: Iy
€ Armjava

Structure

* Favorites

[mi

Terminal

© Pproblems
Push: Local version has been pushed to the DesignSpace. (2 minutes ago)

i= TODO

JXU

package components;

public class Arm {
private int regularDuration;
double

double

private armLength;
armHeight;
double minimumObjectHeight;
double maximumObjectHeight;
Gripper gripper;

ArmJoint armJoint;

private
private
private
private
private

public Arm(double armLength, double armHeight, ArmJoint arnf

this.armLength = armLength;
this.armHeight = armHeight;
this.gripper = gripper;
this.armJoint = armJoint;

61:1

@ Event Log
CRLF UTF-8 4spaces ‘i

W Project

ﬂ Eile Edit View Navigate Code Analyze Refactor Build Run Tools DesignSpace VC RoboticArr — O X
RoboticArm = src - components = € Arm &~ A Add Configuration.. QO P
Pr @ T =+ & — © Amjava € ArmJointjava € TurningTablejava
v [RoboticArm C:\Users\Co package components; 4 A v
> I .idea
v sre public class TurningTable extends Joint { -
¥'{.components private double maxAngle; B
9 A . private double idleAngle;
€ ArmJoint =
€ Gripper
® Gripperloint public TurningTable(double currentAngle, double maxAngle) -
® Joint super(currentAngle);
¢ Robot this.maxAngle = maxAngle; IS
© TurningTable }
= RoboticArm.iml 11 B
> Il External Libraries) of public void rotate(double angle, int duration) {
70 Scratches and Consoles if(angle>=-maxAngle && angle<= maxAngle)
@ rotate(angle, duration);
}
}
€ Armjava

Structure

* Favorites

[m|

B Terminal

© problems
Pull: Local version has been pulled from the DesignSpace. (2 minutes ago)

i= TODO

package components;

public class Arm d
private int regularDuration;
double
double
double minimumObjectHeight;
double maximumObjectHeight;
Gripper gripper;
ArmJoint armJoint;

private armLength;

private armHeight;
private
private
private

private

public Arm(double armLength, double armHeight, ArmJoint

this.armLength = armLength;
this.armHeight = armHeight;
this.gripper = gripper;
this.armJoint = armJoint;

@ Event Log

anri

3:19 CRLF UTF-8 4spaces

File Actions Tasks

Requirements Stakeholders

v Robotic Arm
v General requirements
Put down an object
Pick up an object

Add Component

Add Category

Jineering knowledge

Software Systems Engineering

Add Requirement

File Edit View Navigate Code Analyze Refactor Build Run Tools DesignSpace VCS Window Help RoboticArm - a X

¥ Project

RoboticArm ~ src - components = ‘€ Gripper ~m releaseObject L~ A Add Configuration.. Q >
Py @ = = ®&» — @ Gripperjava
~ ', RoboticArm C 6 A v
> idea public class Gripper {
2 out private double fingerLength;
i e private int closeDuration;
v components . L s
private int openDuration;
S ivate GripperJoint gripperdoint
rivate Gr erJoin ripperJoint;
€ ArmJoint P PP S ILRP '
& Base private double minimumDiameter;
& Gripper private double maximumDiameter;

Structure

¥ Favorites

O

€ GripperJoint
€ Joint
€ TurningTable

= RoboticArm.im|
> Il External Libraries
© Scratches and Consoles

! Terminal
Push: Local vt

A Build

public Gripper(double fingerLength, GripperJoint gripperJoint) {
this.fingerLength = fingerLength;
this.gripperJdoint = gripperJdoint;

public void grabObject(double objectDiameter) {
if (objectDiameter < minimumDiameter || objectDiameter > maximumDiamet¢
throw new IllegalArgumentException("The object size exceeds require
double opening = objectDiameter / 2;
double distance = Math.sgrt(Math.pow(fingerLength, 2) + Math.pow(openir
double angle = Math.acos(distance / fingerlength);
gripperJoint.close(angle, closeDuration);

public void releaseObject() {
gripperJdoint.close(desiredAngle: @, openDuration);

H
public double getMinimumDiameter() { return minimumDiameter; }

public void setMinimumDiameter(double minimumDiameter) {

this.minimumDiameter = minim
© Push

Local version has been pushed to the DesignSpace.

double minimumRadius = minim
double minAngle = Math.acos(

@ Event Log

fon has been pushed to the DesignSpace. (moments ago) 27:6 CRLF UTF-8 4spaces i

O

Home Insert

Comments
Shapes Filter

All
STENCILS SEARCH . by

i J New Comment
More Shapes »

UML State Machine

= .

EZB Spate with
| internal ...

(=== Composite
state

@t Submachine
state

‘ Initial state
O Final state
N

' : : U Page10f1 English (United

REST API

(ALEXANDER.EGYED@JKU.AT)

B Blockly and other applciations use Java Script
[J access via REST
[0 provide a simple retrieve mechanism for reading instances and
types through REST
[0 provide a simple update mechanism for changing instances and
types through REST

JXU

PLANT UML/TEST

(ALEXANDER.EGYED@JKU.AT)

B http://www.plantuml.com/

B library for visualizing elements, perhaps understanding location of
element for visual support

O X
BB PlantText UML Editor x +

& > C @ planttextcom e % 2 % 0O P@

‘i Apps ¥/ Stock Portfolio & Tr.. 1= stocks - Google Sh... A LargestUS. Stocks.. & Maps @2 News » YouTube [l| Travel [l Media »

PlantTeXt - The expert's design tool Donate About Blog Forum

02 - Relationships v ?2 3

File Manager Refresh (Alt+Enter) File: Default Diagram Relationships - Class Diagram
1 @startuml
2 .
3 title-Relationships---Class-Diagram ©DOOI’ ©WIndOW
4
5
6 v class-Dwelling-{ many man
7 +Int-Windows L .
8 +void-LockTheDoor () Composition /Composition
9 } 1
10
11 class-Apartment © D i
12 class-House welling

13 class-Commune =
14 class-Window o Int Windows

15 class Door o void LockTheDoor() |

17 Dwelling-<|-down--Apartment:-Inheritance

18 Dwelling-<|-down--Commune: -Inheritance

19 Dwelling-<|-down--House: - Inheritance Inheritance [Inheritance Inheritance
20 Dwelling-"1" *-up--"many"-Window: -Composition

21 Dwelling-"1" *-up--"many"-Door: -Composition

23 @enduml ©Apartment @House @Commune

PNG | SVG | IXT | Edit
4

Thanks to PlantUML, Graphviz, Ace Editor; Johan Sundstrém (js-deflate), as well as Steven Nichols. © Copyright 2013 - 2020 Arwen Vaughan | Privacy Policy.

J z U OwnCloud\Teach... = @ PlantText i [2] a cﬂ DEU 859 AM

http://www.plantuml.com/

IMPORT CODE THROUGH VERSION

HISTORY

Code Version 1

Code Version 2

Code Version n

JXU

src
~ [components
© Am
@ ArmJoint
© Gripper
© GripperJoint
€ Joint
@ Robot
‘€ TumingTable
#/a RoboticArm.im! 11
> Il External Libraries 12 of
79 Scratches and Consoles | - -

. File Edit View Navigate Code Analyze Refactor Build Run Tools DesignSpace VC RoboticArr — m] X
src - components @ Arm &~ A Add Configuration.. 56 m QO P

o — © Amjava © Armlointjava © TumingTablejava
ers\(package components; A4 A v

public class TurningTable extends Joint { —
private double maxAngle;
private double idleAngle;

public TurningTable(double currentAngle, double maxAngle) -
super(currentAngle);

this.maxAngle = maxAngle;]

public void rotate(double angle, int duration) {
if(angle>=-maxAngle && angle<= maxAngle)
rotate(angle, duration);

}

€ Armjava

package components; A8 A v

public class Arm {
private int regularDuration; -
private double armLength;
private double armHeight;
private double minimumObjectHeight;
private double maximumObjectHeight;
private Gripper gripper;

2 private ArmJoint armJoint;

g =

: public Arm(double armLength, double armHeight, ArmJoint a:
this.armLength = armLength;

g this.armHeight = armHeight;

§ this.gripper = gripper;

* 1 this.arndoint = armdoint;

=7000 @ problems M Terminal @ Event Log
IO Pull: Local version has been pulled from the DesignSpace. (2 minutes ago) 3:19 CRLF UTF-8 4spaces

IMPORT MODEL THROUGH VERSION
HISTORY/REFACTORING

Model Version 1

Model Version 2

Model Version n

JXU

o

I (2 O { Bosary
7z B =

i cpating

@

Wevee Duamast Duswart Vet P - Bewsiin Subioh W Pathone et et Tbieh i I B
. v Tewlm DN Teager PR v oo I Wt . . .
- L ey e e ey
P B atrced Sowscant Bagun Bamied Scaecwe - x SVaww
L — t sy b Ohapan ALY
e P —
orve L -
-,
~ e e
-
——
--------- ”
vt et s -
e e -
—— v
——— -
-~
i - e =
ﬁ ,,,,, .
Smimmmes AN T] et
- —
e e
|
e e

Integration of ECCO and
DesignSpace

ECCO VARIATION CONTROL SYSTEM
(EXAMPLE: DIGITAL MUSIC PUBLISHING)

\score {<< \new voice = "tenor" { \global
rd4 ais2
cis'8 h8 ais8
\times 2/3 { aisl6[hl6 aisl6] } cis'8

\times 2/3 { hl1l6[cis'16 hi6] }
ais2 r4
\space } >>}

commit notes.1

{ aisl16[hl6 aisl6] } cis'8

{ hi6[cis'16 h1l6] }
commit notes.1, dynamics.1 >

\score {<< \new voice = "tenor" { \global
rd4 ais2 \(
cis'8 h8 ais8
\times 2/3 { aisl6[hl6 aisl6] } cis'8
\times 2/3 { h16[cis'16 hi16] }
ais2 \) r4 "
\space } >>} commit notes.1, slurs.1
1
1
1
1
\score {<< \new voice = "tenor" { \global
r4 aisz2
cis's h8 aiss8 1
2/3
1
1

\space } >>}

\score {<< \new voice = "tenor" { \global
r4 ais2
cis'8 h8 ais8
\times 2/3 { aisl6[hl6 aisl6] } cis's

\times 2/3 { hl6[cis'16 hi16] }
ais2 r4 - -
\space } commit notes.1, lyrics.1 >

\new Lyrics \lyricsto "tenor" {

Dieu! qu'il la fait bon _ re -- gar -- der --

3 >>}

checkout notes.1, slurs.1, dynamics.1, lyrics.1

JXU

ECCO Variation Control System

Parse LilyPond
code and create

Abstract Syntax i
Tree i
' LilyECCO Music Artifact
| Shippets
E Mapped to Features
LilyPond ;
Reader ! i

Create artifact tree
for configuration and
create LilyPond code

LilyPond Writer

mf = p
} . ke % —
lly/ lr) IY/ L1 1 1
Dieu! qu'il la fait bon__re -gagr - der

Generate PDF, SVG or MIDI output

LilyPond Compiler

\score {<< \new Voice = "tenor" { \global
r4 aisz2
cis'8 h8 aiss
\times 2 { aisl6[hl6 aisl6] } cis'8
\times 2 { h16[cis'16 hl6] }
ais2 \) r4
\space }

\new Lyrics \lyricsto "tenor" {
Dieu! qu'il la fait bon _ re -- gar -- der

¥ >>}

INTEGRATING THE DESIGN SPACE

WITH ECCO Lr—“ ﬂ
. é\
B Goals L

[0 Extend the DesignSpace to &i

Feature

benefit from ECCO’s RobotArm g
variability support

[0 Reuse plugins developed for 7%CV
DesignSpace in ECCO IS E\z \JJ NG vrers

B Task
O ECCO Plugin reading and
writing the DesignSpace data Workspace Workspace for
structure Changed Features cOﬁggif;Zgn
[0 Demonstration for Java and
Visio (existing DesignSpace
plugins)

()
—
o J

JU For this topic please contact:
paul.gruenbacher@jku.at

ECCO and the Microsoft
Language Server Protocol

MICROSOFT LANGUAGE SERVER
PROTOCOL

NO LSP LSP

JS) s == %)
A ® A @

2 (fa
Q
?’((EA

B IDE features like auto-completions or Go to Definition requires writing a
domain model (a scanner, a parser, a type checker, a builder and more)

B A Language Server provides these features in its own process.

B The language server protocol (LSP) defines the messages exchanged
between a development tool and a language server process.

JXU

LANGUAGE SERVER WITH VARIABILITY

Bl Goals
[Study the LSP and its extensibility features
[1 Define protocol extensions for ECCO (e.g., highlight
feature in code, hide features, etc.)
[1 Use ECCO REST API to implement extensions
[Test with IDE

Language Server Variability

Developer Tool
Protocol Language Server

Highlight feature RobotArm

Response: Code Locations

JU For this topic please contact:
paul.gruenbacher@jku.at

