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Abstract

Unique Word orthogonal frequency division multiplexing (OFDM) is a promising
alternative to cyclic prefix based OFDM (CP-OFDM), which currently denotes
the method of choice for many digital communication standards, with applications
ranging from audio and video broadcasting, last mile internet access to modern
cellular networks. In this signaling concept, the guard interval (GI) is filled with
an arbitrary deterministic sequence — the so-called “unique word” (UW) — in-
stead of the random CP. This sequence provides the same advantages as a CP
(no intersymbol interference and diagonalization of the channel matrix), but can
additionally be designed to optimally meet synchronization and estimation tasks.
Furthermore, most important, and different to almost all signaling schemes of the
OFDM family, the UW is already part of the discrete Fourier transform (DFT) in-
terval. Ensuring such time domain properties entails the introduction of a certain
redundancy in the frequency domain. This redundancy can be exploited bene-
ficially to enhance range, reliability, capacity or battery lifespan. In this sense,
UW-OFDM transforms the usually disregarded guard interval into a multipurpose
sequence, thus tackling the well-known inefficiency problem of guard intervals in
current communication systems. Moreover, adapting the UW and therefore the
GI length to different channel conditions will not impact the DFT length and thus
keeps relevant processing chain structures untouched. Hence, UW-OFDM allows
supporting a wide range of communication scenarios while still ensuring high effi-
ciency.

The implementation of the inherent redundancy — the primary root of the special
UW-OFDM properties — is ambiguous, giving rise to a variety of different signal
variants. Main topic of this work is the investigation of the signal generation process
of UW-OFDM symbols and its impact on the performance.

The first principle approach of generating OFDM symbols with unique word is the
concept of systematically encoded UW-OFDM. This concept is based on the idea
of a systematic block code, leading to dedicated data and redundant subcarriers.
This redundancy translates to beneficial properties regarding spectral behavior and
bit error ratio (BER) performance. Systematically encoded UW-OFDM shows a
superior sidelobe suppression over conventional CP-OFDM and outperforms it in
terms of the BER performance in a multipath environment, for coded as well as
uncoded transmission. Still, the required energy to load the redundant subcarriers
is significantly higher than for the data subcarriers, showing further potential for
improvement. Introducing additional redundant subcarriers or allowing systematic
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noise in the guard interval reduce the OFDM symbol energy further. The resulting
BER enhancement comes at the price of either reduced bandwidth efficiency or an
inevitable error floor.

The second principle approach of generating OFDM symbols with unique word is
denoted as non-systematically encoded UW-OFDM, which annihilates the flaws of
the systematic approach. Inspired by a non-systematic code, the idea of dedicated
data and redundant subcarriers is discarded and all-purpose subcarriers introduced
instead. A non-systematic generation translates to an additional gain in terms of
spectral properties and BER behavior. BER results are obtained for various setups,
channel conditions, data symbol constellations and imperfect channel knowledge,
all delivering results significantly in favor of UW-OFDM.

An extension of the UW-OFDM framework enables the inclusion of pilot tones into
the frequency domain symbol, while still preserving all beneficial properties known
from a pilotless UW-OFDM concept. A mean square error (MSE) analysis of an
exemplary carrier frequency offset (CFO) estimation task reveals a significant bet-
ter performance of pilot tone based estimation concepts in UW-OFDM than in CP-
OFDM, a result inherited from the introduced redundancy.

The effects of a CFO on UW-OFDM are studied in detail and compared to those
in single-carrier and OFDM signaling schemes. The CFO induced error after data
estimation is on the one hand due to subtracting a disturbed UW and pilot offset,
and on the other hand due to insufficient CFO compensation. Both error sources
are investigated independently and alternative approaches with different compu-
tational complexity are presented. MSE results confirm UW-OFDM to achieve a
higher robustness against CFO than conventional CP-OFDM. BER simulations ad-
ditionally illuminate the effects of CFO impairments, again identifying UW-OFDM
as the clearly better performing alternative.
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1. Introduction

The recent past has shown an omnipresent demand in society of staying connected
at any time and any place, while having access to any information without limita-
tion. These observations pushed the increase of data rates to one of the main domi-
nating factors in developing digital communication systems. Due to the expectation
of full connectivity regardless of time and space, providing high data rates is crucial
for any type of communication system, from wireline to wireless, from non-optical
to optical, from fixed to mobile. As predicted by Moore’s law, semiconductor in-
dustry has constantly increased the transistor density on integrated circuits and
therefore laid the technical groundwork to computationally handle these rates. The
biggest challenge in supporting high data rates with sufficient robustness originates
from channel impairments, with the dispersive properties of a propagation channel
determining a main source. In wireless communication scenarios, time dispersity
emerges from a transmit signal travelling along multiple paths to the receiver due
to reflections, diffusions, diffractions and scattering at buildings, trees, or any other
obstacle. This causes signals spread in time, leading to interferences among initially
independent data symbols. The effects of interference become more challenging in
high rate communication systems, as the time interval to transmit one symbol
is small. Real-time requirements on transmission even aggravate terms, posing
computational challenges on the countermeasures.

A popular means to cope with channel dispersity induced interferences while meet-
ing processing time constraints at reasonable complexity is the concept of block
based transmission. The idea is predicated on grouping together several data sym-
bols and modulating them in a defined way on a transmit block or transmit symbol.
This operation is conducted for all data symbols. The transmit symbols are then
separated by so-called guard intervals. Guard intervals collect the dispersive ef-
fects of the channel to prevent intersymbol interference (ISI), which in turn enables
independent processing of the blocks.

The most popular scheme to modulate a transmit block is orthogonal frequency
division multiplexing (OFDM) [1], which loads the information on narrowband
orthogonal subcarriers within the available bandwidth; a success story mainly
founded on its advantages of simple processing as well as efficient handling of
severe multipath propagation and narrowband interferences (in combination with
channel coding). First ideas of parallel data streams and frequency division mul-
tiplexing have already been published in the 1960s [2, 3]. However, it took till
the early eighties [4, 5], until hardware became capable of handling OFDM, which
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1. Introduction

finally led to its breakthrough in the nineties [6]. Today, this technique is part in
many modern digital communication standards. Its field of application spans from
audio and video broadcasting DAB and DVB [7, 8], over wired [9, 10] as well as
wireless [11] last mile internet access techniques, to modern cellular communication
standards such as LTE [12].

Despite its advantages, OFDM – as well as many other block based transmission
techniques – requires the insertion of guard intervals to eliminate intersymbol in-
terference. Taking into account a typical guard interval length of up to 25% of the
transmit symbol duration, it is a rather wasteful consumer of transmit time and
thus reduces bandwidth efficiency significantly. Furthermore, depending on the se-
quence transmitted during the guard interval, it also wastes transmit energy, an as-
pect which gets more dominant for battery-driven devices.

Many ideas have been proposed addressing the inefficiency problem of guard in-
tervals, the most prominent ones are cited in the following section. Some of these
concepts fill the guard interval with a (pseudo)random, others with a deterministic
sequence. Unique Word OFDM promises to surmount all concepts available so far
by filling the guard interval also with a deterministic sequence, but in a completely
different manner. This difference translates to many nice properties regarding sys-
tem relevant aspects, such as improved bit error ratio (BER) behavior or beneficial
spectral properties.

1.1. State of the Art

The introduction of guard intervals between consecutive OFDM symbols is an
effective means to eliminate intersymbol interference among those symbols. Fur-
thermore, implementing these guard intervals as cyclic prefixes (CPs) additionally
eliminates intercarrier interference. This cyclic extension transforms the linear
convolution of the transmit signal with a dispersive channel into a cyclic convolu-
tion, enabling a blockwise low complexity equalization in the frequency domain.
CP-OFDM is currently the most popular multi-carrier signaling scheme and the
method of choice in many communication standards, as such denoting the gold
standard test for all other signaling schemes.

Besides equalization, the purpose of a random cyclic prefix is rather limited. Known
symbol padding OFDM (KSP-OFDM) promises to overcome this flaw by filling the
guard interval with a deterministic sequence instead. This sequence may be selected
to optimally match system parameter estimation tasks, providing thus a second use
for the guard interval. Removing the effects of the known sequence (taking into
account the channel dispersion) at the receiver and adding the transient to the be-
ginning of the OFDM block, cyclicity as in CP-OFDM is obtained, enabling simple
frequency domain equalization again. KSP-OFDM and UW-OFDM share the op-
portunity of a deterministic sequence designed for synchronization and estimation
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1.1. State of the Art

tasks, but beyond that differ completely. In UW-OFDM the guard interval is part
of the discrete Fourier transform (DFT) interval, introducing therefore correlations
in the frequency domain, which can be beneficially exploited to improve spectral
properties or the bit error ratio performance. These correlations are not present
in KSP-OFDM.

Setting the known sequence in KSP-OFDM to zero yields zero padded OFDM (ZP-
OFDM) [13]. Consequently, ZP-OFDM does not incorporate any correlations and
thus shows the same shortcomings over UW-OFDM as KSP-OFDM.

Various other approaches labeled time domain synchronous OFDM (TDS-OFDM)
[14, 15, 16], pseudorandom prefix OFDM (PRP-OFDM) [17], OFDM with pseudo
noise (PN) sequence [16] or even OFDM with Unique Word [18] implement deter-
ministic sequences in the guard interval. Differing from each other in the specific in-
stance of the sequence, all implement the guard interval outside of the DFT interval.
Hence, no correlations as in UW-OFDM are present.

The generation of a UW in time domain within the DFT interval introduces redun-
dancy in the frequency domain. From a coding theory point of view, UW-OFDM
time domain symbols contain with the UW a block of fixed samples, hence the
set of all corresponding vectors in discrete frequency domain forms in fact a coset
to a Reed Solomon (RS) code. Usually RS codes of length n are defined for a
finite field with a suitable discrete Fourier transform. The set of code words is
specified by the fact, that the (inverse) DFT of all code words contains a block of
dmin− 1 successive zeros, where dmin is the minimum Hamming distance of the RS
code. If this block of dmin−1 successive symbols differs from zero, but is also fixed
for all code words, a coset code to an RS code is generated in the other domain
w.r.t. this Fourier transform with the same minimum distance dmin, cf. [19]. This
RS property suggests to apply algebraic RS decoding methods. Investigations in
[20, 21] identify this decoding approach as solving a very ill-conditioned system of
equations, hence motivating methods based on classical and Bayesian estimation
theory used in this work as a preferable alternative.

The idea of UW-OFDM is inspired by its pendant in single-carrier/frequency do-
main equalization (SC/FDE) based systems. Various publications point out the
potential of UWs [22, 23, 24, 25, 26] instead of CPs [27, 28]. The introduc-
tion of UWs in SC/FDE systems does not impose any challenges, as the data
symbols and the UW are simply placed consecutively to each other in time do-
main. In UW-OFDM, the UW is still defined in time domain, but the data sym-
bols are arranged in frequency domain, preventing a straightforward implementa-
tion. Investigations in [29] compare the UW approach for OFDM and SC/FDE,
[30, 31] identify the latter as a specific realization within the UW-OFDM frame-
work.

First attempts of transferring the concept of unique words to OFDM have al-
ready been proposed in [32] termed discrete multi-tone - known symbol padding
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1. Introduction

(DMT-KSP). The presented method corresponds to the direct approach described
in Sec. 3.2.1 and suffers from an unmanageable high transmit symbol energy, mak-
ing it inapplicable for practical systems. Furthermore, the particular UW wave-
form influences the data estimation performance and thus loses its advantage of
being solely selectable to perfectly match synchronization and parameter estima-
tion tasks.

1.2. Scope of this Work

Currently in 2016, OFDM plays a major role in almost every digital communication
standard. Despite its popularity in recent years, research on this topic has declined
worldwide based on the premise of having said everything already. A well-known
and excepted inefficiency of OFDM is the requirement for a guard interval. Unique
Word OFDM promises to overcome this flaw by implementing a multipurpose guard
interval providing various beneficial properties. This work is dedicated to the signal
generation process of Unique Word OFDM symbols in order to optimally exploit
the guard intervals needed in OFDM signaling schemes.

The principles of the signaling scheme Unique Word OFDM are introduced in
the second chapter. A mathematical description is developed, yielding a linear
model describing the processing chain from modulation to the data estimation at
the receiver. Various estimators based on classical as well as Bayesian estima-
tion theory are introduced as a preparatory step for subsequent chapters. Since
the focus of this work is on the UW-OFDM framework itself rather than on de-
tails in the estimation process, considerations are limited to the class of linear
estimators. The chapter closes with a detailed description of the simulation frame-
work and the corresponding relevant system parameters utilized throughout this
work.

Chapter 3 introduces the concept of systematically encoded UW-OFDM, the first
of two principle approaches to implement OFDM with Unique Word. This concept
shares similarities with a systematic code, leading to dedicated data and redun-
dant subcarriers. A thorough analysis of the signal properties inherent to this
concept serves as entry point. An optimum distribution of the redundant subcar-
riers among the available spectrum is identified as the key to obtain a reasonable
OFDM symbol energy and consequently make UW-OFDM feasible for practical
systems. The presented heuristic solver is able to deliver this distribution inde-
pendent of the specific setup. Experiments prove a minimization of the symbol
energy to be also optimum w.r.t. the whole transceiver performance of systemat-
ically encoded UW-OFDM. Furthermore, two variants of the UW generation and
their impact on the bit error ratio are presented. Introducing additional redundant
subcarriers or allowing systematic noise in the guard interval reduce the OFDM
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1.2. Scope of this Work

symbol energy further. The resulting BER improvement comes at the price of re-
duced bandwidth efficiency for the first and an inevitable error floor for the second
case.

Non-systematically encoded UW-OFDM detailed in chapter 4 annihilates the flaws
of the systematic concept. Analogously to a non-systematic code, the idea of ded-
icated data and redundant subcarriers is discarded and all-purpose subcarriers
introduced instead. Again, a summary of the signal properties form the entry. An-
alytical derivations prove this approach to be optimum w.r.t. the whole transceiver
performance of non-systematically encoded UW-OFDM, a numerical optimization
algorithm provided in this chapter delivers the corresponding generator matrices.
The non-systematic approach outperforms both, the systematic approach as well as
CP-OFDM, significantly in terms of spectral properties and BER behavior. Results
are obtained for various setups. An analysis of imperfect channel knowledge at the
receiver reveals approximately the same performance degradation for UW-OFDM
as for CP-OFDM.

Chapter 5 deals with pilot tone insertion in UW-OFDM frequency domain sym-
bols. Since this is straightforward in systematically encoded UW-OFDM, the main
focus is laid on non-systematically encoded UW-OFDM. Reasonable optimization
criteria are presented and possible optimization parameters identified. Further-
more, interactions between frequency pilots for system parameter estimation on
the one hand and data estimation on the other hand are analyzed. The inves-
tigations confirm optimization possibilities towards both directions at the same
time.

Carrier frequency offset (CFO) – known as one of the most critical impairments
to multi-carrier systems – is investigated in chapter 6. A thorough mathemati-
cal description enables a detailed analysis of its effects on UW-OFDM, insights
are provided in time and frequency domain. The effects experienced by UW-
OFDM correspond to a combination of those for single-carrier and conventional
multi-carrier based systems, the specific UW-OFDM realization determines a bias
towards one or the other system. The derived model covers the processing chain
from modulation till the input of the data/pilot estimator. The CFO induced error
after data estimation is on the one hand due to subtracting the wrong UW and
pilot offset, and on the other hand due to insufficient CFO compensation. Both er-
ror sources are investigated independently and alternatives are presented. A mean
square error (MSE) analysis confirms UW-OFDM to achieve a higher robustness
against CFO than conventional CP-OFDM. For CFO estimation, a frequency pi-
lot tone based estimation method is presented and differences to CP-OFDM are
highlighted. BER simulations for coded and uncoded transmission in a multipath
environment finally conclude the CFO investigations.

The following mathematical notation applies throughout this work: Vectors and
matrices are denoted in bold face lower case a and upper case letters A, respec-
tively. If a variable is represented in both time and frequency domain, a tilde is
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1. Introduction

used for the latter to clearly distinguish between both representations (e.g., x for
the time and x̃ for the frequency domain). This distinction is omitted, if a vari-
able is defined in only one domain, consequently an interpretation is provided from
the context. The kth element of a vector is named ak. For reasons of simplified
notation, the nomenclature a[k] is used for the kth element in chapter 6 instead.
The kth column of a matrix consisting of N columns A = [a0, a1, . . . ,aN−1] is
given by ak. To address the element in column k and row l of the same matrix,
the notation [A]k,l applies. Following this notation, [A]k,∗ represents all elements
of row number k. The transpose operation is expressed as (·)T , the conjugate as
(·)∗ and the conjugate transpose or Hermitian as (·)H . Further, (·)† is used to
denote the Moore-Penrose Pseudo-Inverse of a matrix, tr (A) to denote the trace
operation, diag (A) to extract the main diagonal entries of a matrix A and flip{a}
to flip the elements of a vector in vertical direction. The identity matrix is given
by I and a zero matrix as 0. E {·} denotes expectation, [·]R represents rounding
to the nearest integer, Re {·} returns the real and Im {·} the imaginary part of
a complex number. N, R and C represent the set of natural, real, and complex
numbers, respectively. The probability of an event is expressed as Pr(·), and a
probability density function (PDF) as p(·). Further, â stands for an estimate of
a.

For all signals and systems in this work, the equivalent complex baseband repre-
sentation according to [33] applies.
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2. The Unique Word OFDM Signaling Scheme

This chapter starts with introducing the principal idea of blockwise transmission
techniques based on the insertion of guard intervals (GIs). The cyclic prefix (CP)
concept as the most important representative is elaborated further to motivate the
main topic of this work: Unique Word OFDM. First considerations focus on the
symbol generation and already indicate various challenges in symbol design, justi-
fying the necessity of this work. As a preparatory step for the subsequent chapters,
a linear system model describing the UW-OFDM transmission scheme and corre-
sponding linear estimators are presented. The chapter concludes with the presenta-
tion of the simulation setups used throughout this work.

Fig. 2.1 provides a discretized basic time-invariant channel model used for describ-
ing a typical communication scenario. A signal x[k] shall be transmitted over a

x[k] h[k] +

n[k]

y[k]

Figure 2.1.: Model of channel propagation.

dispersive propagation channel. This channel is modeled as a multipath environ-
ment, which in turn is implemented as a tapped delay line with the channel impulse
response (CIR) as its coefficients. Further, transmission is disturbed by additive
white Gaussian noise (AWGN). The resulting signal at the receiver y[k] can be
expressed as

y[k] = x[k] ∗ h[k] + n[k]

=

∞∑

n=0

h[n]x[k − n] + n[k],
(2.1)

with the CIR h[k], the noise sequence n[k] and the transmit signal x[k]. The
dispersive nature of the channel results in a linear convolution – denoted by the
operator ’*’ – between the CIR and the transmit signal. For reasons of easier
processing, the transmit signal is usually divided into independent transmit blocks

9



2. The Unique Word OFDM Signaling Scheme

or transmit symbols1 of length N

x(l)[k] = x[k + lN ], k = 0, 1, . . . , N − 1. (2.2)

Each transmit symbol carries a data sequence d[k] of length Nd, whereas Nd = N
is assumed for reasons of simplicity. Unfortunately, the dispersive properties of
the channel cause the transient of one symbol ranging into the succeeding symbol
illustrated as decaying curve in Fig. 2.2. This phenomenon known as ISI2 precludes

Symbol

N

Symbol

N

. . . . . .

Figure 2.2.: Intersymbol interference caused by a multipath channel.

the original idea of independent symbolwise processing. A common solution is the
insertion of guard intervals of length Ng between consecutive transmit symbols,
that will be able to fully collect the transient, as long as the CIR does not outlast
the GI, cf. Fig. 2.3.

Symbol

N

Symbol

NNg Ng

. . . . . .

Figure 2.3.: Insertion of guard intervals between consecutive transmit symbols.

So far, the guard interval only fulfills the purpose of preventing ISI, one symbol
considered individually is still affected by the channel

y(l)[k] = x(l)[k] ∗ h[k] + n(l)[k]. (2.3)

The sequence n(l)[k] models additive noise as part of the lth receive sequence. Note
that in contrast to x(l)[k] and x[k], a concatenation of n(l)[k] is not equivalent to n[k]
(only parts would coincide), as the new model in Fig. 2.3 accounts for additional
noise samples within the guard interval. However, this does not affect the following
derivations.

In order to recover the transmitted sequence again, the dispersions caused by the
channel have to be revoked, an operation commonly known as equalization. There
are several ways which differ in the specific realization of the GI. All approaches

1Both terms – symbol as well as block – are common in the literature to denote the same
partitioning of the transmit signal into smaller units. The decision towards one or the other
term often arises from the context. In this work, the term symbol is the preferred choice.

2In the context of transmit blocks instead of transmit symbols, the corresponding term used
in the literature is inter-block interference (IBI).
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share the motivation though, that at a certain data rate a (linear) equalization
in frequency domain provides in general a better performance–complexity tradeoff
than in time domain [25]. The most common approach is the use of a cyclic prefix,
which will be detailed in the following.

Convolution theorem The Fourier transform of a linear convolution of two (con-
tinuous) signals in time domain translates to a pointwise multiplication of the single
Fourier transforms. However, for a time discrete signal with the discrete Fourier
transform as corresponding operation, the pointwise multiplication in frequency do-
main coincides with a cyclic convolution in time domain [34]

y[k] = x1[k]
N
⊛ x2[k] � ỹ[n] = x̃1[n] · x̃2[n], (2.4)

(2.5)

related to sequences of length N . The time discrete cyclic convolution of length N
is defined as

y[k] = x1[k]
N
⊛ x2[k] (2.6)

=

N−1∑

n=0

x1[n]x2[(k − n) mod N ], (2.7)

k = 0, 1, . . . , N − 1. (2.8)

Unfortunately, the convolution of the transmit signal x(l)[k] with the CIR h[k] in
(2.3) is linear. In order to exploit a simple multiplicative relation in frequency
domain, the linear convolution should appear cyclic. The most popular way to
achieve this is the cyclic extension of a symbol by copying the last Ng samples and
appending them in front of the symbol, as shown in Fig. 2.4. This copy is known

Symbol

Ng N

CP

copy

CP extended symbol

Figure 2.4.: Extension of a transmit symbol using a cyclic prefix.

as CP which enforces

y(l)[k] = x(l)[k]
N
⊛ h[k] + n(l)[k], k = 0, 1, . . . , N − 1. (2.9)

11



2. The Unique Word OFDM Signaling Scheme

Following the cyclic convolution theorem, the receive sequence in frequency domain
is equivalently given as

ỹ(l)[n] = x̃(l)[n] · h̃[n] + ñ(l)[n], n = 0, 1, . . . , N − 1. (2.10)

An equalization of the channel dispersions can therefore be achieved by an element-
wise multiplication of the frequency domain signal ỹ(l)[n] with 1/h̃[n].

In order to demonstrate the transform of the linear into a cyclic convolution based
on the cyclic prefix, a vector and matrix notation is introduced in the follow-
ing.

Each transmit symbol x(l) ∈ C
N×1 shall carry Nd = N data symbols grouped

together in a vector d(l) ∈ C
N×1. The way how the data symbols are mapped on

a transmit symbol shall mathematically be described by a matrix G of dimensions
N ×N such that

x
(l) = Gd

(l). (2.11)

Depending on the design of G, different classes of transmission techniques arise,
a very popular categorization follows from the arrangement of the data symbols3,
yielding

• single-carrier and

• multi-carrier transmission.

In single-carrier transmission, data symbols are placed next to each other in time
domain, which corresponds to setting G = I in (2.11). In multi-carrier transmis-
sion, however, data symbols are arranged adjacently in frequency domain. One of
the most prominent candidates out of the multi-carrier family is OFDM, which can
be modeled as G = F−1

N , where FN ∈ C
N×N and F−1

N ∈ C
N×N denote the DFT

and IDFT matrices with elements

[FN ]kl = e−j
2π
N
kl, k, l = 0, 1, ..., N − 1

and
[
F

−1
N

]

kl
=

1

N
ej

2π
N
kl.

(2.12)

Note that the actual design of G is without relevance for the transform to a cyclic
convolution, a detailing of G at this point should only demonstrate the general
validness of this concept for various transmission techniques.

Besides (2.12), very common as well is the definition of unitary and therefore
energy-invariant DFT and IDFT matrices

[
F

′
N

]

kl
=

1√
N

e−j
2π
N
kl

and
[
F

′
N

−1
]

kl
=

1√
N

ej
2π
N
kl,

(2.13)

3Note that aspects such as pulse shaping are neglected here.
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featuring the advantageous property

F
′
NF

′
N
H = I ⇒ F

′
N

−1 = F
′
N
H . (2.14)

The definition does not have further impact on the operation of OFDM or other
mathematical coherence in this work, but in order to coincide with recent pub-
lications covering UW-OFDM, this work uses the definition as in (2.12), such
that

F
−1
N =

1

N
F
H
N . (2.15)

Two succeeding and extended transmit symbols with index l − 1 and l are given
by

[

x
(l−1)
ext

x
(l)
ext

]

=








x
(l−1)
GI

x(l−1)

x
(l)
GI

x(l)







, (2.16)

each consisting of a guard interval xGI ∈ C
Ng×1 and a payload part x ∈ C

N×1.
Note that the derivations are kept as general as possible, the specific case of real-
izing the GI as CP is introduced later. Assuming a CIR not exceeding a length4

of Ng +1 and neglecting AWGN, the transient of the convolution between symbol
l−1 and the CIR is collected entirely by the guard interval of symbol l. Therefore,
the payload of symbol l is not affected by symbol l − 1 and x

(l−1)
ext can thus be

disregarded in the following considerations. Hence, the considered receive vector
of length (N + 2Ng) for symbol l after propagating over a multipath channel is
given by

y
(l)
conv = Hconv

[

x
(l)
GI

x(l)

]

, (2.17)

with the linear convolution matrix of size (N+2Ng)×(N+Ng) defined as

Hconv =























h0 0 · · · · · · 0

h1 h0

. . .
...

... h1

. . .
. . .

...

hNg

...
. . .

. . . 0

0 hNg

. . . h0

...
. . .

. . . h1

...
. . .

. . .
...

0 · · · · · · 0 hNg























. (2.18)

4The length of a guard interval is chosen at design time and adapted according to prevalent
channel characteristics. Hence, the condition of a CIR not exceeding the guard interval is
generally assumed to be fulfilled.
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2. The Unique Word OFDM Signaling Scheme

The transient of the convolution stored in the first Ng and last Ng samples of yconv

will not be required for recovering the payload and is thus omitted by a selection
matrix

Θs =
[
0(N×Ng) I(N) 0(N×Ng)

]
, (2.19)

yielding a receive vector of length N

y = Θsy
(l)
conv = ΘsHconv

︸ ︷︷ ︸

H′

[

x
(l)
GI

x(l)

]

. (2.20)

Matrix H′ is of size N × (N + Ng) and follows from Hconv by deleting the first
Ng and last Ng rows. Since subsequent considerations are restricted to a sin-
gle symbol, the superscript (l) is dropped in the following for the sake of sim-
plified notation. For further analysis, an elementwise notation of (2.20) reads
as















y0
y1
...
...
...

yN−1















=
















hNg · · · h0 0 · · · · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 0 hNg · · · h0
















·






















xGI,0

...
xGI,(Ng−1)

x0

x1

...

...

...
xN−1






















. (2.21)

So far, this general transmit-receive relation holds true for any system using guard
intervals5. However, implementing the guard interval as a cyclic prefix such that

xGI,k = xN−Ng+k k = 0 . . . Ng − 1, (2.22)

equation (2.21) can be written in the special form

y = Hcx (2.23)

5Note that for ZP-OFDM or KSP-OFDM, the proposed model in (2.21) is incomplete. In
order to obtain cyclicity, only the transient at the beginning of yconv can be chopped off,
the transient at the end is still required. However, this is easily achieved by adapting the
selection matrix Θs accordingly.
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













y0
y1
...
...
...

yN−1















=




















h0 0 · · · 0 hNg · · · h1

h1 h0

. . .
. . .

. . .
...

...
. . .

. . .
. . . hNg

hNg

. . .
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 hNg · · · · · · h0




















·















x0

x1

...

...

...
xN−1















. (2.24)

Notationally speaking, a cyclic data structure as induced by the cyclic prefix allows
incorporating the first Ng columns of H′ into the Ng last ones, resulting in a
circulant matrix Hc of dimension N×N describing a cyclic convolution. Since any
circulant matrix is diagonalized by the Fourier matrix,

H̃ = FNHcF
−1
N (2.25)

is diagonal. Applying the DFT on y in (2.23), the receive symbol in frequency
domain becomes

ỹ = FNy = FNHcx = FNHc F
−1
N FN
︸ ︷︷ ︸

I

x = H̃FNx = H̃FNGd, (2.26)

the last step follows from (2.11). Taking into account the overall channel model in
Fig. 2.1, the introduction of a CP provides the simple relation

ỹ = H̃FNGd+ v, (2.27)

with an additive white Gaussian noise vector v = FNn of length N . Multiply-
ing with H̃−1 equalizes the dispersions caused by the multipath channel, a trivial
operation considering the diagonality of H̃−1. This operation is independent of
the design of G, which only plays a role with respect to data estimation6. Us-
ing CPs in an OFDM system known as CP-OFDM, a data estimate from (2.27)
is immediately available after equalization. For single-carrier systems employing
CPs, commonly referred to in the literature as single-carrier systems with fre-
quency domain equalization (SC/FDE), a transform back to the time domain after
equalization is necessary

d̂CP-OFDM = H̃
−1

ỹ = H̃
−1

H̃FNGd+ H̃
−1

FNn (2.28)

= H̃
−1

H̃FNF
−1
N d+ H̃

−1
FNn (2.29)

= d+ H̃
−1

FNn (2.30)

6Note that these derivations shall highlight the purpose of using CPs. Hence, the estimators
are kept as simple as possible, thus also neglecting additional information such as noise
characteristics, which can further enhance the performance in certain cases.
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2. The Unique Word OFDM Signaling Scheme

d̂SC/FDE = F
−1
N H̃

−1
ỹ (2.31)

= F
−1
N H̃

−1
H̃FNGd+F

−1
N H̃

−1
FNn (2.32)

= F
−1
N H̃

−1
H̃FNd+ F

−1
N H̃

−1
FNn (2.33)

= d+ F
−1
N H̃

−1
FNn. (2.34)

Using a CP in the guard interval mainly pursues the goal of creating nice math-
ematical properties, which in turn allow for a simple and low complex equaliza-
tion in the frequency domain. Due to this limited purpose, the CP is a rather
wasteful consumer of transmit energy and transmit time reducing bandwidth ef-
ficiency. Unique Word OFDM aims at lifting these limitations by implement-
ing a multipurpose guard interval instead, while still providing the same mathe-
matical properties as a CP. The following section will introduce this novel con-
cept.

2.1. Unique Word OFDM Symbol Generation

Let xu ∈ C
Nu×1 be a predefined sequence which we call unique word (UW). This

unique word shall form the tail of each OFDM time domain symbol vector of length
N and occupy the guard interval of equal length Ng = Nu, as illustrated in Fig. 2.5.
Hence, an OFDM time domain symbol x′ ∈ C

N×1 consists of two parts and is of

UW

Ng
N

UW

UW-OFDM symbol

Figure 2.5.: Structure of an OFDM symbol using a unique word.

the form

x
′ =

[
xp
xu

]

, (2.35)

whereas xp ∈ C
(N−Nu)×1 carries the payload affected by the data symbols [35]. It

is not immediately apparent at this point, that the proposed structure for UW-
OFDM symbols will transform a linear into a cyclic convolution the same way a
CP does. However, this becomes clear when considering succeeding UW-OFDM
symbols and the repeating occurrence of UWs. Following the same arguments as

in the previous section, and inserting x
(l)
GI = xu and x(l) =

[
xTp xTu

]T
in (2.20),
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2.1. Unique Word OFDM Symbol Generation

the very same cyclic data structure appears and consequently the same properties
hold.

The proposed structure for UW-OFDM symbols implies another important prop-
erty which is not immediately apparent at first sight. Its potential though jus-
tifies a slightly off-topic discourse at this stage. Since in UW-OFDM the GI
is part of the DFT interval, changing its length Nu will not influence the DFT
length N and thus the framing structure. In other words, UW-OFDM enables
an easy adaptation to different channel conditions by varying Nu while keeping
relevant system structures unchanged. This is in clear contrast to other signaling
schemes. As such, UW-OFDM can build the bridge between providing a com-
munication system suitable to a wide range of scenarios while still ensuring high
efficiency.

In order to obtain the desired UW-OFDM symbol, it is advantageous [35] to first
generate an OFDM time domain symbol with a zero UW

x =

[
xp
0

]

. (2.36)

The final transmit symbol x′ is then obtained by adding the desired UW in time
domain in a second step, yielding

x
′ = x+

[
0

xu

]

. (2.37)

The decision towards a two-step instead of a direct UW generation approach is
due to energy reasons, a detailed reasoning delivers Sec. 3.2. Since the second step
of adding the UW is trivial, the following considerations focus only on the first
one.

As in conventional OFDM, the data symbols are drawn from a symbol alphabet
A, usually quadrature amplitude modulation (QAM), phase shift keying (PSK)
or amplitude shift keying (ASK) constellations, and assembled in a data vector
d ∈ ANd×1. This data vector shall be mapped on the OFDM symbol in frequency
domain x̃ = FNx with x̃ ∈ C

N×1, often together with unused zero subcarriers.
Zeros are normally inserted at DC and the band edges to satisfy implementational
restrictions of analogue hardware and spectral shaping requirements, respectively.
So far, these symbol properties coincide with other OFDM schemes. UW-OFDM,
however, additionally demands a zero-word in time domain as part of the vec-
tor

x = F
−1
N x̃ =

[
xp
0

]

. (2.38)

Fixing Nu zeros in time domain, the system of equations F−1
N x̃ = [ xp

0
] can only

be fulfilled by reducing the number of data symbols in frequency domain by at
least Nu, and instead introducing a certain kind of redundancy [35]. There might
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2. The Unique Word OFDM Signaling Scheme

arise some confusion at this point, as the idea of redundancy is presented without
any preliminary motivation. The reader is thus asked for a little patience, an
explanation is developed in the following.

Let a generator matrix G ∈ C
(Nd+Nr)×Nd with Nr ≥ Nu (Nr = Nu is assumed at

the moment) be the fundamental unit that generates UW-OFDM symbols, then
the linear mapping

c = Gd (2.39)

delivers a codeword c ∈ C
(Nd+Nr)×1. The term codeword has not been selected

thoughtless in this context, but with special care to emphasize the parallels to
the coding world. Similar as for a linear block code, the generator matrix maps
Nd data symbols onto a codeword of length Nd +Nr, where Nr accounts for the
introduced redundancy. In combination with a subcarrier selection matrix B ∈
{0, 1}N×(Nd+Nr) that models the insertion of optional Nz zero subcarriers, a UW-
OFDM symbol in frequency domain can then be written as

x̃ = Bc = BGd, (2.40)

with the number of total subcarriers of x̃ given as N = Nd +Nr +Nz. Matrix B

is constructed by taking an identity matrix of size Nd +Nr and adding zero rows
at the corresponding zero subcarrier positions. Applying an IDFT on x̃ yields a
UW-OFDM symbol in time domain

x = F
−1
N x̃ = F

−1
N BGd =

[
xp
0

]

. (2.41)

The generator matrix G has not been detailed yet, it is only specified so far that
is should map the data symbols on c in some way, and additionally enable a zero-
word at the tail of the time domain symbol x. To achieve this, let us take the
approach

G = A

[
I

T

]

, (2.42)

whereas A ∈ R
(Nd+Nr)×(Nd+Nr), T ∈ C

Nr×Nd and I is an identity matrix of
size Nd. The reason for this specific decomposition will be apparent at the end
of this section. For now it suffices to assume A having full rank such that it
can map all information on c generated by I and T. Inserting (2.42) into (2.41)
delivers

x = F
−1
N BA

[
I

T

]

d = F
−1
N BA

[
d

Td

]
!
=

[
xp
0

]

. (2.43)

Neglecting A for the moment, (2.43) immediately shows that an UW-OFDM sig-
nal incorporates two components, namely the actual data symbols d as well as
additional and therefore redundant information about the data symbols in form
of the linear mapping Td. Of course, A may compound d and Td in a way
that lifts the distinction among them, but the basic concept of adding redundancy
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2.1. Unique Word OFDM Symbol Generation

remains unaffected. Further, the redundant part Td will ensure the zero-word
constraint in the time domain, if T is chosen accordingly. With the introduction
of

M = F
−1
N BA =

[
M11 M12

M21 M22

]

, (2.44)

whereas M11 ∈ C
(N−Nu)×Nd , M12 ∈ C

(N−Nu)×Nr , M21 ∈ C
Nu×Nd and M22 ∈

C
Nu×Nr , the OFDM time domain symbol can be rewritten as

[
M11 M12

M21 M22

] [
d

Td

]

=

[
xp
0

]

. (2.45)

It follows that

0 = M21d+M22Td (2.46)

and finally
T = −(M22)

−1
M21. (2.47)

Note that the zero UW can only be generated, if it holds that Nr ≥ Nu. Sec. 3.6
investigates the special case of Nr > Nu, the rest of this work assumes Nr = Nu.
Hence, with a properly constructed generator matrixG, a UW-OFDM time domain
symbol with a zero word at its tail indeed follows as

x = F
−1
N x̃ = F

−1
N BGd. (2.48)

This equation now denotes an explicit rule for the generation of UW-OFDM sym-
bols. In fact, any time domain symbol x generated according to (2.48) will always
feature a zero UW at its tail, given that the matrices T and G are constructed ac-
cording to (2.47) and (2.42). This holds true independent of the specific realization
of A. From another perspective, this means that the choice of A does not influence
G in qualifying as UW-OFDM generator matrix. However, the right choice of A is
a major contribution of this work, as it essentially determines the applicability of
UW-OFDM for communication systems. In order to confirm this, let us carry out
a short experiment, at which end the necessity of A 6= I is justified by evaluating
the mean symbol energy Ex′ = E

{
x′Hx′} of a UW-OFDM time domain symbol

x′ defined in (2.37).

Matrix A can be removed from the generator matrix G by simply choosing A = I.
With the corresponding G, the OFDM symbol in frequency domain translates
to

x̃ = B

[
d

Td

]

= B

[
d

r

]

. (2.49)

Consequently, the first Nd non-zero subcarriers are loaded with the data sym-
bols in d and the next Nr subcarriers with dedicated redundant subcarrier sym-
bols grouped together in a vector r ∈ C

Nr×1 as a result of the linear map-
ping

r = Td. (2.50)
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2. The Unique Word OFDM Signaling Scheme

In order to assess its practicability, the proposed subcarrier loading scheme is ap-
plied to different setups specified in Tab. 2.2 (see page 35), and the mean symbol
energy Ex′ is evaluated considering x = F−1

N x̃ and (2.37). The setups in Tab. 2.2
are used throughout the whole work to develop different insights. Setup A is in-
spired by the IEEE802.11a standard [36], the remaining ones will be detailed later,
at the moment it suffices to know that they differ in the specific value for the num-
ber of N total, Nd data, Nr redundant and Nz zero subcarriers. Aim of considering
several setups is simply to establish an overall valid conclusion. Studying (2.37)
and (2.49) suggests a breakdown of the mean symbol energy Ex′ into three sources:
the energy of the data denoted as Ed, the energy of the redundancy Er and the
energy Exu required for the UW, with the latter vanishing in case of a zero UW.
This separation seems reasonable but stands here without proof, a detailed anal-
ysis of the symbol energy and its sources in Sec. 3.2 will confirm its correctness
though. Tab. 2.1 opposes Ed to Er, whereas the calculation of Ed assumes a data
covariance matrix Cdd = σ2

dI with σ2
d = 1. A comparison of these two sources

reveals that the mean energy required for the redundancy part explodes in case of
A = I, making a practical system unfeasible. Although not explicitly shown, the
same problem would arise, if the redundancy would be mapped onto any other Nr
concatenated subcarriers within the available bandwidth. Note that in Tab. 2.1 a
scaling factor N has been introduced to compensate for 1

N
which follows from the

frequency-time domain relation. Therefore, the scaled energy values can be linked
easier to Nr and Nd

7. Since the redundancy originates from the mapping r = Td,
the mean energy contribution8 of r on the mean energy of the time domain vector
x′ simply follows from

Er =
1

N
E
{

r
H
r
}

=
1

N
E
{

tr
(

rr
H
)}

(2.51)

=
1

N
E
{

tr
(

Tdd
H
T
H
)}

=
1

N
tr
(

TE
{

dd
H
}

T
H
)

(2.52)

=
1

N
tr
(

TCddT
H
)

(2.53)

=
1

N
σ2
dtr
(

TT
H
)

, (2.54)

where 1
N

again follows from the frequency-time domain relation. Matrix T obvi-
ously influences the properties of the redundant subcarrier symbols and therefore
Er. T in turn depends on the matrix A, which thus provides degrees of freedom
to actively regulate the redundant energy.

7At this stage, a scaling by N makes only sense for the mean data energy Ed rather than for
Er, as in the latter case, the resulting values are so high that multiplying or not multiplying
with N does not make a noticeable difference. However, in order to ensure consistency
within the whole document, Er is also scaled accordingly.

8Following the Parseval theorem [37], the energy can either be calculated in time or in frequency
domain. The factor 1

N accounts for the transform to the time domain as a consequence of
the utilized definition of the N-point DFT in (2.12).
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2.1. Unique Word OFDM Symbol Generation

Table 2.1.: Mean data energy Ed and mean redundant energy Er for setups accord-
ing to Tab. 2.2 in case of A = I. The optimum sets Ir for the redundant
subcarrier positions already defined in this table are not considered for
this experiment.

Setup A Setup B Setup C Setup D Setup E

EdN 36 48 64 100 112
ErN 7.18 · 1023 8.98 · 1023 1.13 · 1027 7.22 · 1028 1.27 · 1029

The conclusion based on this experiment is that every generator matrix G con-
structed according to (2.47) and (2.42) will deliver UW-OFDM time domain sym-
bols with the desired zero UW at the tail. However, the real challenge in UW-
OFDM signal design lies in the proper choice of A to transfer the basic idea of
UW-OFDM into a feasible concept. Denoting J as the cost function to determine
the feasibility, UW-OFDM signal design can thus be summarized as solving an
optimization problem

Ǎ = argmin
A

{J} s.t. F−1
N BGd =

[
xp
0

]

∧G = A

[
I

T

]

(2.55)

for every possible data vector d, or equivalently

Ǎ = argmin
A

{J} s.t. F−1
N BG =

[
Ξ

0

]

∧G = P

[
I

T

]

, (2.56)

whereas Ξ denotes any arbitrary set of N − Nu rows. Hence, if mH
k with k ∈

{N − Nu, . . . , N − 1} denote the Nu lowermost rows of F−1
N B, then every col-

umn vector of G has to be orthogonal to every vector mk. Ǎ denotes an in-
stance out of the possible realizations of A that minimizes the cost function J .
The cost function J to be minimized still needs to be defined, but the results in
Tab. 2.1 establish the redundant energy already as cost function as a good initial
approach9.

The design of A in the context of (2.56) is one of the major contributions of this
work. Based on it, two principal classes of UW-OFDM signaling concepts are
developed in this work. Implementing A as a permutation matrix yields system-
atically encoded UW-OFDM presented in chapter 3, and allowing A to be any
real-valued non-singular matrix results in non-systematically encoded UW-OFDM
investigated in chapter 4.

9Note that an energy based cost function is not applicable for all classes of UW-OFDM signal-
ing concepts. However, it is a good starting point for UW-OFDM systems with dedicated
data and redundant subcarriers, e.g., a system based on the exemplary generator matrix in
(2.49), and deviated from there the concept of systematically encoded UW-OFDM presented
in the next chapter.
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2. The Unique Word OFDM Signaling Scheme

Finally, despite some hidden hints have been given, a dedicated explanation for
choosing G of the form

G = A

[
I

T

]

(2.57)

is still missing. As already stated before, calculating T according to (2.47) and as-
sembling G as in (2.57) will automatically fulfill the zero-word constraint, indepen-
dently of the specific realization of A. In the context of (2.56), this means that the
constrained optimization problem is automatically translated to an unconstrained
optimization problem. This translation eases the searching process for a solution
significantly, thus justifying the selected approach.

2.2. System Model

Based on (2.36)-(2.48), the time domain transmit symbol is given by

x
′ = F

−1
N (BGd+ x̃u) , (2.58)

with the frequency domain version of the unique word x̃u = FN
[

0
xu

]
of length

N . A received UW-OFDM time domain symbol after the transmission over a
dispersive (e.g., multipath) channel can be modeled as

yr = Hcx
′ + n (2.59)

= HcF
−1
N (BGd+ x̃u) + n, (2.60)

where Hc ∈ C
N×N denotes a cyclic convolution matrix with the zero-padded vector

hc ∈ C
N×1 of channel impulse response coefficients in its first column, and an

additive white Gaussian noise vector n ∈ C
N×1. This noise model is very popular in

communications, as it accounts for two important aspects. The first aspect is that a
typical communication channel experiences various noise sources featuring a white
and therefore constant power spectral density, such as thermal noise, shot noise or
black body radiation from the earth and other warm objects. The second aspect
is based on the central limit theorem (CLT) [37] and accounts for the fact that
an accumulation of many random processes approaches a Gaussian distribution.
In this work, n is modelled as a circularly symmetric complex white Gaussian
noise vector with statistics n ∼ CN (0, σ2

nI), with the real and imaginary part

of all elements nk following Re {nk} ∼ N
(

0,
σ2
n
2

)

and Im {nk} ∼ N
(

0,
σ2
n
2

)

,

respectively. Actual values for σ2
n required when evaluating the performance of

UW-OFDM systems will be determined as a function of Eb/N0 ratios, a detailed
calculation can be found in Sec. 2.4.
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After applying a DFT to obtain ỹr = FNyr, the zero subcarriers are excluded from
further operation, leading to the downsized vector ỹd ∈ C

(Nd+Nr)×1

ỹd = B
T
ỹr (2.61)

= B
T
FNHcF

−1
N (BGd+ x̃u) +B

T
FNn. (2.62)

Since any circulant matrix – as such also a cyclic convolution matrix – is diago-
nalized by the DFT, the transmission channel can be written as a diagonal matrix
H̃c = FNHcF

−1
N (H̃c ∈ C

N×N ) containing the sampled channel frequency response
on its main diagonal. Excluding the entries corresponding to the zero subcarriers
to obtain

H̃ = B
T
FNHcF

−1
N B (2.63)

H̃ ∈ C
(Nd+Nr)×(Nd+Nr), (2.64)

the received symbol in the frequency domain is given in the form of the affine
model

ỹd = H̃Gd+ H̃B
T
x̃u +B

T
FNn. (2.65)

Subtracting the known portion H̃BT x̃u originating from the UW (assuming that
the channel matrix H̃ or at least an estimate of the same is available) finally yields
the linear model

ỹ = ỹd − H̃B
T
x̃u (2.66)

= H̃Gd+B
T
FNn (2.67)

= H̃Gd+ v, (2.68)

with the noise vector v ∼ CN (0, Nσ2
nI), and the variance Nσ2

n as a result of the
definition of the DFT in (2.12).

2.3. Linear Estimators

Based on the model in (2.68), several linear estimators of the form

d̂ = Eỹ, (2.69)

are introduced in the following, whereas E ∈ C
Nd×(Nd+Nr) describes an estimator

matrix. Note that this work is restricted to linear estimators by intention, a com-
prehensive analysis of non-linear receiver concepts for UW-OFDM is provided in
[38, 39, 40]. Furthermore, this work focuses on the principle performance capabil-
ities of the estimators rather than on specific details like implementational issues.
For these issues, e.g., how to reduce the computational complexity, the reader is
referred to [41] and [40].
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2.3.1. Classical Data Estimators - Zero Forcing Solutions

A primary property of classical estimation theory is that a data vector is assumed
to be deterministic but unknown. For an unbiased data estimator it then holds
that

E
{

d̂
}

= E {Eỹ} = EH̃Gd = d. (2.70)

Consequently, the unbiased constraint takes on the form

EH̃G = I, (2.71)

which is equivalent to the zero forcing (ZF) criterion for linear estimators. The
solution to (2.71) is ambiguous. To show this, consider a singular value decompo-
sition of H̃G ∈ C

(Nd+Nr)×Nd as

H̃G = U

[
Σ

0

]

V
H , (2.72)

with unitary matrices U ∈ C
(Nd+Nr)×(Nd+Nr) and V ∈ C

Nd×Nd , and with the di-
agonal matrix Σ ∈ R

Nd×Nd having on its main diagonal the singular values of H̃G.
With (2.72) the unbiased constraint (or ZF criterion) (2.71) becomes

EU

[
Σ

0

]

V
H = I. (2.73)

It is easy to see that (2.73) and therefore also (2.71) is fulfilled by any estimator
of the form

E = V
[
Σ−1 Ψ

]
U
H (2.74)

with arbitrary Ψ ∈ C
Nd×Nr . Note that the fact of an ambiguous ZF solution

distinguishes UW-OFDM from competing block oriented single input single out-
put (SISO) approaches like e.g., CP-OFDM and CP-SC/FDE. For CP-OFDM the
channel inversion (CI) receiver E = H̃−1 represents the unambiguous ZF solution
which also corresponds to the optimum data estimator, cf. [1]. For CP-SC/FDE
the ZF solution is also unambiguous as soon as the receiver filter (e.g., a matched
filter) preceding the estimator is specified. It is given by the inverse of the diag-
onal symbol spaced channel matrix which contains the influence of the transmit
pulse shaping filter, the dispersive (e.g., multipath) channel and the receiver filter,
cf. [28].

Out of the infinitely many solutions to the unbiased constraint, the best linear
unbiased estimator (BLUE) and the CI estimator are investigated more in de-
tail.

By applying the Gauss-Markov theorem [42] to (2.68) and with the noise covariance
matrix Cvv = E

{
vvH

}
= Nσ2

nI, the BLUE and consequently the optimum ZF
estimator follows to

EBLUE = (GH
H̃
H
H̃G)−1

G
H
H̃
H . (2.75)
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2.3. Linear Estimators

EBLUE as given in (2.75) represents the pseudoinverse of H̃G. Since the noise in
(2.68) is assumed to be Gaussian, (2.75) is also the minimum variance unbiased
(MVU) estimator. The covariance matrix of d̂ = EBLUEỹ, or equivalently the
covariance matrix of the error e = d− d̂ is given by

Cee = E
{

ee
H
}

= Nσ2
n(G

H
H̃
H
H̃G)−1. (2.76)

With the singular value decomposition as in (2.72) and after some rearrangements
using standard matrix algebra, (2.75) can immediately be rewritten as

EBLUE = V
[
Σ−1 0

]
U
H . (2.77)

Based on (2.74) EBLUE corresponds to the solution for the particular case Ψ = 0.
EBLUE is in general a full matrix, which is in contrast to CP-OFDM and CP-
SC/FDE, where the BLUE is given by a diagonal matrix.

The CI receiver (which only makes sense for systematically encoded UW-OFDM)
is given by

ECI =
[
I 0

]
P
T
H̃

−1. (2.78)

This estimator inverts the channel H̃ first, and then extracts the data symbols. A
permutation matrix P ∈ {0, 1}(Nd+Nr)×(Nd+Nr) is part of the generator matrix G

by choosingA = P in (2.57). Note thatP is specific to systematically encoded UW-
OFDM and will be explained in detail in chapter 3. Clearly, ECI fulfills (2.71). The
CI receiver represents a low complex solution since H̃ has a diagonal structure, but
it does not take advantage of the correlations introduced by G at the transmitter
side. The covariance matrix of d̂ = ECIỹ, or equivalently the covariance matrix of
the error e = d− d̂ can easily shown to be

Cee = Nσ2
n(H̃

H
1 H̃1)

−1, (2.79)

where the diagonal matrix H̃1 ∈ C
Nd×Nd contains on its main diagonal the sampled

channel frequency response coefficients corresponding to the data subcarriers, and
it originates from

PH̃P
T =

[
H̃1 0

0 H̃2

]

. (2.80)

2.3.2. Linear Bayesian Data Estimators – LMMSE Solutions

Contrary to classical estimation theory, where the data vector is assumed to be
deterministic and unknown, Bayesian theory thinks of the data vector as a realiza-
tion of a random vector. By applying the Bayesian Gauss-Markov theorem [42] to
(2.68), where assuming d to be the realization of a random vector, and by using
Cdd = σ2

dI and Cvv = Nσ2
nI, the linear minimum mean square error (LMMSE)

estimator follows to
ELMMSE = WH̃

−1. (2.81)
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Here, W represents a Wiener smoothing matrix given by

W = G
H

(

GG
H +

Nσ2
n

σ2
d

(H̃H
H̃)−1

)−1

. (2.82)

Equation (2.81) allows the following interpretation of the mode of operation: The
LMMSE estimator acts as a composition of a simple channel inversion stage (multi-
plication with H̃−1 as in (2.78)) and a Wiener smoothing operation (multiplication
with W). The Wiener smoothing operation exploits the correlations between sub-
carrier symbols which have been introduced by G at the transmitter and acts as
a noise reduction operation on the subcarriers. By applying the matrix inver-
sion lemma, it can be shown that the estimator can equivalently be determined
by

ELMMSE = (GH
H̃
H
H̃G+

Nσ2
n

σ2
d

I)−1
G
H
H̃
H . (2.83)

Eq. (2.83) shows strong similarities to the BLUE in (2.75). For σ2
n = 0 the

expressions for LMMSE estimator and BLUE coincide. The error e = d − d̂ has
zero mean, and its covariance matrix is given by

Cee = Nσ2
n(G

H
H̃
H
H̃G+

Nσ2
n

σ2
d

I)−1. (2.84)

It is important to note at this point that in contrast to the BLUE, an LMMSE
estimator is not unbiased anymore in the classical sense (2.70). Unbiasedness is
only given in the Bayesian sense when averaging over the data symbols as well. If
not compensated or adequately taken into account, this bias introduction causes a
significant bit error degradation when using higher order transmit constellations.
In this work, the LMMSE bias is taken care of as part of the reliability information
fed to the channel decoder, which is conducted in form of log-likelihood ratio (LLR)
values, see appendix A.

2.4. Simulation Setup

The performance of UW-OFDM will be evaluated by analytical considerations
as well as numerical simulations, e.g., in terms of the BER behavior. This part
provides all information necessary to reproduce the evaluation framework used in
this work.

2.4.1. Schematic of Simulation Chain

The UW-OFDM concept has thus been embedded into a full communication chain
visualized as block diagram in Fig. 2.6. The different components are discussed in
the following.
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Figure 2.6.: Block diagram of the simulated Unique Word OFDM systems.

Channel Coding and Interleaving The binary information symbols are assumed
to be uniformly as well as independent and identically distributed (iid), i.e., with
entropy 1. Since this work considers both, coded and uncoded transmission, the
information symbols are either transmitted directly, or channel coded and inter-
leaved before further processing. The optionality of these operations is indicated
by dashed boxes.

For coded transmission, a convolutional encoder with standard rate r = 1/2, con-
straint length 7 and the generator polynomials (133, 171)8 in octal representation
[43] are used. Additional results are provided for a code rate of r = 3/4, which is
obtained by puncturing the r = 1/2 code based on the pattern ( 1 1 0

1 0 1 ). Both codes
have been used during the standardization process of the IEEE802.11a standard
[36].

In order to avoid bundles of errors, the encoded information bits are interleaved
by a block interleaver of block size L. The interleaver consists of a memory block,
modelled as a matrix in Fig. 2.7a for reasons of visualization, featuring K columns
and L/K rows, where K denotes the so-called interleaving factor. The binary
input symbols are written horizontally in subsequent rows, and they are read ver-
tically from subsequent columns. Hence, an interleaver spreads adjacent coded
bits by as many positions as determined by the interleaving factor. This factor
shall ensure that firstly neighboring bits are spread further apart than the con-
straint length of the code, and that secondly these bits are placed on nonadjacent
subcarriers to avoid effects resulting from correlated channel frequency response
coefficients. The second requirement can be challenging for burst-wise transmission
in time-invariant channels (which is the case in this work), as all OFDM symbols
experience the same channel conditions. A large interleaving factor may place
neighboring bits on subcarriers with correlated channel conditions in one of the
next OFDM symbols. To exclude this pitfall in the first place, the block size L has
been set to the number of bits carried within a single OFDM symbol, forcing the
interleaving distance to be limited to one OFDM symbol due to K < L (known
as in-place interleaving, with the advantage of not increasing the latency of a data
stream). The interleaving factor K of the IEEE802.11a standard (see setup A
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2. The Unique Word OFDM Signaling Scheme

in Tab. 2.3) has served as initialization value and has been slightly adapted for
the different setups of UW-OFDM and CP-OFDM detailed in Tab. 2.2 and 2.3.
Moreover, experiments showed that for the receivers used in this work, a limitation
of the interleaving process to one symbol did not significantly degrade the BER
performance. For iterative estimators as presented in [44], however, a block length
and interleaving factor beyond one OFDM symbol would pay off and translate to
an improved BER behavior.

write
read

1 . . . K

1

.

.

.

L/K

(a) Interleaving

read
write

1 . . . K

1

.

.

.

L/K

(b) Deinterleaving

Figure 2.7.: Reordering of binary symbols after channel encoder (interleaving) and
before channel decoder (deinterleaving).

Mapping The sequence of binary symbols is then mapped to transmit symbols.
In this work, QPSK is the preferred modulation alphabet, having constellation
points at {1+ j, 1− j,−1+ j, 1− j}. Selected results are also presented for the case
of 16-QAM as modulation alphabet, with constellation points formed from values
out of {−3,−1, 1, 3} in both, real and imaginary part. The resulting QPSK and
16-QAM symbols are scaled with ρ = 1/

√
2 and ρ = 1/

√
10 to obtain unit variance,

respectively. Gray mapping [45] is applied in all cases.

OFDM symbol generation A UW-OFDM symbol is generated in frequency do-
main by carrying out x̃ = BGd according to (2.40), where B models the insertion
of optional zero subcarriers. The investigation of the generation process is the main
contribution of this work, and the design of G and its implications will be detailed
in the following chapters.

IDFT and unique word addition In a next step, the UW-OFDM symbol is trans-
formed to the time domain by applying an inverse DFT (IDFT) as described in
(2.38), followed by an optional addition of a desired non-zero UW (2.37) that com-
pletes the generation of an UW-OFDM time domain symbol. Since the non-zero
UW is orthogonal to the UW-OFDM time domain symbol with zero tail, the sig-
nals do not influence each other and can thus be considered independently. This
work focuses on the principles of the UW-OFDM generation process rather than
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on the specific properties of UWs, hence no additional UW is added by default,
yielding UW-OFDM time domain symbols with a zero word at the tail. Only in
cases where a non-zero UW is needed or orthogonality is lost between the addi-
tive UW term and the UW-OFDM symbol with zero word (and therefore more
in-depth investigations are required), a UW different from the zero word will be
used.

The orthogonality between both terms enables a design of the non-zero UW just
for the purpose of providing optimal synchronization and estimation properties.
As stressed later in this work, however, the UW will in general overlay the whole
signal bandwidth. Hence, caution is required to maintain spectral shaping proper-
ties.

Several UW-OFDM time domain symbols are assembled to form together a trans-
mission burst as illustrated in Fig. 2.8. One burst comprises 8 000 information bits,
the number of OFDM symbols per burst varies based on coding rate and modu-
lation alphabet. Note that in front of the first UW-OFDM symbol, an additional
UW is inserted to ensure cyclicity. Furthermore, a preamble as defined in the
IEEE 802.11a standard [36] is appended at the beginning of the burst for channel
estimation purposes investigated in Sec. 4.3.4.

Symbol

N

Symbol

N

Preamble UW

Ng

UW UW . . .

Figure 2.8.: Transmission burst of investigated UW-OFDM systems.

Channel The channel consists of a multipath environment and additive white
Gaussian noise. The multipath propagation environment is modeled as a linear con-
volution of the transmit signal with a discrete channel impulse response (CIR) rep-
resented by a vector h. A realization of the CIR is generated according to the chan-
nel model in [46], which has also been used for the IEEE802.11a standardization
process. The channel model is presented in detail in Sec. 2.4.2.

Noise is modeled at the receiver input as circularly symmetric complex additive
white Gaussian noise (which implies zero mean) with variance σ2

n, which is set
according to a desired Eb/N0 value measured at the receiver input. In case of an
AWGN channel only, the CIR reduces to h = [1 0 . . . 0]T .

The relation Eb/N0 serves as a signal-to-noise ratio (SNR) measure, with Eb de-
noting the average energy per bit of information and N0/2 the double-sided noise
power spectral density of a bandpass noise signal. Following the derivations in [33],
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the variance σ2
n of the (complex) noise term is given by

σ2
n = 2

mPs
2(Eb/N0)rb

, (2.85)

whereas m denotes the number of samples per (OFDM) symbol, with m = N and
m = N+Ng in case of UW-OFDM and CP-OFDM, respectively. Ps represents the
average power per sample, which generally varies with the concept and the specific
setup. One way to determine Ps is based on the average transmit symbol energy. In
case of UW-OFDM and without pilot tones, the average power per sample is given
as Ps := Ps,uw =

Ex′

m
with the mean transmit symbol energy Ex′ = E

{
x′Hx′}

of an UW-OFDM time domain symbol x′ defined in (2.37). For pilot based UW-

OFDM systems as presented in chapter 5, an additional energy term E
(r)
p specified

in (5.13) has to be taken into account. In case of CP-OFDM, the average power

per sample is given as Ps := Ps,cp =
Ex,cp

m
with Ex,cp = E

{
xHcpxcp

}
denoting the

mean transmit symbol energy of a corresponding CP-OFDM time domain symbol
xcp. For details, the reader is referred to Sec. 4.3.3, which will provide expressions
for Ex′ and Ex,cp specifically evaluated for the system configurations used in this
work, cf. (4.35) and (4.42).

As usual for digital signal considerations, a normalization of the sampling time Ts
to 1 applies in this context to enable an analysis independent of the specific sam-
pling frequency. This normalization does not influence the results w.r.t. the SNR
measure, as long as the sampled signal and the noise sequence are treated in the
same way. Finally, r represents the coding rate of an optional channel code, and b
corresponds to the number of bits per (OFDM) symbol.

DFT and unique word subtraction At the receiver, a DFT is applied in a first step
to transform the OFDM symbol to frequency domain, followed by subtracting the
constant offset of a non-zero UW in a second step as described in (2.66).

Data estimation The linear data estimators presented in Sec. 2.3 are used to
recover the data symbols at the receiver side, the LMMSE estimator serves as
default option. Furthermore, the corresponding error covariance matrix provides
reliability information for the channel decoder.

Perfect channel knowledge in terms of the CIR and Eb/N0 is assumed at the receiver
in all cases except for Sec. 4.3.4. This part explicitly investigates the effects of
channel estimation errors on the BER performance.

QAM demapping The process of demapping differs for uncoded and coded trans-
mission. In the uncoded case, a data estimate is demapped to a sequence of binary
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symbols associated with the transmit data symbol, that is closest to the data es-
timate in terms of the Euclidean distance. A demapping to binary symbols is also
known as hard decision.

In the coded case, however, a data estimate is demapped to a sequence of reliability
information instead, whereas each reliability information indicates for a received
and therefore disturbed binary symbol the most likely corresponding binary trans-
mit symbol. This kind of demapping is denoted as soft decision. The reliability
for the receive binary symbols (after QAM demapping) can meaningfully be de-
scribed by the ratio of the probabilities of each symbol to be 0 and 1. Starting
from the data symbol vector estimate in (2.69), the kth data symbol estimate can
be modelled as

d̂k = e
H
k ỹ, (2.86)

with eHk denoting the kth column of the linear estimator matrix E. For this general
estimator, the so-called LLRs of a bit mapped onto any symbol constellation can
be written as

L
(

bik

∣
∣
∣d̂k
)

= ln
Pr
(

bik = 1
∣
∣
∣d̂k
)

Pr
(

bik = 0
∣
∣
∣d̂k
) , (2.87)

where bik is the ith bit of the kth received symbol. Hence, L
(

bik

∣
∣
∣d̂k
)

denotes the

LLR of the ith bit within the kth estimated data symbol.

For L
(

bik

∣
∣
∣d̂k
)

> 0, it is more likely that bik = 1 has been transmitted, L
(

bik

∣
∣
∣d̂k
)

<

0 suggests bik = 0, and L
(

bik

∣
∣
∣d̂k
)

= 0 identifies both possibilities as equiprobable.

The magnitude
∣
∣
∣L
(

bik

∣
∣
∣d̂k
)∣
∣
∣ represents the certainty, whereas absolute certainty

would translate to an LLR of ±∞.

Eq. (2.87) denotes a general definition of the LLR. Appendix A provides a de-
tailed derivation of the LLRs, when evaluated for specific estimators and symbol
constellations used throughout this work.

Deinterleaving and decoding These operations are optional and only conducted,
if the dual operations channel coding and interleaving have been applied at the
transmitter. The deinterleaver recovers the original order of the binary symbol
sequence as it was given in front of the interleaver. Its functionality is best de-
scribed by a matrix of the same size as for the interleaver, but now the incoming
data is written in the vertical and read in the horizontal direction, as depicted in
Fig. 2.7a.

A Viterbi algorithm is applied for decoding of convolutional codes [47]. Since re-
liability information for the output of all considered data estimators is available,
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and due to performance advantages, only soft-decision rather than hard-decision
input is considered. The required soft information is provided by the demap-
per.

2.4.2. Multipath Channel Model

The CIRs used throughout this work to form a multipath propagation environment
have been generated according to a discretized exponentially decaying power delay
profile P (τ ) [48] model from [46], which will be presented next. The power delay
profile is specified at Nh sampling points for the time instants τk = kTs; k =
0, 1, . . . , Nh − 1 denoted as

P (τk) = Pk, (2.88)

where Ts denotes the sampling time of the corresponding UW-OFDM system. As-
suming nowNh CIR coefficients stacked together in a CIR vector

h =
[
h0, h1, . . . , hNh−1

]T
, (2.89)

each coefficient hk is modelled as a circularly symmetric complex white Gaus-
sian random variable with hk ∼ CN (0, σ2

k) and therefore Re {hk} , Im {hk} ∼
N
(

0,
σ2
k
2

)

. The variances of the coefficients follow an exponential decay with

σ2
k = Pk = σ2

0e
−k Ts

τRMS , (2.90)

whereas the variance σ2
0 of the first coefficient – usually representing the line-of-

sight path – is chosen as

σ2
0 = 1− e

− Ts
τRMS (2.91)

to ensure
∑Nh−1
k=0 σ2

k = 1. The parameter τRMS represents the root mean square
delay spread of the channel. τRMS is the second central moment of P (τ ) defined
as [49]

τRMS =

√
√
√
√
√
√

∑Nh−1
k=0 Pkτ 2k
∑Nh−1
k=0 Pk

−

(
∑Nh−1
k=0 Pkτk

)2

(
∑Nh−1
k=0 Pk

)2 , (2.92)

which can be interpreted as a general means to describe the time spreading of
a signal due to the multipath channel. Furthermore, in an exponentially de-
caying power delay profile of the form P (τ ) = P0e

−βτ with P0 denoting the
power at τ = 0, τRMS is inversely proportional to the decaying constant β [50],
see (2.90).
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In order to simplify the model by excluding channel coefficients without any sig-
nificant contribution, i.e., neglectable power level σ2

k, the number of channel coef-
ficients Nh has been very generously limited [46] to

Nh = 10
τRMS

Ts
. (2.93)

In this work, CIR realizations are drawn from the channel model featuring τRMS =
100 ns and τRMS = 200 ns, assuming a given sampling time of Ts = 50 ns (as a
consequence of Ts = TOFDM/N , see Tab. 2.2). The first case with τRMS = 100 ns
denotes the default option. Note that in this case (2.93) delivers Nh = 20, which
exceeds the guard interval length Ng = 16 used throughout this work (Tab. 2.2
and 2.3). However, evaluating (2.90) immediately reveals that the tail of these
CIRs will be practically zero, which can therefore also be chopped off. It can
thus safely be assumed that a CIR vector h drawn from the channel model with
τRMS = 100 ns does not exceed the guard interval, that is a length of Ng + 1
taps.

2.4.3. Simulation

Tab. 2.2 summarizes different UW-OFM setups investigated in this work, whereas
setup A determines the default option. Conventional CP based OFDM serves
as main reference system. Tab. 2.3 summarizes the physical parameters of two
exemplary CP-OFDM setups, with the first one again determining the default
option. In any case, UW-OFDM and CP-OFDM are always compared within the
same setup class, i.e., A versus A or C versus C.

Note that setup A in Tab. 2.3 corresponds to the physical layer model of the IEEE
802.11a standard, cf. [36]. This standard implements four pilot subcarriers ded-
icated to estimation and synchronization tasks. In case of UW-OFDM, a UW
might take over these tasks from the pilot subcarriers. In order to enable a fair
comparison, both systems should thus invest the same amount of energy for ded-
icated pilot symbols. Consequently, a UW should incorporate the same energy as
the pilot subcarriers, the actual energy value is irrelevant though. Since in most
cases a zero UW is applied, w.l.o.g. the pilot subcarrier symbols in the CP-OFDM
systems are chosen to be zero unless stated otherwise.

The performance of UW-OFDM and CP-OFDM is evaluated by means of BER and
MSE simulations, the latter is mainly used to quantify CFO effects in chapter 6.
Simulation results are obtained by averaging over a fixed set of 10 000 CIR realiza-
tions, which are generated according to Sec. 2.4.2. The channel is assumed to be
quasi-static, meaning that it stays constant during the transmission of one burst
and then changes to an independent channel realization for the next burst. Each
realization is used equally often in the simulations. A burst is assembled according
to Fig. 2.8. Each burst contains 8 000 information bits, the number of OFDM
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2. The Unique Word OFDM Signaling Scheme

symbols and therefore the length of the burst depends on the applied coding rate
and modulation alphabet.

Unless specified otherwise, performance differences between two systems in terms
of the BER are measured at a BER = 10−6, and the quotient between the required
Eb/N0 values is stated by the difference in dB.

For all operations arbitrarily accurate arithmetic is assumed, which means that
quantization effects and numerical effects due to arithmetic implementation are
neglected.

Default setup In order to provide a quick overview, the following part summarizes
the most important default options of the presented simulation setup, which hold
for this work unless stated explicitly otherwise. UW-OFDM and CP-OFDM are
configured according to setup A in Tab. 2.2 and Tab. 2.3, respectively, with zero
UW, and zero energy for the pilot symbols in case of CP-OFDM. QSPK normalized
to unit variance serves as modulation alphabet. The multipath channel is modeled
with CIR realizations featuring a channel delay spread of τRMS = 100 ns. Data
estimation is performed by an LMMSE estimator.
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Table 2.2.: Summary of the main PHY parameters of the investigated UW-OFDM setups.

Setup A Setup B Setup C Setup D Setup E Setup F

DFT size N 64 64 80 128 128 64
data subcarriers Nd 36 48 64 100 112 32
red. subcarriers Nr 16 16 16 16 16 16
zero subcarriers Nz 12 - - 12 - 12
pilot subcarriers Np - - - - - 4
unique word samples Nu 16 16 16 16 16 16

zero subcarrier indices Iz {0,27,. . . ,37} {} {} {0,59,. . . ,69} {} {0,27,. . . ,37}

red. subcarrier indices Ir {2,6,10,14, {0,4,8,12, {0,5,10,15, {4,12,20,28,36, {0,8,16,24,32, {2,5,9,13,
17,21,24,26, 16,20,24,28, 20,25,30,35, 44,51,58,70, 40,48,56,64, 17,20,24,26,
38,40,43,47, 32,36,40,44, 40,45,50,55, 77,84,92,100, 72,80,88,96, 38,40,44,47,
50,55,58,62} 48,52,56,60} 60,65,70,75} 108,116,124} 104,112,120} 51,54,58,62}

pilot subcarrier indices Ip {} {} {} {} {} {7,21,43,57}

interleaving factor 12 16 16 - - 12
DFT length TDFT 3.2µs 3.2µs 4µs 3.2µs 3.2µs 3.2µs
guard interval length TGI 0.8µs 0.8µs 0.8µs 0.8µs 0.8µs 0.8µs
OFDM symbol length TOFDM 3.2µs 3.2µs 4µs 3.2µs 3.2µs 3.2µs
subcarrier spacing ∆f 312.5 kHz 312.5 kHz 250 kHz 156.25 kHz 156.25 kHz 312.5 kHz
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Table 2.3.: Summary of the main PHY parameters of the investigated CP-OFDM setups.

Setup A Setup C

DFT size N 64 64
data subcarriers Nd 48 64
zero subcarriers Nz 12 0
pilot subcarriers Np 4 0
guard interval samples Ng 16 16

zero subcarrier indices Iz {0,27,28,. . . ,37} {}

pilot subcarrier indices Ip {7,21,43,57} {}

DFT length TDFT 3.2µs 3.2µs
guard interval length TGI 0.8µs 0.8µs
OFDM symbol length TOFDM 4µs 4µs
subcarrier spacing ∆f 312.5 kHz 312.5 kHz
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3. Systematically Encoded Unique Word OFDM

The previous chapter has introduced a principle way to generate Unique Word
based OFDM signals. The idea is based on a generator matrix of the form G =

A
[
I TT

]T
, where I takes care of the data symbols, A is a freely selectable matrix

detailed later in this chapter, and T is a given matrix responsible for generating
OFDM signals with the desired time domain properties. More in detail, this matrix
introduces a certain redundancy in the frequency domain to generate a UW with
the desired properties in the time domain. Very important to note in this context
is the dependence of T and thus the generated redundancy on A. Experiments
with A = I performed in the previous chapter delivered OFDM symbols with Nd
adjacent subcarriers loaded with data, followed by Nr adjacent subcarriers loaded
with redundancy

x̃ = B

[
d

r

]

. (3.1)

The results summarized in Tab. 2.1 strongly suggest a proper handling of the
energy required for generating the redundancy, otherwise a feasible system cannot
be achieved. This problem has already been discussed in [20] from a coding theory
point of view, but remained unsolved.

The underlying idea of the concept presented in this chapter is to dissolve blocks of
data and redundancy in frequency domain, and instead distribute the redundancy
among the available bandwidth, while still enabling distinction among both in fre-
quency domain. Such a distribution shall reduce the energy required for generating
the redundancy, yielding a cost function

JE = σ2
dtr
(

TT
H
)

. (3.2)

This cost function is derived from the redundant energy Er in(2.54) by omitting
1
N

and taking into account the usual assumption of independent and identically
distributed (iid) data symbols with zero mean and covariance matrix Cdd = σ2

dI. In
order to model the distribution of redundancy over the bandwidth, a permutation
matrix P ∈ {0, 1}(Nd+Nr)×(Nd+Nr) is introduced and A = P is chosen to yield a
UW-OFDM generator matrix of the form

G = P

[
I

T

]

. (3.3)
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3. Systematically Encoded Unique Word OFDM

The optimization problem follows as

P̌ = argmin
P

{JE} s.t. F−1
N BG =

[
Ξ

0

]

∧G = P

[
I

T

]

. (3.4)

The resulting generator matrix G should then optimally map the data and the
generated redundant symbols onto the subcarriers, whereas the actual assignment
is the available degree of freedom. To say it in other words, the optimization
problem transforms into finding a subset of Nr subcarriers out of N −Nz possible
ones that minimizes JE while fulfilling the constraint in (3.4). Unfortunately,
an optimum set by means of analytical analysis can only be found for a very
few and simple setups, cf. [51], thus suggesting to apply numerical optimization
methods. It turns out that for reasonable choices of N and Nr , an exhaustive
search is unfeasible from the perspective of computational complexity. For instance,
setup A already offers

(
(N−Nz)
Nr

)
=
(
52
16

)
≈ 1.04 · 1013 different combinations to

be evaluated. Sec. 3.3 will investigate the problem of finding an optimal set in
detail, however, the searching process is neglected for the moment and the optimal
sets are simply assumed to be given. Tab. 2.2 summarizes the best redundant
subcarrier sets for the exemplary setups used throughout this work. Note that in
this table the optimal redundant subcarriers are specified by index sets Ir out of
I = {0 . . . (N −1)}, the corresponding permutation matrix P can easily be derived
from them. In order to ensure an unambiguous definition of P, from now on it
is always assumed that a permutation matrix P is derived from an ordered index
set

Ir,o = (Ir, <) . (3.5)

Once a permutation matrix is given, the generator matrix G is easily determined
using (3.3) and (2.47), and an UW-OFDM frequency domain symbol x̃ follows
to

x̃ = BP

[
I

T

]

d = BGd. (3.6)

In principle, the generator matrix G takes the data symbols vector, additionally
produces redundant subcarrier symbols based on

r = Td, (3.7)

scrambles them and maps the resulting word on the subcarriers. There are now two
popular ways of interpreting this generation process. Although both are based on
the insertion of the redundancy, these different interpretations may ease the under-
standing of the beneficial properties of UW-OFDM later on.

• From a statistical point of view, r introduces correlations into the frequency
domain symbol x̃.
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• From a coding theory point of view, the outcome

c = Gd (3.8)

may be interpreted as a systematic code word c ∈ C
(Nd+Nr)×1, thus justifying

the naming systematically encoded UW-OFDM.

In a systematic code word c = Gd, the data symbols are embedded into the
encoded output, i.e., the data symbols are recognizable in the code word c as illus-
trated in Fig. 3.1. Since UW-OFDM time domain symbols contain with the UW
a block of fixed samples, the set of all corresponding vectors in discrete frequency
domain forms in fact a coset to a Reed Solomon (RS) code. Usually RS codes
of length n are defined for a finite field FQ using an element w ∈ FQ of order n,
n · l = Q − 1, with n, l,Q ∈ N to define a discrete Fourier transform F

n
Q → F

n
Q

in FQ. The set of codewords is specified by the fact, that the (inverse) DFT of
all codewords contains a block of dmin − 1 successive zeros, where dmin is the
minimum Hamming distance of the RS code. If this block of dmin − 1 successive
symbols differs from zero, but is also fixed for all codewords, a coset code to an
RS code is generated in the other domain w.r.t. this Fourier transform with the
same minimum distance dmin, cf. [19]. This RS property of course allows for alge-
braic RS decoding methods which will be investigated more in detail in Sec. 3.5.1.

d0 d1 d2 · · · dNd−1

T

d0 d1 d2 · · · dNd−1 r0 · · · rNr−1

P

c0 c1 c2 · · · cNd+Nr−1

Figure 3.1.: Interpretation of an UW-OFDM symbol as a systematic code word.

Finally, the generation of a systematically encoded UW-OFDM time domain sym-
bol can be summarized as

x = F
−1
N Bc =,F−1

N BP

[
d

r

]

. (3.9)

To highlight the differences to conventional OFDM, Fig. 3.2 visualizes the symbol
generation by detailing in- and output of the IDFT operation.
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3. Systematically Encoded Unique Word OFDM

d
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N-Nu-1
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xp

Figure 3.2.: Time- and frequency-domain view of a systematically encoded UW-
OFDM symbol with zero UW.

3.1. Signal Properties

The following section compasses a study of the signal properties specific to this
concept. This study is based on a top-down approach consisting of three levels, with
the degree of detailing increasing incrementally. The first level denotes thus the
highest degree of abstraction and focuses on the overall generation process. Insights
are based on the whole OFDM symbol, i.e., data and redundancy together. Making
one step closer to the symbol, the second level investigates only the redundancy
part. Conclusions are drawn treating the redundancy as one entity. Finally, the
third level presents results based on the properties of single redundant subcarrier
symbols.

Properties drawn from an OFDM symbol. Fig. 3.3 reveals a number of interesting
properties of a generator matrix G of the form (3.3) that solves the optimization
problem in (3.4). It is already known that a data symbol di is mapped one-to-one
onto a dedicated code word symbol ci and is additionally spread over the redundant
subcarrier symbols. Studying the rows of G shows that a single redundant symbol
only depends on a few neighboring data symbols. This property leads to a relatively
sparse matrix G, see Fig. 3.3. Additionally, the generator matrix G also features
the symmetry property

G = [g0 · · ·gNd/2−1 flip{(gNd/2−1)
∗} · · · flip{(g0)

∗}]. (3.10)

Here, gi with i = 0, 1, ..., Nd/2− 1 represent the first Nd/2 columns of G, and flip
denotes an operator that flips the elements in vertical direction. Both properties
– sparsity as well as symmetry – are of interest when implementing UW-OFDM
resource efficiently on real-world hardware.

40



3.1. Signal Properties
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Figure 3.3.: |G|, magnitude of entries of generator matrix G.

Another interpretation of the generator matrix G is the combination of a linear
dispersive preprocessor (or a channel-independent precoder, cf. [52]), and a channel
coder. Analogously to precoding, a data symbol is spread over several subcarriers
(due to the redundant subcarriers). In case of fading holes, a data symbol might
still be detectable. Analogously to channel coding, additional redundancy is added.
These two properties can explain the performance boost over conventional OFDM
presented in subsequent sections.

An UW-OFDM frequency domain symbol immediately follows by loading the sub-
carriers according to x̃ = Bc = BGd. Fig. 3.4 illustrates the mean power values
on these subcarriers evaluated for the two exemplary UW-OFDM setups A and
B from Tab. 2.2 and their respective optimal sets. The mean power values of the
non-zero subcarriers correspond to

diag
(

E
{

cc
H
})

= diag
(

E
{

Gdd
H
G
H
})

= σ2
ddiag

(

GG
H
)

. (3.11)

Properties drawn from the redundancy part in an OFDM symbol. Setup A with
zero and setup B without zero subcarriers serve as representatives. It turns out
that in the presence of zero subcarriers, the redundant subcarrier symbols expe-
rience different mean power values. Furthermore, the mean power of redundant
subcarriers close to zero subcarriers decreases, i.e., next to DC and guard bands.
In case no zero subcarriers are employed yielding an equidistant distribution, all
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3. Systematically Encoded Unique Word OFDM
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Figure 3.4.: Mean power of individual subcarrier symbols for setup A (upper plot)
and setup B (lower plot).

redundant subcarriers have the same mean power value or variance of σ2
r = σ2

d
Nd
Nr

,
leading to

Er =
σ2
d

N
tr
(

TT
H
)

= σ2
r
Nr
N

= σ2
d
Nd
Nr

Nr
N

= σ2
d
Nd
N

= Ed. (3.12)

This equality only holds approximately for setup A with Er = 36.56
N
≈ Ed = 36

N
.

These results suggest that the optimum distribution of the redundant subcarri-
ers leads to UW-OFDM symbols, where on average (at least approximately) half
the transmit energy is spent for data and half the energy is spent for redundant
subcarriers.

These findings motivate a more in-depth analysis of the optimal distribution of the
redundant subcarriers and the resulting energy. The author in [53] shows that for
a UW-OFDM setup without zero subcarriers, the minimum redundant energy as
a function of the number of redundant symbols is symmetrical in Nr around N/2,
i.e.,

Er(Nr) = Er(N −Nr). (3.13)

This can exemplarily be seen in the upper plot of Fig. 3.5 for varying Nr and the
case Nr = Nu. Note that a scaling factor N has been introduced in the plot to
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3.1. Signal Properties

easier link the energy values to Nr and Nd. It turns out that (3.13) does not hold
in the presence of zero subcarriers as depicted in the lower plot of Fig. 3.5. In
this case, a zero subcarrier has been introduced at DC. Although not explicitly
illustrated, experiments confirm the loss of the symmetry property for any setup
with zero subcarrier(s), regardless of the actual number and/or the placement of
them.
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Figure 3.5.: Mean redundant energy Er for varying Nr with Nr = Nu, evaluated
for the optimal set of an UW-OFDM setup with N = 32 and either
Nz = 0 (upper plot) or Nz = 1 with a zero at DC (lower plot).

Furthermore, [53] also presents an analytical lower bound for the redundant en-
ergy

Er ≤ NdNu
Nr

Es, (3.14)

with Es = Ex′/Nd denoting the mean energy per data symbol in case of a zero
UW. The bound is met with equality in case Nr is a power of 2. This result can
even be generalized to the case

mod(N,Nr) = 0 ∧ Ir =

{

l
N

Nr
+ n0

}

l = 0 . . . Nr − 1, (3.15)

with any constant offset n0 ∈ {0 . . . N/Nr − 1}. It follows that as long as N is a
multiple of Nr, and additionally the Nr redundant subcarriers can equidistantly
be distributed with distance N/Nr, the lower bound is exactly met. In order to
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3. Systematically Encoded Unique Word OFDM

support this statement, Fig. 3.6 depicts six exemplary UW-OFDM setups. All six
share the same DFT size of N = 27 and the same number of Nr = 9 redundant
subcarriers, but may differ in the cardinality Nz as well as in the distribution of the
zero subcarriers. In contrast to all others, setup 1 does not incorporate any zero
subcarriers in the spectrum at all. It is obvious that here a redundant subcarrier
features an average power of 2, thus leading to Er = Nr · 2/N = 18/N , which
corresponds to the energy1 of the data symbols Ed = Nd ·1/N = 18/N . Setup 2 and
setup 3 incorporate Nz = 3 and Nz = 8 zero and therefore Nd = 15 and Nd = 10
data subcarriers, respectively. Different to the first setup, the average power varies
among the redundant subcarriers in both cases. Although not explicitly extractable
from Fig. 3.6 due to a granular resolution of the ordinate, the bound in (3.14) is
exactly met with Er = 15/N and Er = 10/N , respectively. For the latter this can
clearly be seen in Fig. 3.7 by evaluating Er at Nr = 9. Despite completely different
configurations, Er = Ed holds in all three cases.

Setup 3 and 4 share the same system parameter values, both have N = 27, Nr = 9
and Nz = 8. Even the distribution of the zero subcarriers is identical except for
a single one which is shifted from index 10 to 11. This minor difference has a
remarkable impact though, as it prevents an equidistant arrangement with spacing
N/Nr of the redundant subcarriers over the available spectrum. The consequence
is that Er > Ed as observable in Fig. 3.7 when considering Er of setup 4 at
Nr = 9.

Setup 4 and setup 5 have the same number of zero subcarriers, in the latter case,
however, these zeros appear in a bundle instead of in a distributed manner. Com-
pletely unexpected, Fig. 3.8 illustrates that this even leads to Er < Ed in some
cases. Various experiments indicate that the basic effect is independent of the po-
sition of the zero subcarrier bundle. Although not proven theoretically and only
supported by means of simulations, the difference between Er and Ed seems to
scale with the length of a zero subcarrier bundle, i.e., the longer the bundle, the
larger the difference. A comparison of setup 5 and 6 in Fig. 3.6 and Fig. 3.8 should
exemplarily confirm this observation. Furthermore, simulations suggest that the
effect of Er < Ed only appears, if the number of concatenated zero subcarriers is
at least ⌈N/Nr⌉.

1The factor 1
N accounts for the transform to the time domain (motivated by applying the

Parseval theorem) as a consequence of the utilized definition of the N-point DFT in (2.12).
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Figure 3.6.: Mean power on individual subcarriers for UW-OFDM setups with N =
27, Nr = 9, and varying number Nz and placement of zero subcarriers.
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Figure 3.7.: Mean data energy Ed and mean redundant energy Er for setup 3 and
4 as defined in Fig. 3.6.
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Figure 3.8.: Mean data energy Ed and mean redundant energy Er for setup 5 and
6 as defined in Fig. 3.6.
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In summary, the following statements regarding the placement of the redundant
subcarriers and the resulting energy can be drawn:

• The energy Er of the redundant subcarriers is symmetric in Nr around N/2
as described in (3.13). This symmetry is lost as soon as any zero subcarrier
is present in the system.

• The energy Er of the redundant subcarriers equals the energy Ed of the data
symbols as long as the redundant subcarriers can be arranged equidistantly
with an integer spacing of N/Nr .

• The energy Er is always larger than Ed, if the redundant subcarriers can-
not be arranged equidistantly with an integer spacing of N/Nr and no zero
subcarriers are present in the system.

• The energy Er is always larger than Ed, if the redundant subcarriers cannot
be arranged equidistantly with an integer spacing of N/Nr and possible zero
subcarriers do not appear in bundles.

• The energy Er may be smaller than Ed, if the redundant subcarriers cannot
be arranged equidistantly with an integer spacing of N/Nr and possible zero
subcarriers appear in a bundle.

• In case that Er < Ed, the difference between the energy values seems to
increase with increasing bundle size.

Properties drawn from single redundant subcarrier symbols. In systematically
encoded UW-OFDM the code words c contain data symbols di drawn from prob-
ability mass functions (PMFs) given by the underlying finite complex alphabet.
This is identical to conventional OFDM, however, there are also redundant sub-
carrier symbols ri. These symbols result from a weighted sum of data symbols,
thus motivating a more in-depth analysis. The following investigations assume
iid data symbols with zero mean and variance σ2

d, and modulation alphabets that
produce data vectors with rotation invariant elements as defined in [54]. This in-
cludes constellations like QPSK, 16-QAM and 64-QAM, but excludes e.g., BPSK
modulation. With these assumptions r = Td has zero mean and a covariance
matrix Crr = E

{
rrH

}
= σ2

dTTH , and r fulfills the rotation invariance condi-
tion as well, as it is preserved by linear complex transformations. A redundant
symbol ri is generated by a weighted sum of Nd iid data symbols, consequently,
ri is a discrete complex valued random variable (RV). Nevertheless, in the fol-
lowing ri is approximated by a continuous RV represented by a probability den-
sity function (PDF). Following CLT arguments, the PDF of ri may be well ap-
proximated by a complex Gaussian PDF CN (0, σ2

ri) with zero mean and variance
σ2
ri

= [Crr ]ii:

pri(ri) =
1

πσ2
ri

· exp
(

− 1

σ2
ri

|ri|2
)

. (3.16)
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3. Systematically Encoded Unique Word OFDM

Due to the rotational invariance condition, the real and imaginary part of ri (rep-
resented by ui and vi, respectively) are uncorrelated, and the PDFs of both can
be approximated by N (0, σ2

ri/2). The upper plot in Fig. 3.9 displays an estimated
PDF for the real part of the code word symbol c1, which corresponds to r0 in case
of setup A, by plotting a distribution of relative frequencies. These relative fre-
quencies have been obtained from simulating 105 UW-OFDM symbols with QPSK
data symbols. Note that σ2

r0 = [Crr ]00 = 2.47. It turns out that an approxima-
tion with a Gaussian distribution N (0, σ2

r0/2) per quadrature component perfectly
matches the simulation. The lower plot of Fig. 3.9 shows the PMF of the real part
of a data symbol, in this case of c0. Consequently, there is an important differ-
ence between conventional OFDM and systematically encoded UW-OFDM when
considering the energy of one OFDM symbol. In case all elements of a modula-
tion alphabet have the same power, e.g., as it is for QPSK but not for 16-QAM,
the energy of a conventional OFDM symbol is constant and the same for every
symbol. This is clearly not the case for systematically encoded UW-OFDM, since
the energy of the redundant subcarriers generally varies from symbol to symbol.
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Figure 3.9.: Upper plot: Distribution of relative frequencies to estimate the PDF of
the real part of c1. A fitted Gaussian PDF serves as reference. Lower
plot: PMF of the real part of c0.

The next step investigates the resulting energy distribution of systematically en-
coded UW-OFDM symbols. The transmit symbol energy for one dedicated realization
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of an OFDM symbol is given by

E
(r)
x′′ =

1

N
d
H
d+

1

N
r
H
r+ x

H
u xu. (3.17)

The interesting part worth investigating here is the energy contribution2

y = r
H
r =

Nr−1∑

i=0

|ri|2 (3.18)

of the redundant subcarriers. The discrete RV y is again approximated by a con-
tinuous one, and approximate PDFs are derived. The PDF pxi(x) of xi = |ri|2 =
u2
i + v2i corresponding to the squared magnitude of the ith redundant subcarrier

symbol serves as a starting point. Since ui and vi denote uncorrelated random
variables which are both approximated by a Gaussian PDF N (0, σ2

ri/2), it imme-
diately follows that pxi(x) can be well approximated by an exponential distribution
of the form

pxi(x) =
1

σ2
ri

e
−x/σ2

ri for x ≥ 0, (3.19)

cf. [55]. Note that the redundant subcarrier symbols are correlated among each
other, leading to non-zero off-diagonal elements in Crr . For the approximation of
the PDF of y the off-diagonal elements in Crr are ignored and uncorrelated redun-
dant subcarrier symbols ri are assumed, cf. [56]. Because of the Gaussian model
the ri’s can further be assumed to be iid, consequently the xi’s can be assumed to
be iid as well. Making these assumptions, the PDF of the sum y = rHr results in
an (Nr − 1)-fold convolution of the PDFs pxi(x):

py(y) = px1(y) ∗ px2(y) ∗ · · · ∗ pxNr
(y). (3.20)

Due to its practical relevance, the general case with zero subcarriers is considered
in the following. The variance of the redundant symbols is not constant in this
case (Fig. 3.4), but due to symmetry properties the redundant symbols ri and
rNr−i−1 for i = 0, 1, · · ·Nr/2 − 1 feature the same variance. Therefore, y can

also be written as y =
∑Nr−1
i=0 xi =

∑Nr/2−1
i=0 zi with zi = xi + xNr−i−1 and

zi ∼ Erl(2, βi), where Erl(·) denotes an Erlang distribution, βi = 1/σ2
ri and βi 6=

βj for i 6= j. An analytical expression of the approximate PDF of y is given
by

py(y) =

Nr/2−1
∑

i=0

β2
i e

−βiy
2∑

j=1

(−1)2−j
(j − 1)!

yj−1

×
∑

m0+m1+···+mNr/2−1=2−j
mi=0

Nr/2−1
∏

l=0
l 6=i

(

2 +ml − 1

ml

)

β2
l

(βl − βi)2+ml
(3.21)

2Note that for the actual energy, a factor 1
N is missing. This factor arises when going from the

frequency to the time domain (motivated by applying the Parseval theorem) as a consequence
of the utilized definition of the DFT in (2.12). However, this factor has been intentionally
left out for reasons of a compact notation.
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Figure 3.10.: Upper plot: Distribution of the relative frequencies and analytical
approximation to estimate the PDF of the redundant energy. Lower
plot: Cumulative frequency distribution to estimate the CDF of the
redundant energy.

for y > 0, cf. [57]. This distribution is also known as a particular form of the
generalized chi-squared distribution. Fig. 3.10 depicts the estimated and the ana-
lytically approximated PDFs and cumulative distribution functions (CDFs) of the
redundant energy. Again the estimated PDF is obtained from simulating 105 UW-
OFDM symbols with QPSK data symbols. The analytical approximation has been
derived by evaluating (3.21). The reason for the deviation of the analytical approx-
imation from the estimated PDF mainly originates from the simplified assumption
of uncorrelated redundant symbols. The true mean of the redundant subcarriers’
energy contribution is E {y} = σ2

dtr
(
TTH

)
= 36.5658, calculating the mean with

the help of the analytical approximation yields 36.5573, and using the PDF derived
by the particular simulation run yields 36.5557.

3.2. Addition of UW: Two-Step versus Direct Approach

A UW-OFDM time domain signal is by definition of the form
[
xTp xTu

]T ∈ C
N×1,

with xp representing the payload and xu determining the desired unique word.
There are in principle two ways, known as direct and two-step approach [58], to
generate a UW at the tail of the time domain symbol. Both approaches yield
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different UW-OFDM symbol waveforms, since the xp sections differ significantly.
It has already been mentioned in the first chapter that the two-step approach is
the preferable one, which generates a zero UW in the first step, and then adds the
desired UW in a second step. This section will now verify this statement by proving
the two-step approach to generate OFDM symbols with much less redundant energy
than a single step or direct UW generation approach. The difference might be
surprising at this point, as the DFT is a linear operation and consequently the
result should be invariant to an addition (superposition principle). In fact, it will
turn out that both approaches differ in the circumstance whether the UW influences
the data subcarriers.

3.2.1. Symbol Energy for Direct Approach

The straightforward or direct approach to produce UW-OFDM symbols with a
unique word tail is to force F−1

N x̃′′ = x′′, or equivalently

x
′′ = F

−1
N BP

[
d

r′′

]

=

[
x′′
p

xu

]

. (3.22)

This approach is in fact closely related to the proposal in [32]. With (3.22) and
the definition M = F−1

N BP =
[
M11 M12
M21 M22

]
from (2.44) for A = P, it immediately

follows that

M21d+M22r
′′ = xu. (3.23)

Note that M22 is quadratic with permuted Vandermonde structure, hence it is
always invertible. With T ∈ C

Nr×Nd as defined in (2.47) the vector of redundant
subcarrier symbols can thus be determined from the data vector d and the unique
word xu by

r
′′ = Td+M

−1
22 xu. (3.24)

By inserting (3.24) into (3.22), the transmit time domain symbol x′′ follows as

x
′′ = F

−1
N BP

[
I

T

]

d+ F
−1
N BP

[
0

M−1
22

]

xu. (3.25)

The first term in (3.25) produces a zero word guard space, while the second term
generates the desired UW. Note that the second term only affects the redun-
dant subcarriers, while the data subcarriers remain untouched. As a preparatory
step for comparing both approaches, the mean UW-OFDM symbol energy Ex′′ =
E
{
x′′Hx′′} = 1

N
E
{
x̃′′H x̃′′} is investigated. Assuming uncorrelated data symbols

from an alphabet A with zero mean and covariance matrix Cdd = E
{
ddH

}
= σ2

dI,
and exploiting the fact that the linear mapping x̃′′ = BP

[
d
r′′

]
does not change
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the mean energy of the vector
[

d
r′′

]
, yields

Ex′′ =
1

N
E

{
[
dH r′′H

]
[
d

r′′

]}

=
1

N
E
{

d
H
d
}

+
1

N
E
{

r
′′H

r
′′
}

=
Ndσ

2
d

N
+

1

N
E
{

r
′′H

r
′′
}

. (3.26)

With (3.24) the term E
{
r′′Hr′′

}
can be rewritten as

E
{

r
′′H

r
′′
}

= E
{

tr
(

r
′′
r
′′H
)}

= tr
(

E
{

r
′′
r
′′H
})

= tr
(

E
{

(Td+M
−1
22 xu)(Td+M

−1
22 xu)

H
})

= tr
(

E
{

Tdd
H
T
H +M

−1
22 xud

H
T
H

+Tdx
H
u (M−1

22 )
H +M

−1
22 xux

H
u (M−1

22 )
H
})

= σ2
dtr
(

TT
H
)

+ tr
(

M
−1
22 xux

H
u (M−1

22 )
H
)

,

with the last step originating from E {d} = 0. Finally, the symbol energy is

Ex′′ =
Ndσ

2
d

N
︸ ︷︷ ︸
Ed

+
σ2
d

N
tr
(

TT
H
)

︸ ︷︷ ︸
Er

+
1

N
x
H
u (M−1

22 )
H
M

−1
22 xu

︸ ︷︷ ︸
Eu

. (3.27)

Here, Ed describes the mean contribution of the data subcarrier symbols, Er depicts
the mean contribution of the redundant subcarrier symbols for the case xu = 0,
and Eu denotes the contribution of a non-zero UW. Ed can be treated as fixed
and given. Er and Eu strongly depend on the permutation matrix P (since T

and M22 depend on P), Eu additionally depends on the particular shape of xu.
Er can reasonably be minimized by a proper choice of P. A comparison of the
initial results in Tab. 2.1 with the results gained in Sec. 3.1 confirm this statement.
Hence, Er should therefore be of a minor problem, leaving Eu as the last subject
for investigation in the following two sections.

3.2.2. Symbol Energy for Two-Step Approach

In order to get rid of the term xHu (M−1
22 )

HM−1
22 xu in (3.27), we proposed a simple,

yet highly efficient approach in [59],[60], which we call two-step approach. As
already motivated in chapter 2, the idea is to first generate a zero word such that
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x =
[
xTp 0T

]T
, and in a second step to generate the desired output symbol

x′ = x+
[
0T xTu

]T
.

The first step is a special case of the direct approach described in the previous
section for xu = 0. According to (3.24) the redundant subcarrier symbols result
from the linear mapping

r = Td. (3.28)

With (2.37), (3.6) and x̃u, the transmit symbol x′ is given as

x
′ = F

−1
N BP

[
I

T

]

d+ F
−1
N x̃u. (3.29)

A comparison of (3.25) with (3.29) reveals that the first term generating the zero
UW is identical for both approaches, while the second term generating the actually
desired UW differs. Moreover, the second term in (3.25) only affects the redundant
subcarriers, whereas x̃u in (3.29) may in general overlay the redundant subcarrier
symbols r as well as the data symbols d. Hence, in the two-step approach the UW
distorts the data symbols and thus requires a correct subtraction of the UW before
data detection, which is not necessary in case of the direct approach. However, x̃u
is deterministic and known, and these distortions can therefore easily be reversed
at the receiver, cf. (2.66).

As for the direct approach, the mean transmit symbol energy Ex′ is evaluated in
the following. With (3.27) (and still having in mind that the first step of the two-
step approach is a special case of the direct approach for xu = 0) the mean energy
Ex = E

{
xHx

}
becomes

Ex =
Ndσ

2
d

N
+
σ2
d

N
tr
(

TT
H
)

. (3.30)

Further, as the terms x and
[
0T xTu

]T
in (2.37) are orthogonal, the mean transmit

symbol energy Ex′ immediately follows to

Ex′ =
Ndσ

2
d

N
︸ ︷︷ ︸
Ed

+
σ2
d

N
tr
(

TT
H
)

︸ ︷︷ ︸
Er

+x
H
u xu
︸ ︷︷ ︸
Exu

. (3.31)

Ed and Er describe the contributions of the data and the redundant subcarrier sym-
bols to the total mean symbol energy before the addition of the UW, respectively,
and Exu describes the contribution of the UW. Note that different to the direct
approach in (3.27), the energy contribution of the UW to the total mean transmit
symbol energy is now only determined by the energy of the UW Exu = xHu xu itself,
but not by its particular shape.
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3.2.3. Comparison of Both Approaches

This section provides the analytical proof of Ex′′ ≥ Ex′ for all possible UWs and for
all possible permutation matrices P. This is achieved by proving that Eu ≥ Exu ,
cf. (3.27) and (3.31), or equivalently

1

N
x
H
u (M−1

22 )
H
M

−1
22 xu ≥ x

H
u xu. (3.32)

Note that the derivations are restricted to the case of Nr = Nu, however, the
following proof also holds in case of Nr > Nu, cf. [61] and Sec. 3.6, where M22

becomes rectangular and M−1
22 has to be replaced by the Moore-Penrose Pseudo-

Inverse M
†
22.

In fact, for any vector xu it holds that

x
H
u xu = ‖xu‖22

=
∥
∥M22M

−1
22 xu

∥
∥
2

2

≤ ‖M22‖2S
∥
∥M

−1
22 xu

∥
∥
2

2
(3.33)

≤
∥
∥F

−1
N

∥
∥
2

S

∥
∥M

−1
22 xu

∥
∥
2

2
(3.34)

=
1

N

∥
∥M

−1
22 xu

∥
∥
2

2
(3.35)

=
1

N
x
H
u (M−1

22 )HM
−1
22 xu.

Clearly, equality is given for xu = 0. Equation (3.33) is true since the Euclidean
vector norm ‖·‖2 is compatible with the spectral matrix norm ‖·‖S , and for a vector
norm being compatible to a matrix norm, the inequality ‖Ax‖ ≤ ‖A‖ ‖x‖ holds
for every square matrix A and every vector x (which match in their dimensions),
cf. [62]. To (3.34) and (3.35) we note that the spectral matrix norm ‖A‖S is

defined as ‖A‖S =
√
λmax (AHA), which denotes the largest singular value of

A, and consequently λmax
(
AHA

)
the largest eigenvalue of AHA. The spectral

norm of any submatrix cannot exceed the spectral norm of the matrix it has been
extracted from, cf. [63]. Since M22 is a submatrix of F−1

N , we have ‖M22‖S ≤∥
∥F−1

N

∥
∥
S
. For the IDFT matrix F−1

N , the spectral norm becomes
∥
∥F−1

N

∥
∥
S
= 1√

N
.

In [60] we compared Eu and Exu for various potential UW sequences and ob-
served that the direct approach requires substantially more energy to generate a
desired UW in time domain. Furthermore, Eu heavily varies with the shape of
the UW. To conclude, the two-step approach resolves this problem, as it allows
to get rid of the problematic term xHu (M−1

22 )
HM−1

22 xu in (3.27), and the mean
transmit symbol energy becomes independent of the particular shape of the UW.
As a consequence of the two-step approach, the UW also uses now the data spec-
trum.
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The derivations in Sec. 2.2 show that the influence of the UW has to be eliminated
before data estimation is applied on the linear model in (2.68). The UW does not
provide any gain w.r.t. the data estimation task. From this point of view, it is thus
desirable to spend as less energy as possible for a UW. Taking into account that
the very same linear model is achieved for the direct approach when replacing x̃u
in (2.60) by

x̃
′
u = BP

[
0

M−1
22

]

xu, (3.36)

both approaches show the same data estimation performance (e.g., in terms of
MSE). However, this comes in case of the direct approach at the price of a much
higher transmit energy. Hence, the two-step approach will always outperform the
direct approach in terms of the BER-over-Eb/N0 performance.

To provide a feeling for the performance difference between both approaches, Eu =
1
N
xHu (M−1

22 )
HM−1

22 xu from the direct approach and Exu = xHu xu from the two-step
approach are evaluated for various potential UW sequences, cf. [60]. The UW will
be normalized to Exu = xHu xu = 1 for reasons of graphical representation. Fig. 3.11
summarizes the results for the following UW sequences:

1. The generalized Barker sequence [64] of length 12 padded with zeros to the
final length of 16;

2. A CAZAC sequence (constant amplitude, zero autocorrelation) from [65];

3. The length 16 Frank-Zadoff sequence from [66], which also has CAZAC prop-
erties.

The direct approach obviously requires substantially more energy to generate a
desired UW in time domain than the two-step approach. Furthermore, Eu varies
with the shape of the UW. In summary, the two-step approach resolves the problem
of the energy contribution of the UW in two ways:

• the problematic term xHu (M−1
22 )

HM−1
22 xu in (3.27) is avoided, and

• the mean transmit symbol energy becomes independent of the particular
shape of the UW.

3.3. Optimization Algorithm for Redundant Subcarrier

Distribution

In our previous works, e.g., in [59],[41], we have stressed the necessity of finding the
optimum positions of the redundant subcarrier symbols and hence the optimum
permutation matrix P. The results in Tab. 2.1 strongly suggest an optimization
w.r.t. minimizing the mean redundant energy.
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Figure 3.11.: Mean energy contribution of non-zero UWs in the direct (Eu) and
the two-step approach (Exu).

Unfortunately, only for the special case that the redundant subcarriers can be
equidistantly arranged with integer spacing N/Nr, cf. (3.15), an optimal solution
can be derived analytically. For all other cases, an optimum by means of analyt-
ical derivations is not available. Experiments summarized in Fig. 3.6–3.8 suggest
though that an optimum or near-to-optimum redundant subcarrier distribution will
lead to Er = Ed+E∆ with a relatively small E∆ (at least for Nu < N/2), however,
the exact value of E∆ and thus the global optimum remains unknown. To make
matters worse, an exhaustive search is computationally unmanageable for reason-
able choices of N and Nr (setup A already provides

(
(N−Nz)
Nr

)
=
(
52
16

)
≈ 1.04 · 1013

different combinations).

3.3.1. Split Distribution

In order to circumvent this computational burden, [51] presents a so-called split
distribution as a means to select the redundant subcarrier positions according to
a simple analytical expression. In this case Nr is modelled as the sum of powers of
2 such that

Nr =

Lr−1∑

l=0

Nr,l, (3.37)

56



3.3. Optimization Algorithm for Redundant Subcarrier Distribution

whereas Nr,l = 2xl , xl ∈ N0 with N0 denoting the set of natural numbers including
0 and Nr,1 > Nr,2 > · · · > Nr,Lr . The set Ir of Nr subcarrier indices is split
into Lr subsets Ir,l consisting of Nr,l redundant subcarrier positions. Each subset
follows a uniform distribution with spacing ∆l =

N
Nr,l

and an integer constant n0,l

such that

Ir,l = {n0,l +m∆l} m = 0, . . . , Nr,l − 1. (3.38)

A comparison of the results in Fig. 3.5 and [53] demonstrates that in most cases
the split distribution is far away from delivering the optimum distribution. In fact
the resulting redundant energy Er exceeds the optimum by 50-150% and is thus
not applicable in practice.

3.3.2. Quasi-Uniform Distribution

In [67] another analytical approach called quasi-uniform (QU) distribution is intro-
duced. Here, the redundant carriers are generated according to

Ir =
{[

lN

Nr

]

R

}

l = 0, . . . , Nr − 1, (3.39)

whereas [x]R rounds to the nearest integer. This method achieves optimum or
at least near-optimum results, but works only as long as no subcarriers are ex-
cluded from the optimization process [68]. This might occur, if e.g., pilot or zero
subcarriers are present in an OFDM symbol or also in case of dynamic and dis-
contiguous spectrum allocation required in cognitive radios. In order to apply the
QU distribution approach for this scenario as well, the formula may be adapted
to

Ir = {im} m =

[
l(N −Nz)

Nr

]

R

l = 0, . . . , Nr − 1, (3.40)

whereas im addresses themth element of the ordered set Inz,o defined as

Inz,o = {i0, i1, i2 . . . iN−Nz−1} = (Inz, <) , (3.41)

with Inz = IN\Iz representing the set of all possible indices IN = {0, . . . , N − 1}
excluding the positions of zero subcarriers Iz. Hence, the redundant subcarri-
ers are distributed as uniformly as possible, but only over the remaining band-
width. W.l.o.g. it is assumed in (3.40) that zero subcarriers are the only source
for exclusion. The second part of Tab. 3.1 reveals, however, that the QU ap-
proach does not work well, since Er >> Ed as soon as zero subcarriers are present.
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Table 3.1.: Mean redundant energy Er of redundant subcarrier distributions ob-
tained from the heuristic and QU approach for the setups in Tab. 2.2.

Setup A Setup B Setup C Setup D Setup E

EdN 36 48 64 100 112
Nz 12 0 0 12 0

ErN QU distribution 1000 48 64 198.24 112
ErN Heuristic 36.56 48 64 98.55 112

3.3.3. Heuristic Distribution

The heuristic algorithm presented in the following is able to provide very good
results even for these cases, as the fourth row of Tab. 3.1 indicates. This algorithm
provides full flexibility and works independently of how many or which subcarriers
may be excluded from the optimization process. Furthermore, it allows using any
arbitrary cost function J in the optimization routine, e.g., J = JE as defined in
(3.2). For reasons of easier notation, index sets and index vectors instead of permu-
tation matrices are used in the following. The index sets of the redundant and the
data subcarriers are represented by Ir and Id. Further, ir and id denote the cor-
responding (in ascending order) sorted index vectors. Note that the permutation
matrix P can unambiguously be derived from the sorted index vectors ir and id. Be-
low the script heuristic optimization and the function optimize index vectors

are reproduced as pseudocode.

Algorithm 1 heuristic optimization

1: choose valid index vectors ir and id randomly
2: Jold ←∞
3: stop ← false
4: while not stop do

5: (ir, id, Jnew)← optimize index vectors(ir, id)
6: if Jnew < Jold then

7: Jold ← Jnew
8: else

9: stop ← true
10: end if

11: end while

12: Jopt ← Jold
13: sort ir and id and determine P

heuristic optimization starts with randomly chosen but valid index vectors ir
and id. Next, the function optimize index vectors, which tries to exchange one
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Algorithm 2 optimize index vectors

1: function optimize index vectors(ir, id)
2: calculate T and G (cf. (2.44), (2.47) and (2.42)) using ir and id
3: calculate cost function J
4: Jnew ← J
5: ir,new ← ir
6: id,new ← id
7: for k = 0, 1, ..., Nr − 1 do

8: for l = 0, 1, ..., Nd − 1 do

9: ir,tmp ← ir
10: id,tmp ← id
11: tmp← ir,tmp[k]
12: ir,tmp[k]← id,tmp[l]
13: id,tmp[l]← tmp
14: update T, G using ir,tmp and id,tmp

15: update J
16: if J < Jnew then

17: ir,new ← ir,tmp

18: id,new ← id,tmp

19: Jnew ← J
20: end if

21: end for

22: end for

23: return (ir,new, id,new, Jnew)
24: end function

element (index) of ir with one element (index) of id such that the cost function
decreases by a maximum amount, is repeatedly called until at least a local minimum
is found. There is no guarantee to find the global minimum, however, investigations
suggest that either the optimum or a near-optimum set is found after executing
heuristic optimization a few times. This conclusion is drawn based on two
observations: First of all, for the investigated cases a verification by means of
exhaustive search due to manageable complexity is possible, it turns out that the
results obtained coincide with the global optimum. This has been proven for various
setups, e.g., also for setup 3–6 in Fig. 3.7 and Fig. 3.8. Second, in case an exhaustive
search is unfeasible, it holds for the found subcarrier distribution that Er ≈ Ed.
In combination with the results gained in Sec. 3.1, the assumption of having found
at least a near to optimum seems valid.

In contrast to an analytical approach like the QU distribution, the deployment
of the proposed heuristic may be limited by the parameter set, as optimize in-

dex vectors experiences a quadratic complexity of Nr · Nd. Fortunately, finding
the optimum distribution is a task which has to be done only once during system
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design time and not during run time, hence making this approach applicable for
many cases.

3.4. Alternative Optimization Criteria

The experiments summarized in Tab. 2.1 suggest to optimize the permutation
matrix P based on minimizing the cost function JE(P) in (3.2), i.e., minimizing
the redundant energy Er in (3.31). The BER simulation results in previous pub-
lications like [59, 60, 41] as well as in Sec. 3.5 confirm this decision. However,
note that the cost function JE(P) only takes the (mean) energy of the transmit
symbol into account and the particular receiver does influence the optimization.
On the one hand, this seems preferable, since P is optimized regardless of the
specific receiver structure, e.g., independent of the utilized estimator, and thus
applicable for a broad range of scenarios. On the other hand, the question arises,
whether this choice is effectively optimum in terms of the overall transceiver per-
formance. The idea is now to find a permutation matrix P such that the sum
of the error variances after a BLUE or an LMMSE estimator at a fixed SNR is
minimized instead of the mean energy [58]. These variances can be derived from
the main diagonal of the error covariance matrices Cee as defined in (2.76) and
(2.84), respectively. Starting with the BLUE, the sum of the error variances follows
to

J ′(P) = Nσ2
ntr
(

(GH
H̃
H
H̃G)−1

)

, (3.42)

with the generator matrix G = P
[
I TT

]T
defined in (3.3). J ′(P) depends on the

particular channel instance H̃, meaning that a resulting permutation matrix P may
be perfectly suitable only for one specific transmission channel, but may fail in other
situations. This consequently requires the design of several permutation matrices
and a channel specific selection algorithm, which in turn demands a certain amount
of channel state information at the transmitter side. Since a permutation matrix
considered in this work shall be designed only once during system design, the de-
pendence of a cost function on the particular channel H̃ is disadvantageous. Let us
therefore assume the AWGN case with H̃ = I yielding

J ′(P) = Nσ2
ntr
(

(GH
G)−1

)

. (3.43)

With (3.3) and

G
H
G =

[
I TH

]
P
T
P

[
I

T

]

= I+T
H
T, (3.44)

the expression for J ′ transforms to

J ′(P) = Nσ2
ntr
(

(TH
T+ I)−1

)

. (3.45)
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Introducing and fixing the ratio γ = Es
σ2
n

during the optimization allows a perfor-

mance comparison of different code generator matrices G at a fixed SNR value.
From (3.31) the mean energy per data symbol Es =

E
x
′

Nd
as in (3.14) immediately

follows to Es = (σ2
dNd + σ2

dtr
(
THT

)
/(NNd) for the case of a zero UW, leading

to the following expression for σ2
n:

σ2
n =

Es
γ

=
σ2
dNd + σ2

dtr
(
THT

)

γNNd
. (3.46)

Inserting (3.46) into (3.45) finally delivers the cost function

JBLUE(P) =
σ2
d

γNd

(

tr
(

T
H
T
)

+Nd
)

tr
(

(TH
T+ I)−1

)

. (3.47)

Obviously, the particular value of γ = Es
σ2
n

does not influence the optimization pro-

cess and the resulting optimum permutation matrix P.

Applying the same steps, the LMMSE estimator based cost function follows to

JLMMSE(P) =
σ2
d

γNd

(

tr
(

T
H
T
)

+Nd
)

tr

((

T
H
T+

(γ + 1)Nd + tr
(
THT

)

γNd
I

)−1)

.

(3.48)
Alternatively, the cost function can also be written as

JLMMSE(P) = σ2
dtr

((

I+
γNd

Nd + tr (THT)
(TH

T+ I)

)−1
)

. (3.49)

For sufficiently large γ it holds that JLMMSE(P) ≈ JBLUE(P), and the particular
choice of γ is again irrelevant for the searching of an optimum permutation matrix.
However, this is not immediately apparent for small values of γ.

In the following paragraphs, optimum permutation matrices P, or equivalently
ascendingly ordered optimum index sets Ir,o = (Ir, <), are presented for the UW-
OFDM setups in Tab. 2.2 by minimizing the cost functions JE(P) from (3.2),
JBLUE(P) and JLMMSE(P). Tab. 3.2 shows the optimum index sets of the redun-
dant subcarriers obtained with the heuristic optimization algorithm (Sec. 3.3) for
setup A-C. As noted before, the choice of γ = Es

σ2
n
is irrelevant for the minimization

of JBLUE. In contrast, the solution of JLMMSE might depend on γ and is thus
solved for γ = 1, 2, . . . , 40.

For setup A the solutions to the three cost functions yield exactly the same opti-
mum index set Ir, and in case of JLMMSE additionally independent of γ.

For setup B and C again all three optimization criteria deliver the very same
optimum index set(s), for JLMMSE(P) again independent of the specific value of
γ. However, as the redundant subcarriers are now equidistantly distributed among
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Table 3.2.: Best index sets for redundant subcarriers when optimizing towards dif-
ferent cost functions for setups according to Tab. 2.2, N = 64 and
N = 80.

γ Setup A – Best index set Ir

JE, - {2,6,10,14,17,21,24,26,38,40,43,47,50,54,58,62}
JBLUE, - -”-
JLMMSE 1,...,40 -”-

γ Setup B – Best index set Ir

JE, - {0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60}
JBLUE, - {1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61}
JLMMSE 1,...,40 {2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62}

{3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63}

γ Setup C – Best index set Ir

JE, - {0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75}
JBLUE, - {1,6,11,16,21,26,31,36,41,46,51,56,61,66,71,76}
JLMMSE 1,...,40 {2,7,12,16,22,27,32,37,42,47,52,57,62,67,72,77}

{3,8,13,18,23,28,33,38,43,48,53,58,63,68,73,78}

the available frequency band, an optimum set is not unique anymore, but every
set originating from a cyclic shift of an optimum set minimizes the cost functions
as well, cf. [67].

Table 3.3.: Best index sets for redundant subcarriers when optimizing towards dif-
ferent cost functions for setups according to Tab. 2.2, N = 128.

γ Setup D – Best index set Ir

JE, - {4,12,20,28,36,44,51,58,70,77,84,92,100,108,116,124}
JBLUE - -”-
JLMMSE 1 {4,12,20,28,36,44,51,57,71,77,84,92,100,108,116,124}

6 {5,13,21,29,37,45,52,58,71,78,85,93,101,109,117,125}
34,...,40 {4,12,20,28,36,44,51,58,70,77,84,92,100,108,116,124}

γ Setup E – Best index set Ir

JE, - {0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120}
JBLUE, - {1,9,17,25,33,41,49,57,65,73,81,89,97,105,113,121}
JLMMSE 1,...,40 · · ·

Tab. 3.3 summarizes the optimization results for setup D and setup E, respectively.
Setup E does not provide any new insights, all statements made for setup B and
C also hold for this case. However, setup D shows some new aspects. Whereas
minimizing JE(P) and JBLUE(P) results in the same optimum index set Ir, this is
not always true for JLMMSE(P). Here, the optimum set slightly changes depending
on the specific value of γ. Only for γ ≥ 34, minimizing JLMMSE(P) provides the
same optimum set as for JE(P) and JBLUE(P). At first sight, these results seem
now to be in some contrast to the previous outcomes. Let us thus examine the
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cost function JLMMSE(P) for this situation in detail. Tab. 3.4 presents JLMMSE(P)
for γ = 1 and γ = 6, and in each case evaluated for the optimum index set Ir,opt
as well as for the set Ir,JE,JBLUE minimizing JE(P) and JBLUE(P). Note that
the difference in the cost function is basically negligible. Hence, Ir,JBLUE,JE can
practically be seen as the optimum set that minimizes all the three cost functions.
In conclusion, in all cases the intuitive choice of finding Ir by minimizing JE(P)
is in fact also optimum in terms of the new performance measures JBLUE in (3.47)
and JLMMSE in (3.49), which take the whole transceiver performance into account.

Table 3.4.: Evaluation of JLMMSE for setup D according to Tab. 2.2.

Ir,opt Ir,JE,JBLUE
Difference

JLMMSE, γ = 1 59.5122 59.5769 0.0647
JLMMSE, γ = 6 21.6837 21.6897 0.0060

3.5. Performance Evaluation

The performance evaluation presented in this section is split into two main parts.
The first part investigates the principle mode of operation and highlights scenarios
in which UW-OFDM can show its strengths. An MSE analysis after data estima-
tion serves as metric. Based on this analysis, the class of estimators suitable for
UW-OFDM is identified. The second part of this section evaluates the performance
of UW-OFDM against CP-OFDM. The latter is currently the most popular multi-
carrier technique and therefore constitutes a perfect benchmark. The comparison
of both signaling schemes comprises spectral properties, bandwidth efficiency and
BER simulations.

3.5.1. Principles of UW-OFDM

As already mentioned, UW-OFDM can in fact be interpreted as an RS code, the
difference to the usual case is the definition of the code over the field of the complex
numbers instead of over a Galois field. Thus, the RS code property immediately
motivates for an algebraic decoding approach to recover the data symbols disturbed
by the channel [21]. However, subsequent elaborations will identify problems in
terms of the practical applicability of this approach, paving the way for estimators
such as BLUE or LMMSE, which will in Sec. 3.5.3 demonstrate the potential of
the UW-OFDM signaling concept.
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As a preparatory step for the algebraic approach, let us equalize the channel effects
first by multiplying with H̃−1, yielding

ỹ
′ = H̃

−1
ỹ (3.50)

= Gd+ H̃
−1

v (3.51)

= c+ H̃
−1

v. (3.52)

Now a similar principle as for the generation of the redundant subcarriers r at the
transmitter side is applied, cf. (3.7), but this time the aim is the recovery of highly
attenuated subcarrier symbols cb ∈ C

(m×1) from well-received subcarrier symbols
cg ∈ C

(Nd+Nu−m)×1 with m ≤ Nu denoting the number of highly attenuated

subcarriers. Let P
′ ∈ C

(Nd+Nu)×(Nd+Nu) be a permutation matrix that splits up c

into good cg and bad cb subcarrier symbols such that

c
′ =

[
cg
cb

]

= P
′
c. (3.53)

It holds that

F
−1
N Bc = F

−1
N BP

′T
[
cg
cb

]

=

[
∗
0

]

. (3.54)

With

M
′ = F

−1
N BP

′T =

[
M′

11 M′
12

M′
21 M′

22

]

, (3.55)

whereM′
ij are appropriately sized sub-matrices, it follows that

M
′
21cg +M

′
22cb = 0. (3.56)

Assuming that cg is known, then cb can be derived by cb = −M
′−1
22 M′

21cg for the

case m = Nu, and by cb = −M
′†
22M

′
21cg for m < Nu. With T′ = −M′†

22M
′
21, the

code word is given as

c = P
′T
[
cg
cb

]

= P
′T
[
I

T′

]

cg = G
′
cg. (3.57)

In practice, cg is not perfectly known, however, with P′ =
[
P′

1
T P′

2
T
]T

and

P′
1 ∈ C

(Nd+Nu−m)×(Nd+Nu), an estimate ĉg is obtained from (3.52) by ĉg = P′
1ỹ

′.
Using the estimate ĉb = T′ĉg leads to

ĉ = G
′
P

′
1ỹ

′ = G
′
P

′
1H̃

−1
ỹ. (3.58)

As a first step, the impact of the channel is inverted. Next, the well-received
symbols are extracted by applying P′

1 and finally the heavily distorted symbols
are recovered by G′. Since there is a zero UW of length Nu in the time domain,
the decoder is able to recover up to Nu erased subcarrier symbols. In case of
m = Nu, this system of equations for ĉb has a uniquely defined solution (i.e.,
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the Pseudo-Inverse turns into an inverse). In case of m < Nu, this leads to an
overdetermined system of equations for ĉb which is solved in a least square sense.
One can show that the error e = c− ĉ has zero mean, and its covariance matrix is
given by

Cee = σ2
d

(

Ccc −G
′
P

′
1Ccc −Ccc(G

′
P

′
1)
H +G

′
P

′
1Ccc(G

′
P

′
1)
H
)

+G
′
P

′
1Cvv(P

′
1)
H .

(3.59)
Cee can further be used in the case when additional channel coding is applied.
Finally, the data part

d̂ =
[
I 0

]
P
T
ĉ (3.60)

is processed as usual.

In the successive example, all non-zero subcarrier symbols are taken into account
and considerations are thus based on (3.58). Two exemplary multipath snapshots
shown in Fig. 3.12 will help to reveal the potential of this decoding method. Chan-
nel A represents a pleasant environment with moderate fading holes and is close to
a frequency flat channel. Channel B is a quite bad environment for communication
due to its two deep spectral notches.

0 5 10 15 20 25 30 35 40 45 50 55 60

−30

−20

−10

0

p
a
th
lo
ss

[d
B
]

channel A

0 5 10 15 20 25 30 35 40 45 50 55 60

−30

−20

−10

0

subcarrier

p
a
th
lo
ss

[d
B
]

channel B

Figure 3.12.: Frequency response of exemplary multipath channels A and B.

Starting considerations based on channel B, it makes sense to assume that all
subcarrier symbols have been well-received except for those at the subcarriers with
index no. 16 and 58. Hence, these two subcarrier symbols will be recalculated from
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the well-received ones applying the estimator in (3.58). Note that the approach
of dividing into good and bad received symbols shows strong parallels to succes-
sive interference cancelation (SIC)/decision feedback equalization (DFE) [69, 70].
Fig. 3.13 shows the Bayesian MSE (BMSE) before and after algebraic RS decoding,
and with and without slicing. In this context, ’Bayesian’ denotes an averaging not
only over noise, but over data as well. Slicing means that a received and noisy data
symbol is mapped to the closest (in terms of Euclidean distance) element of the
underlying data symbol alphabet. For this analysis, perfect slicing is assumed, i.e.,
the noisy data symbols within ĉg = P′

1ỹ
′ are replaced by the actually transmitted

data symbols. For the redundant subcarriers within ĉg = P′
1ỹ

′, slicing is assumed
to be practically unfeasible due to the vast amount of elements of the underlying
symbol alphabet (Fig. 3.9), hence the noisy symbols after the CI stage are used.
In case no slicing is applied, the values gained after the CI stage (ĉg = P′

1ỹ
′) are

used for all subcarrier symbols. The algebraic RS decoding approach is able to
slightly improve the BMSE on subcarrier no. 16. Interestingly, with perfect slicing
the BMSE cannot be reduced significantly anymore. As such, the noise on the
redundant subcarriers dominates the performance of the algebraic RS decoding
receiver. Moreover, the decoder will even increase the BMSE in case of subcarrier
no. 58.
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Figure 3.13.: Noise reduction/enhancement effect of the algebraic RS decoder for
channel B at Eb/N0 = 20dB. Above: zoomed ordinate around carrier
no. 16; below: zoomed ordinate around carrier no. 58.
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In summary, algebraic RS decoding leads to solving a very ill-conditioned system
of equations which cannot be solved adequately anymore, as soon as only little
noise (Eb/N0 = 20 dB for this simulation) is present. Higher noise due to moder-
ate Eb/N0 values can sometimes stabilize the system to a certain extent such that
the BMSE will at least not increase, however, there is still no countable gain in
terms of minimization. Unfortunately, also applying common regularization tech-
niques like e.g., the Tikhonov regularization [71] does not improve the performance.
Furthermore, channel B has been identified to be the most pleasant scenario for
algebraic decoding among many simulated channel instances, in case of channel A
for instance, the resulting BMSE after RS decoding will always skyrocket, inde-
pendently of the present noise. Hence, this receiver concept is not applicable for
practical UW-OFDM systems.

However, the next paragraphs will demonstrate that receivers based on classical
and Bayesian estimation theory such as BLUE and LMMSE, respectively, work well
in contrast to the presented concept based on algebraic decoding. Following the
definition in (2.81), the LMMSE estimator can be interpreted as the concatenation
of a channel inversion and a smoothing stage, leading to

ELMMSE = WH̃
−1. (3.61)

H̃−1 reverses the impact of the transmission channel, while the smoothing matrix
W exploits the characteristic correlations of an UW-OFDM signal. This super-
sedes conventional CP-OFDM, where no correlations are present and thus the
inversion of the channel influence already represents the optimum linear receiver.
Hence, comparing input and output of the smoothing stage allows to quantify the
additional potential that is provided by the (channel-independent) precoding (in
the sense of a linear dispersive preprocessing [52]) and channel coding properties
introduced in UW-OFDM. Furthermore, this partitioning into two stages allows
an easy comparison with the algebraic decoding approach. Applying ELMMSE on
ỹ = H̃Gd+ v results in

d̂ = ELMMSEỹ. (3.62)

In order to visualize the effect of the smoothing operation on all non-zero subcar-
riers, i.e., on d as well as on r, let

ĉ = Gd̂. (3.63)

Fig. 3.14 displays the BMSE before and after the smoothing stage when transmit-
ting at Eb/N0 = 20dB over channel A (Fig. 3.12). As expected from LMMSE
theory [42], smoothing improves the BMSE on every subcarrier. Furthermore, it
seems that the level of improvement, in relative as well as in absolute terms, rises
with increasing BMSE at the output of the channel inversion stage. Relative in
this case refers to the relative improvement w.r.t. the BMSE before smoothing.
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Figure 3.14.: Noise reduction effect of the Wiener smoother for exemplary multi-
path channel A at Eb/N0 = 20dB.
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Figure 3.15.: Noise reduction effect of the Wiener smoother for exemplary multi-
path channel B at Eb/N0 = 20 dB. Upper plot: full scale; lower plot:
zoomed ordinate.
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In order to investigate this assumption more in detail, Fig. 3.15 displays the BMSE
in case of transmission channel B. Here, the lower plot represents a zoomed version
of the upper plot. Again the performance is enhanced on every subcarrier after
smoothing, but the main message can be derived from subcarrier no. 16. Consider-
ing channel B, this subcarrier has obviously experienced substantial attenuation by
a deep fading hole, consequently leading to a significant noise enhancement when
applying channel inversion. Nevertheless, the inherent correlations of an UW-
OFDM signal can be exploited in a very powerful way by applying W, such that
the effects of spectral notches are compensated to a large extent. Note that the be-
fore smoothing in Fig. 3.15 exactly corresponds to the before algebraic RS decoding
in Fig. 3.13, a comparison thus emphasizes the potential of LMMSE estimation.
The high Eb/N0 value has been chosen for comparison reasons with algebraic de-
coding. Nevertheless, the LMMSE estimator performs significantly better in every
Eb/N0 region.

In conclusion, the presented algebraic decoding approach is not a serious option for
UW-OFDM receivers. However, the results for an LMMSE receiver in Fig. 3.14 and
3.15 already indicate the performance potential of UW-OFDM over CP-OFDM3.
This conclusion follows from the already stated fact that in CP-OFDM a channel
inverter is the best linear estimator possible. It turns out that the performance
enhancement in UW-OFDM generally increases with the frequency selectivity of
the transmission channel. In this context, an increase denotes an increase of the
number and depth of fading holes. In order to support this statement, Fig. 3.16
illustrates BER curves of setup A for uncoded transmission and QPSK as modu-
lation alphabet, whereas one time ECI and the other time ELMMSE is applied as
estimator. The simulations are conducted for AWGN, channel A and channel B,
and confirm an increasing gap from 1.5 dB over 2.7 dB to 11.6 dB, all measured at
a BER of 10−6.

3.5.2. Power Spectral Density

Fig. 3.17 illustrates the estimated power spectral densities (PSDs) of a simulated
UW-OFDM and a CP-OFDM burst in case of setup A. For that, a simulated
burst is composed of a preamble (in all cases the IEEE 802.11a preamble [36]),
and a data part comprising 8000 information bits, which are processed by an outer
channel code with coding rate r = 1/2. In this case no additional filters for spec-
tral shaping have been applied. For a better comparison, the PSDs have been
normalized such that the passband of each spectral mask is centered at 0 dB. The
UW-OFDM spectrum features a significantly better sidelobe suppression compared
to the CP-OFDM4 spectrum. The out-of-band emissions of UW-OFDM are more

3Note that in-depth BER comparisons with CP-OFDM follow in Sec. 3.5.3.
4The displayed CP-OFDM spectrum shows four additional spectral holes besides the one at

DC, which result from setting the pilot symbols to zero.
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Figure 3.16.: BER comparison for UW-OFDM between LMMSE and CI estimator
in case of uncoded transmission in AWGN, multipath channel A and
B.

than 15 dB below the emissions of the CP-OFDM system. One reason for this prop-
erty is of course the decreasing mean power level of subcarriers close to zero bands,
cf. Fig. 3.4, however, the main cause originates from the correlations introduced
by the redundant subcarriers. This can easily be verified by a simple experiment,
namely replacing the redundant subcarrier symbols by data symbols, generating
therefore conventional OFDM symbols and weighting the subcarriers according to
the mean power profile in Fig. 3.4. Consequently, the effect of decreasing mean
power values is covered while the correlations are excluded. The resulting spectrum
of these OFDM symbols labeled as ’Weighted OFDM’ in Fig. 3.17 misses the supe-
rior suppression of out-of-band-emissions, revealing the correlations as responsible
source. In [72] the authors additionally investigate the impact of the specific redun-
dant subcarrier distribution on the spectral properties.

The PSDs also show that the UW-OFDM system requires about 0.4MHz less band-
width when measured at -10 dB. In combination with the shorter symbol duration
TOFDM, the UW-OFDM system features almost the same bandwidth efficiency
η as the CP-OFDM system, despite less data subcarriers per symbol are occu-
pied. Tab. 3.5 displays the bandwidth efficiency η = (Nd/TOFDM)/B measured in
megasymbols per seconds per Hertz for setup A. Additionally, ηcp determines the
bandwidth efficiency of the UW-OFDM system related to the CP-OFDM reference
system.
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Figure 3.17.: Comparison of normalized Welch power spectral density between CP-
OFDM and UW-OFDM for setup A.

CP-OFDM UW-OFDM

Nd 48 36
Nr (Np) 4 16

B [MHz] 16.70 16.30
η [Msymb/s/Hz] 0.719 0.690

ηcp 1.000 0.960
Eb 0.00977 0.01575

AWGN loss [dB] 0.0000 2.0754

Table 3.5.: Setup comparison between CP-OFDM and UW-OFDM for setup A.
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3.5.3. Bit Error Ratio Simulations

Obviously, OFDM has been designed for data transmission in a frequency selective
environment. Nevertheless, simulation results in the AWGN channel serve as a
starting point, since these results provide first interesting insights. Fig. 3.18 shows
that CP-OFDM outperforms UW-OFDM with simple channel inversion (which
in this case corresponds to the trivial estimator E = I) by 2.1 dB for uncoded
transmission, i.e., without additional channel code. This performance gap exactly
originates from the energy excess required in UW-OFDM to load the redundant
subcarriers. However, the introduced redundancy will only pay off, if the thereby
enabled coding gain in the receiver exceeds the excess energy of 2.1 dB. This AWGN

loss can also be derived analytically by calculating 10log10

(
Eb,uw

Eb,cp

)

, whereas Eb,cp

determines the mean energy per data bit for the CP-OFDM system and Eb,uw that
of the UW-OFDM system. Tab. 3.5 shows the corresponding energy values when
evaluated for setup A. With LMMSE estimation, the performance of UW-OFDM
improves substantially, however, it still lacks 0.6 dB to keep up with CP-OFDM.
Hence, in case of AWGN and linear estimators, systematically encoded UW-OFDM
is not the preferable choice from a BER point of view.
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Figure 3.18.: BER comparison of UW-OFDM with CI or LMMSE estimator and
CP-OFDM for uncoded transmission in AWGN.

For frequency selective environments, the channel model according to [46] applies
which has also been used during the IEEE 802.11a standardization process. The
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channel impulse responses are modeled as tapped delay lines, each tap as a circu-
larly symmetric complex Gaussian variable with zero mean and variances decaying
exponentially along the taps, and the number of taps depending on the channel
delay spread τRMS. A detailed description of the underlying channel model can be
found in 2.4.2. The simulations have been averaged over a fixed set of 104 different
channel instances (see simulation settings in Sec. 2.4.3) featuring a delay spread of
τRMS = 100 ns and a total length not exceeding the guard interval. The channel is
assumed to be quasi-static, meaning that it is constant for the transmission of one
burst and then changes to an independent new instance.

Fig. 3.19 plots the BER performance in case of a frequency selective environment
and uncoded transmission. In this scenario, UW-OFDM reveals its strengths over
conventional CP-OFDM, the inherent pre- [52] and channel coding translates to
a diversity gain, i.e., an increase of the slope of the BER curve, and thus to a
performance gain of 20.5 dB. In the coded case as illustrated in Fig. 3.20, the gain
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Figure 3.19.: BER comparison of UW-OFDM and CP-OFDM for uncoded trans-
mission in a multipath environment with τRMS = 100 ns.

reduces but still reaches 1.1 dB for a coding rate of r = 3/4 and 0.5 dB for r = 1/2.
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Figure 3.20.: BER comparison of UW-OFDM and CP-OFDM for coded trans-
mission (r = 1/2 and r = 3/4) in a multipath environment with
τRMS = 100 ns.

3.6. Introduction of Additional Redundant Subcarriers

The optimization of P in Sec. 3.3 has already reduced the redundant energy to an
acceptable level. The BER simulation results in the previous section – especially for
the frequency selective scenarios – confirm the potential of UW-OFDM utilizing an
optimized P. It cannot be stressed enough that these results would not be possible
without minimizing the redundant energy. Thus, this minimization determines the
key to a practical UW-OFDM system in the first place. The question arises, if
there is still some potential left for minimization.

Up till now, only the case Nr = Nu has been considered. For this particular situ-
ation, the problem of calculating and loading the redundant subcarriers translates
to solving a linear system of equations with Nu equations for Nu unknowns and is
thus uniquely solvable. In case of Nr > Nu, the problem to be solved translates to
an underdetermined linear system of equations and thus provides infinitely many
solutions [61]. In order to elaborate on this in detail, let us recap the general for-
mulation of the optimization problem to find an appropriate generator matrix for
systematically encoded UW-OFDM

Ǧ = argmin
G

{JE} s.t. F−1
N BG =

[
Ξ

0

]

∧G = P

[
I

T

]

. (3.64)
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3.6. Introduction of Additional Redundant Subcarriers

In detail, the generator matrixG should generate a zero UW in the time domain, be
composed of an identity matrix I, a permutation matrix P and a matrix T that in-
troduces a redundancy r, and should further minimize the mean redundant energy
represented by the cost function JE defined in (3.2). Taking all this into account
and reformulating the zero word constraint for the sake of easier understanding
afterwards, the optimization problem translates to

P̌, Ť = argmin
P,T

{

tr
(

TT
H
)}

s.t. F−1
N BP

[
d

r

]

=

[
Ξ

0

]

∧G = P

[
I

T

]

, (3.65)

thus identifying P and T as optimization parameters available for minimizing the
cost function. With the introduction of M = F−1

N BP =
[
M11 M12
M21 M22

]
as known from

(2.45), the problem becomes

P̌, Ť = argmin
P,T

{

tr
(

TT
H
)}

s.t. M21d+M22r = 0 ∧G = P

[
I

T

]

. (3.66)

At this point, a distinction between both cases is useful. In case of Nr = Nu, ma-
trix M22 of dimension Nu × Nr becomes quadratic and the constraint is fulfilled
by choosing r = Td with the unambiguously5 determined matrix T = −M−1

22 M21.
Consequently, the permutation matrix P is the only degree of freedom to minimize
the cost function. This is the status already known so far.

In case of Nr > Nu, however, the construction of T is ambiguous, leaving in-
finitely many solutions that fulfill the zero word constraint, thus raising the ques-
tion how to optimally choose T. Let us remember in this context that a proper
G aims at minimizing the mean energy of the redundant subcarrier symbols r.
Second, let us also remember that for underdetermined linear systems of the form
Cx = b, the Moore-Penrose Pseudo-Inverse delivers the minimum Euclidean norm
‖x‖2 =

√
xHx among all solutions. In the context of UW-OFDM with C = M22,

x = r = Td and b = −M21d, the Moore-Penrose Pseudo-Inverse delivers the
minimum redundant energy for a given but arbitrary data vector instance d. As a
consequence, if it provides the resulting minimum redundant energy for each single
data vector, it automatically provides the minimum energy when averaged over all
data vectors, thus also minimizing the mean redundant energy. Hence, assuming a
given permutation matrix P, (3.66) is met with optimality by the Moore-Penrose

Pseudo-Inverse defined as M†
22 = MH

22

(
M22M

H
22

)−1
with M

†
22 ∈ C

Nr×Nu , leading
to

r = −M†
22M21d. (3.67)

With T = −M†
22M21 (T ∈ C

Nr×Nd), the same linear mapping as in (3.7) follows
with

r = Td. (3.68)

5Note that unambiguousness in this context assumes a given permutation matrix P.
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Nr Index set

16 2,6,10,14,17,21,24,26,38,40,43,47,50,55,58,62
20 1,4,7,10,13,15,18,21,24,26,38,40,43,46,48,51,54,57,59,62
24 2,4,6,9,11,13,16,18,20,22,24,26,38,40,42,44,46,48,

51,54,56,58,60,63

Table 3.6.: Optimal index set of redundant subcarriers for Nr > Nu and constant
Nu according to Tab. 3.7.

CP-OFDM UW-OFDM

Nd 48 36 32 28
Nr (Np) 4 16 20 24
Nu (Ng) 16 16 16 16

B [MHz] 16.70 16.30 16.33 16.35
η [Msymb/s/Hz] 0.719 0.690 0.613 0.535

ηrel 1.000 0.960 0.853 0.744
NEr 36.57 24.91 18.41
Eb 0.00977 0.01575 0.01390 0.01295

AWGN loss [dB] 0.0000 2.0754 1.5318 1.2254

Table 3.7.: Setup comparison of CP-OFDM and UW-OFDM with increasing Nr
and constant Nu.

From that point on, all steps are identical to the case Nr = Nu, and the very same
optimization routines and receiver concepts can be applied.

Starting from setup A with Nr = 16, Tab. 3.6 illustrates the subcarrier sets when
gradually increasing Nr while keeping the length of the guard interval Nu = 16
constant. Each set has been derived by applying the optimization routine in Sec. 3.3
and minimizing the cost function JE in (3.2).

Tab. 3.7 compares the resulting UW-OFDM setups against CP-OFDM setup A.
Increasing Nr leads of course to a lower bandwidth efficiency on one hand, but
decreases the mean energy Er of the redundant subcarrier symbols and hence the
mean energy per transmit bit Eb, and the AWGN loss on the other hand. With
channel inversion only, the UW-OFDM system loses around 2.08 dB against CP-
OFDM in case of Nr = 16, 1.53 dB for Nr = 20 and 1.23 dB for Nr = 24. However,
a Wiener smoother as in (3.61) exploits the correlations between the subcarriers
of an UW-OFDM symbol and improves the performance in the AWGN channel
by around 1.5 dB for all investigated modes, cf. Fig. 3.21, leading to a residual
performance loss compared to CP-OFDM of only 0.6 dB for Nr = 16 and 0.05 dB
for Nr = 20. In case of Nr = 24, the UW-OFDM system even outperforms the
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3.6. Introduction of Additional Redundant Subcarriers

CP-OFDM system by 0.2 dB, but at the price of a significantly reduced bandwidth
efficiency.
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Figure 3.21.: BER comparison of UW-OFDM systems with increasing Nr and con-
stant Nu for uncoded transmission in AWGN.

Fig. 3.22 presents the BER results in a frequency selective environment for the
uncoded case. Increasing the number of redundant subcarriersNr from 16 to 20 and
24 enhances the performance by 3.5 and 4.5 dB, respectively. However, this is only
a moderate additional improvement considering the gain of 20.5 dB an UW-OFDM
system with Nr = 16 already provides over CP-OFDM. Interestingly, a big portion
of the gain originating from increasing Nr can even be transferred into the coded
scenario, namely 1.3 dB and 1.8 dB for r = 3/4, and 0.7 and 1.2 dB for r = 1/2,
cf. Fig. 3.23. This is especially astonishing, since the original gain of UW-OFDM
with Nr = 16 over CP-OFDM reduces substantially when going from the uncoded
to the coded case, as can be seen in Fig. 3.19 and 3.20.

In conclusion, increasing the number of redundant subcarriers Nr while keeping
the length Nu of the UW constant can be interpreted as a means to vary the inner
coding rate of an UW-OFDM system, while the outer coding rate is determined by
the channel code. However, as UW-OFDM already has a slightly lower bandwidth
efficiency than the competing CP-OFDM concept, lowering the redundant energy
Er by trading data against redundant subcarriers may not be the preferable way
to improve the BER behavior.
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Figure 3.22.: BER comparison of UW-OFDM systems with increasing Nr and con-
stant Nu for uncoded transmission in a multipath environment with
τRMS = 100 ns.
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Figure 3.23.: BER comparison of UW-OFDM systems with increasing Nr and con-
stant Nu for coded transmission (r = 1/2 and r = 3/4) in a multipath
environment with τRMS = 100 ns.
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3.7. Systematic Noise in UW-OFDM

The previous section showed that the redundant energy can only be reduced, if
additional degrees of freedom are spent to ease the fulfillment of the zero word
constraint. Clearly, sacrificing bandwidth efficiency seems too costly and should
thus be avoided. The idea is now to establish an underdetermined system of
equations to derive the redundant symbols similar to (3.66), but without reducing
the number of data subcarriers. In [73] this is achieved by allowing some systematic
noise in the guard interval instead of generating a pure zero word. The following
part establishes a general framework, where the approach from [73] can be derived
as a special case. As a starting point serves the equation

x = F
−1
N BP

[
d+∆d

r

]

=

[
xd

0+∆xu

]

. (3.69)

This equation corresponds to the conventional approach described in (2.58) (with
A = P in G), except for the vectors ∆d ∈ C

Nd×1 and ∆xu ∈ C
Nu×1. The

introduction of these additive deviations will, while neglecting the details at the
moment, help to relax the zero word constraint and consequently reduce the re-
dundant energy. In order to achieve an even more general framework, (3.69) is
expanded towards

x = F
−1
N

[
BP Bz

]





d+∆d

r

0+∆z



 =

[
xd

0+∆xu

]

. (3.70)

Here, ∆z ∈ C
Nz×1 represents an additive deviation on the zero subcarriers and

Bz ∈ C
N×Nz a matrix that places the deviation on the appropriate zero subcarrier

positions. Hence, the basic idea is to allow some noise at the data and zero
subcarriers as well as in the guard interval to achieve the goal of reducing the
redundant energy. As a next step let

F
−1
N

[
BP Bz

]
=
[
F−1
N BP F−1

N Bz

]
=
[
M M′] , (3.71)

whereas

M =

[
M11 M12

M21 M22

]

(3.72)

M
′ =

[
M13

M23

]

. (3.73)

Note that M and its submatrices correspond exactly to the definitions in (2.44).
The matrices M′ ∈ C

N×Nz , M13 ∈ C
(N−Nu)×Nz and M23 ∈ C

Nu×Nz only origi-
nate from the fact that the ’zero subcarriers’ are in fact not exactly zero anymore.
In case systematic noise at the zero subcarriers is not allowed, M′ vanishes and
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[
M M′] collapses to the usual case as in (2.44). Inserting (3.71)-(3.73) into (3.70)
yields

[
M11 M12 M13

M21 M22 M23

]




d+∆d

r

0+∆z



 =

[
xd
∆xu

]

, (3.74)

and extracting the lower row delivers

M21 (d+∆d) +M22r+M23∆z = ∆xu . (3.75)

This leads to an underdetermined system of equations for ∆d , r, ∆z and ∆xu that
can be written as

[
M22 −I M21 M23

]

︸ ︷︷ ︸
A







r

∆xu

∆d

∆z







︸ ︷︷ ︸
z

= −M21d
︸ ︷︷ ︸

b

, (3.76)

with A ∈ C
Nu×(Nr+Nu+Nd+Nz), z ∈ C

(Nr+Nu+Nd+Nz)×1 and b ∈ C
Nu×1. Defining

a weighting matrixWn for the systematic noise distribution

Wn = diag













wr

wxu

wd

wz













(3.77)

with the weighting vectors wr ∈ R
Nr×1
+ , wxu ∈ R

Nu×1
+ , wd ∈ R

Nd×1
+ and wz ∈

R
Nz×1
+ consisting of non-negative elements, the problem translates to finding z that

solves
Az = b, (3.78)

and that minimizes the cost function

g(z) = z
H
Wnz, (3.79)

leading to the final optimization problem

min{zHWnz} s.t. Az = b. (3.80)

The solution of this optimization problem follows to

z = W
−1
n A

H(AW
−1
n A

H)−1
b (3.81)

= W
−1
n A

H(AW
−1
n A

H)−1 (−M21)d (3.82)

= T
′
d, (3.83)

cf. [42], with T′ ∈ C
(Nr+Nu+Nd+Nz)×Nd . Note that due to the additional degrees

of freedom, this approach even allows Nr < Nu [73].

80



3.7. Systematic Noise in UW-OFDM

For the following considerations, the weighting matrix is treated as given for the
moment, a more detailed analysis of the impact will be provided later in this
section. From z defined in (3.76), the additive noise vectors can easily be extracted
by appropriate selection matrices:

r =
[
I 0 0 0

]
z =

[
I 0 0 0

]
T

′
d = Trd (3.84)

∆xu =
[
0 I 0 0

]
z =

[
0 I 0 0

]
T

′
d = Txud (3.85)

∆d =
[
0 0 I 0

]
z =

[
0 0 I 0

]
T

′
d = Tdd (3.86)

∆z =
[
0 0 0 I

]
z =

[
0 0 0 I

]
T

′
d = Tzd. (3.87)

These noise vectors depend on the actual data set and will thus vary from OFDM
symbol to OFDM symbol. With (3.84)-(3.87) and (3.70) the frequency domain
transmit symbol follows to

x̃ =
[
BP Bz

]





I+Td

Tr

Tz



d =

(

BP

[
I+Td

Tr

]

+BzTz

)

d (3.88)

= BGd+Gzd. (3.89)

Except for the additive term Gzd, the UW-OFDM frequency domain symbol x̃ in
(3.89) formally coincides with the one used in Sec. 2.2. There are now two cases
to consider: In case of ∆z = 0 corresponding to an exclusion of the zero subcarri-
ers from the optimization problem in (3.80), the additive term Gzd vanishes and
the same system model and thus receiver concepts as in Sec. 2.3 apply. In case of
∆z 6= 0, subtractingGzd will lead again to the same system model, however, the re-
dundancy on the zero subcarriers cannot be used. In order to fully exploit the inher-
ent redundancy, let us introduce the generator matrix

G
′ = BG+Gz G

′ ∈ C
N×Nd . (3.90)

Replacing BG with G′ in (2.60) and additionally not excluding entries correspond-
ing to zero subcarriers in (2.62), the original formalism holds and the very same
receiver concepts can be employed again.

So far, the weighting matrix has been considered as given and not been detailed yet.
In fact, Wn provides a means to control the distribution of the systematic noise,
i.e., the higher the weighting coefficient the lower the average power of the noise
placed on a specific subcarrier/sample. The determining factor for the resulting
distribution is the relative value of a weighting coefficient compared to the others
rather than its absolute value. The presented approach provides a very general
framework with a variety of degrees of freedom, but does not consider its applica-
bility to practical scenarios. For instance, it might not be beneficial to put additive
noise on zero subcarriers and thus destroy the spectral properties, especially when
considering the superior out-of-band-emissions of UW-OFDM (Fig. 3.17). Any
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subcarrier or guard interval sample can easily be excluded from the optimization
by setting the appropriate weighting coefficient wk to

wk = [Wn]k,k =∞. (3.91)

While analytically well defined, for a numerical optimization wk might be initialized
with the maximum representable value of a given data type. Alternatively, an
exclusion can also be implemented by introducing an appropriate selection matrix
S ∈ {0, 1}(Nr+Nu+Nd+Nz−Ne)×(Nr+Nu+Nd+Nz) to avoid solving an ill-conditioned
system of equations numerically. Ne determines the number of excluded elements
and S is derived from an identity matrix by deleting the rows corresponding to the
indices of the elements in z and w to be excluded. In order to utilize this approach,
one has to replace z by z′ = Sz and substitute Wn by W′

n = SWnS
T and A by

A′ = AST in (3.76)-(3.83).

3.7.1. Systematic Noise in the Guard Interval

In [73] only the guard interval deviation ∆xu has been used to further reduce the
redundant energy. The motivation originates from the fact that additive noise is
always present in any system. Perfect cyclic data structure (to transform the linear
into a cyclic convolution) is not achievable anyway in a noisy environment and a
well-designed second noise component does not significantly further degrade this
property. The weighing coefficients are chosen as wr = 1 where 1 denotes a column
vector with all entries being 1. The weighting vector for the guard interval wxu

consists of elements

wxu,k = Aek/τ k = 0, 1, . . . , Nu − 1, (3.92)

with varying values for A and τ = 2 determined after several experimental runs.
The concept of weighting the samples differently instead of equally originates from
the idea that the cyclic convolution property might be less destroyed in the first
case. In case of (3.92), the resulting average systematic noise power should ex-
ponentially decrease along the UW samples, i.e., in an inverse manner compared
to the weighting coefficients. These coefficients are a result of the exponentially
decaying taps of the channel model utilized in this work [46]. Note that different
noise variances along the UW samples may applicable only in certain cases like
UW-OFDM systems with zero UWs. For systems with non-zero UWs used for
synchronization and estimation tasks, additional noise shall (if tolerable at all)
probably be equally distributed.

Tab. 3.8 summarizes the setups investigated in the following, which all originate
from setup A in Tab. 2.2. For a clear distinction, these subsetups are now labeled
numerically instead of alphabetically. The first three follow the weighting approach
in (3.92) with different values for A, the fourth one weights all samples equally and
achieves the same redundant energy Er as setup 3. Due to the different weighting
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Table 3.8.: Setups for UW-OFDM systems with systematic noise in the guard in-
terval, derived from setup A in Tab. 2.2.

Setup 1 Setup 2 Setup 3 Setup 4

wxu,k 1ek/2 2ek/2 8ek/2 453.75
ErN 6.19 8.71 14.22 14.22
E∆xu

N 5.38 4.63 3.13 1.11

concepts, the same amount of redundant energy is distributed slightly different as
demonstrated in Fig. 3.24.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

subcarrier

m
ea
n
p
ow

er

zero subcarriers

data subcarriers

rdt sc., w/ sys. noise GI, setup 3

rdt sc., w/ sys. noise GI, setup 4

Figure 3.24.: Mean power of individual subcarrier symbols for setup 3 and setup
4 (Tab. 3.8) of an UW-OFDM system with systematic noise in the
guard interval.

Fig. 3.25 illustrates the performance in an AWGN scenario. Note that the curve
labeled as ’UW-OFDM (w/o sys. noise)’ corresponds to the conventional system-
atically encoded UW-OFDM system with LMMSE estimation shown in Fig. 3.18.
The same applies analogously for the subsequent plots visualizing different chan-
nel scenarios. As expected, the performance improves with decreasing redundant
energy at the price of increasing noise power in the guard interval, cf. Tab. 3.8.
Since the cyclic structure property is not required for equalization of a frequency
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Figure 3.25.: BER comparison of UW-OFDM systems with systematic noise in the
guard interval for various setups (Tab. 3.8) and uncoded transmission
in AWGN.

flat channel, the power level of the systematic noise does not degrade the BER
performance. Although setup 3 and 4 feature the same value for Er , the BER val-
ues slightly differ. This can easily be explained by evaluating the error variances
on the subcarriers after LMMSE detection according to (2.84). The sum as well as
the maximum single error variance on a subcarrier will always be higher for setup
3 irrespective of the additive noise variance σ2

n.

Uncoded multipath transmission as illustrated in Fig. 3.26 reveals the price of sys-
tematic noise in the guard interval. At a certain Eb/N0 value, the systematic noise
dominates the additive noise component and an error floor emerges. Consequently,
the lower the redundant energy and thus the higher the systematic noise energy,
the earlier the error floor arises. However, comparing setup 3 and setup 4 reveals
that an intelligent distribution of the systematic noise along the guard interval
indeed destroys the cyclic property to a lesser extent. Fig. 3.27 illustrates the av-
erage systematic noise power on the guard interval samples for both setups. Since
the average total energy E∆xu

is clearly lower for setup 4, cf. Tab. 3.8, the average
power of the systematic noise samples at the end of the guard interval have to
cause the earlier error floor of setup 4.
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Figure 3.26.: BER comparison of UW-OFDM systems with systematic noise in the
guard interval for various setups (Tab. 3.8) and uncoded transmission
in a multipath environment with τRMS = 100 ns.
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Figure 3.27.: Comparison of mean power of systematic noise samples in the guard
interval for setup 3 and setup 4 (Tab. 3.8).
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Despite the error floor, this concept still offers benefits for coded transmission as
observable from Fig. 3.28. A gain up to 0.8 dB at a BER of 10−6 for r = 1/2 and
0.6 dB for r = 3/4 is achieved by the tested setups in comparison to conventional
systematically encoded UW-OFDM. Due to the limited Eb/N0 region in consider-
ation, a weighting approach leading to an early error floor (in the uncoded case)
can still provide the biggest gain within this scenario.
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Figure 3.28.: BER comparison of UW-OFDM systems with systematic noise in the
guard interval for various setups (Tab. 3.8) and coded transmission
(r = 1/2 and r = 3/4) in a multipath environment with τRMS =
100 ns.

3.7.2. Systematic Noise on the Data Subcarriers

Next, systematic noise on the data subcarriers is studied instead. From (3.69) and
(3.88) it follows that

x = F
−1
N BP

[
d+∆d

r

]

= F
−1
N BP

[
d+Tdd

r

]

(3.93)

= F
−1
N BP

[
I+Td

Tr

]

d = F
−1
N BG

(nd)
d, (3.94)
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with the generator matrix

G
(nd) = P

[
I+Td

Tr

]

(3.95)

distributing redundancy on the data as well as on the redundant subcarriers. Con-

sequently, a codeword of the original form c = P
[
dT rT

]T
in (3.9) is also ex-

tended to

c = P

[
d+∆d

r

]

. (3.96)

Fig. 3.29 displays the resulting generator matrix for wr = 1 and wd = 3 · 1,
the latter was found by experiments. G(nd) stills shows a similar diagonal-like
structure as G in Fig. 3.3, however, now each codeword symbol depends on several
data symbols. Fig. 3.30 visualizes the BER performance of a system with G(nd) in
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Figure 3.29.: |G(nd)|, magnitude of entries of generator matrixG(nd) that generates
systematic noise on the data subcarriers.

an AWGN scenario. Besides the conventional systematically encoded UW-OFDM,
the best setup from Tab. 3.8 serves as an additional benchmark in the following.
This is either setup 1 or setup 3, depending on the channel and the coding rate. For
uncoded AWGN transmission the new approach outperforms the best UW-OFDM
system with systematic noise by another 0.3 dB, leading to a total performance gain
of 1.3 dB over the conventional system. For uncoded transmission in a multipath
environment, the gain even becomes 1.4 dB. Furthermore, Fig. 3.31 clearly indicates
that systematic noise on the data subcarriers instead of in the guard interval does
not end up in an error floor. For coded transmission, the performance gain increases
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Figure 3.30.: BER comparison of an UW-OFDM system with systematic noise ei-
ther in the guard interval or on the data subcarriers for uncoded
transmission in AWGN.

by 0.4 to 1.2 dB for r = 1/2 and by 0.8 to a total of 1.4 dB for r = 3/4 over
systematically encoded UW-OFDM without systematic noise. Studying the power
distribution over the subcarriers in Fig. 3.32 shows that except for the subcarriers
close to the band edges, the average power on the data and redundant subcarriers
is now almost identical.

In conclusion, the latter concept can in a certain way be interpreted as giving
up the clear separation between data and redundant subcarrier symbols. The
original idea of putting noise and therefore disturbance on the data subcarriers
might not be an appropriate interpretation anymore. In fact, these promising
results motivate a transition from a systematically encoded to a non-systematically
encoded UW-OFDM concept. This will be the focus of the following chapter.
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Figure 3.31.: BER comparison of an UW-OFDM system with systematic noise ei-
ther in the guard interval or on the data subcarriers for uncoded
(r = 1) and coded transmission (r = 1/2 and r = 3/4) in a multipath
environment with τRMS = 100 ns.
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Figure 3.32.: Mean power of individual subcarrier symbols of an UW-OFDM sys-
tem with systematic noise on the data subcarriers.
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OFDM

The concept of systematically encoded UW-OFDM presented in the previous chap-
ter has already proven its potential over conventional CP-OFDM. The results
demonstrated a predominance in terms of spectral properties and BER perfor-
mance. It turned out that minimizing the redundant subcarrier energy is the key
to achieve a practically applicable system. Despite this optimization, the energy of
the redundant subcarrier symbols is still considerably higher than that of the data
symbols (Fig. 3.4), demanding further improvement. Consequently, possibilities
for an additional minimization have been investigated:

• In Sec. 3.6 the redundant energy is reduced by increasing the number of
redundant subcarriers. Unfortunately, this performance enhancement comes
at the price of a decreased bandwidth efficiency.

• In Sec. 3.7 the introduction of systematic noise in the guard interval decreases
the redundant energy which manifests in a BER performance improvement.
The drawback of this method is an inevitable error floor, arising as soon as
the systematic noise dominates the AWGN component.

• Additionally, Sec. 3.7 presents the concept of systematic noise on the data
subcarriers. This method delivers a performance gain without the disadvan-
tages of the first two approaches.

Note that the latter does not correspond to a classical systematically encoded UW-
OFDM approach anymore. A redundant subcarrier still serves the same purpose,
but a data subcarrier is now loaded with a data symbol and systematic noise aris-
ing from a weighted superposition of all other data symbols. Hence, data and
some sort of redundancy are present on the former data subcarrier. The data
symbols are not explicitly visible anymore, as it is supposed to for a systematic
encoding approach. However, the impressive performance of this approach mo-
tivates to completely abandon the idea of dedicated redundant/data subcarriers
and instead to introduce the idea of non-systematically encoded UW-OFDM in
the following.

The interpretation of generating code words according to

c = Gd (4.1)
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still holds, but in contrast to systematically encoded UW-OFDM,A in

G = A

[
I

T

]

(4.2)

is not restricted to a permutation matrix anymore, cf. (3.3). Instead, the very gen-
eral definition in (2.42) applies, where A can be any nonsingular real-valued1 ma-
trix. Furthermore, a non-systematic approach does not know dedicated redundant
subcarriers anymore, hence minimizing the redundant energy cannot serve as a cost
function. Alternatively, the same cost functions JBLUE and JLMMSE as in Sec. 3.4
are utilized which measure the sum of the error variances after BLUE and LMMSE
detection for a fixed SNR ratio, respectively. Since both cost functions will slightly
differ from the systematic approach case due to the different properties of A, they
are stated again in the following. Analogously to (3.43), the sum of the error
variances J ′(A) for the BLUE in an AWGN scenario is

J ′(A) = tr (Cee) = Nσ2
ntr
(

(GH
G)−1

)

. (4.3)

Fixing the ratio γ = Es/σ
2
n, where

Es =
Ex

Nd
(4.4)

denotes the mean data symbol energy and

Ex =
1

N
E
{

tr
(

G
H
Gdd

H
)}

=
1

N
tr
(

E
{

G
H
Gdd

H
})

=
σ2
d

N
tr
(

G
H
G
)

(4.5)

the mean OFDM symbol energy, the variance of the noise is given by

σ2
n =

Es
γ

=
σ2
dtr
(
GHG

)

γNNd
. (4.6)

With (4.6) the cost function follows to

JBLUE(A) =
σ2
d

γNd
tr
(

G
H
G
)

tr

((

G
H
G
)−1

)

. (4.7)

In case of an LMMSE estimator, tr (Cee) becomes

J ′(A) = Nσ2
ntr

((

G
H
G+

Nσ2
n

σ2
d

I

)−1
)

. (4.8)

1In order to increase the number of available degrees of freedom, A could also be chosen to be
a complex-valued instead of a real-valued matrix. However, investigations showed that the
global minimum presented later in Sec. 4.1 is already achieved with a real-valued matrix,
hence a definition over the real numbers is sufficient.
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Inserting (4.6) into (4.8) delivers

JLMMSE(A) =
σ2
d

γNd
tr
(

G
H
G
)

tr

((

G
H
G+

tr
(
GHG

)

γNd
I

)−1)

(4.9)

= σ2
dtr

((
γNd

tr (GHG)
G
H
G+ I

)−1
)

. (4.10)

Finally, the constrained optimization problem to findG reads

Ǎ = argmin
A

{JBLUE ∨ JLMMSE} s.t. F−1
N BG =

[
Ξ

0

]

∧G = A

[
I

T

]

. (4.11)

The solutions to the optimization problem will lead to code generator matrices
G matched to the BLUE or LMMSE detection procedure. For sufficiently large
γ, JLMMSE approaches JBLUE and the particular choice of γ is irrelevant for the
optimization procedure.

The resulting code generator matrices are explicitly optimized for the AWGN case
with H = I. Otherwise, a generator matrix may be perfectly suitable only for
one specific frequency selective transmission channel, but may fail in other situ-
ations. Of course, selecting the generator matrix depending on the transmission
conditions could enhance the performance further, but would also require chan-
nel state information (CSI) at the transmitter for a proper selection. This work
considers only CSI free transmitter design by intention, results towards a gener-
ator matrix design taking into account the transmission channel can be found in
[74, 75].

4.1. Signal Properties

This section delivers an overview over the signal properties of non-systematically
encoded UW-OFDM symbols. As in Sec. 3.1 for systematically encoded UW-
OFDM, the level of detailing increases successively. The first level denotes thus
the highest degree of abstraction and focuses on the overall generation process.
Insights are based on the whole OFDM symbol. The second level presents results
based on the properties of single subcarrier symbols.

Sec. 4.2 will later present a numerical way to solve the optimization problem in
(4.11) by a steepest descent algorithm. The solution is ambiguous and depends on
the initialization of a matrix A(0) in the algorithm, leading to completely different
generator matrices. Until explicitly specified otherwise, the following results are
valid for all optimum generator matrix instances implementing non-systematically
encoded UW-OFDM according to (4.11).
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Figure 4.1.: Mean power of individual subcarrier symbols for non-systematically
encoded UW-OFDM with G′. The particular generator matrix G′

will be explained in detail later in this chapter.

Properties drawn from an OFDM symbol. Optimum generator matrices have
been found by minimizing the cost functions JBLUE or JLMMSE. Fig. 4.1 shows the
mean power of the subcarriers. Contrary to conventional systematically encoded
UW-OFDM (Fig. 3.4), all non-zero subcarriers experience almost the same mean
power value. However, the results are very similar to systematically encoded UW-
OFDM with systematic noise on the data subcarriers (Fig. 3.32). These values can
be analytically expressed as σ2

ddiag
(
GGH

)
, cf. (3.11).

The following results refer to the BLUE and are then extended to the LMMSE
case. It turns out that all found local minima for the BLUE based numerical op-
timization (based on the algorithm presented in Sec. 4.2) feature the very same
value JBLUE,min for the cost function, independent of the initialization of a matrix
A(0). Furthermore, all corresponding code generator matrices feature the prop-
erty

G
H
G = αI (4.12)

with some real constant α > 0 (which varies dependent on the results of the opti-
mization process). This property2 has a number of important implications.

2The property GHG = αI might mislead to the impression of G being a unitary matrix.
Note, however, that the generator matrix G is a rectangular matrix, while a unitary matrix
is quadratic by definition.
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First, inserting (4.12) into the cost function (4.7) leads to

JBLUE,min =
σ2
d

γNd
(Ndα)(Ndα

−1) =
σ2
dNd
γ

, (4.13)

which coincides with the numerically found local minima. Hence, every G fulfill-
ing

G
H
G = αI and F

−1
N BG =

[
Ξ

0

]

(4.14)

with any α delivers the same value JBLUE,min of the cost function and produces a
zero UW in time domain.

Second, each code generator matrix satisfying (4.14) induces an error covariance
matrix after the data estimation in the AWGN channel given by

Cee,BLUE =
σ2
d

γ
I. (4.15)

This simply follows from (4.12), (4.6) and the definition of the error covariance
matrix in (4.3). Consequently, the noise at the output of the BLUE is uncorrelated
under AWGN conditions, which is clearly in contrast to systematically encoded
UW-OFDM, whereCee has non-zero off-diagonal entries also in the AWGN channel
case.

And third, (4.12) implies that all singular values of G are identical. To prove this,
consider a singular value decomposition (SVD)

G = UΣV
H , (4.16)

with unitary matrices U and V, and with the matrix Σ =
[
D 0

]T
, where D is

a real diagonal matrix having the singular values s1, s2, ..., sNd of G at its main
diagonal. With (4.12) this leads to

αI = G
H
G = VΣ

H
U
H
UΣV

H = VD
2
V
H

⇔ αI = D
2 = diag

(
s21, s

2
2, ..., s

2
Nd

)
. (4.17)

Therefore, GHG = αI implies α = s21 = s22 = · · · s2Nd
:= s2. The property in (4.12)

can therefore also be written as

G
H
G = s2I. (4.18)

The argumentation can also be done the other way round: If all singular values of
G are identical then GHG = αI with α = s2.

An open question is still whether JBLUE,min in (4.13) corresponding to the nu-
merically found local minima also depicts the global minimum of the constrained
optimization problem in (4.11). To answer this question the general formulation
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of the cost function JBLUE in (4.7) serves as a starting point and the constraint in

(4.11) is disregarded for a moment. Let s =
[
s1 s2 · · · sNd

]T
with si > 0 be

the vector of singular values of G. Appendix B will prove that ∂JBLUE/∂s = 0 if
and only if all singular values of G are identical. Consequently, every possible can-
didate G for a local minimum of the unconstrained problem satisfies GHG = s2I
(cf. (4.17) and its implications). Inserting GHG = s2I into the cost function (4.7)
leads to the same expression as in (4.13). Hence, every G fulfilling GHG = s2I
results in the same (and minimum) value

JBLUE,min = σ2
dNd/γ, (4.19)

which therefore constitutes the global minimum of the cost function (see also [76]
for an analytical proof).

So far, only the link to the constrained problem in (4.11) is missing. The numer-
ical solutions showed the existence of matrices, that firstly satisfy GHG = s2I
and therefore result in the global minimum of the cost function JBLUE, and that

secondly fulfill the constraint F−1
N BG =

[
Ξ

0

]

. These considerations finally yield

the following important proposition:

Optimum code generator matrices: A code generator matrix G is optimum,
i.e., leads to a global minimum of the constrained optimization problem in (4.11),
if and only if G satisfies

G
H
G = s2I and (4.20)

F
−1
N BG =

[
Ξ

0

]

, (4.21)

where s := s1 = s2 = · · · = sNd > 0 are the (all identical) singular values of G.
The global minimum of the cost function is given by (4.13), and the error covariance
matrix after data estimation in the AWGN channel is the scaled identity matrix as
given in (4.15).

According to (4.13) the particular value of α = s2 does not influence the resulting
cost function value. Hence, all found code generator matrices are normalized in
the following such that α = s2 = 1 or GHG = I. Note that the columns of any
normalized optimum code generator matrix G form an orthonormal basis of an
Nd-dimensional subspace of C(Nd+Nr)×1. As a further consequence of s2 = 1, the
operation c = Gd becomes energy-invariant, leading for one particular realization
of c to a transmit symbol energy of

E(r)
x =

1

N
c
Hγ =

1

N
d
H
G
H
Gd =

1

N
d
H
d. (4.22)
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Without loss of generality a zero UW is assumed in this case. Consequently, E
(r)
x =

1
N
tr
(
ddH

)
, and the mean symbol energy becomes Ex = 1

N
E
{
tr
(
ddH

)}
=

Ndσ
2
d

N
.

Hence, for a data symbol alphabet with elements having all the same power like
QPSK, the transmit energy appears to be constant for every OFDM symbol. This is
in clear contrast to systematically encoded UW-OFDM, cf. (3.17).

All conclusions drawn so far hold for the LMMSE estimator based transceiver op-
timization as well, only the particular expressions JLMMSE,min andCee,LMMSE differ
slightly. With (4.12) and (4.9) it immediately follows that

JLMMSE,min =
σ2
dNd
γ + 1

, (4.23)

Cee,LMMSE =
σ2
d

γ + 1
I. (4.24)

In summary, a code generator matrix which is optimum for the BLUE based ’decod-
ing’ procedure is automatically also optimum for the LMMSE based data estima-
tion (and vice versa). Appendix C proves analytically that also ∂JLMMSE/∂s = 0,
if and only if all singular values of G are identical.

Up till now all presented properties hold for any generator matrix realizing a non-
systematically encoded UW-OFDM system. In the subsequent paragraphs though,
the focus is laid on the diverse properties of generator matrices originating from
different initializations A(0) in the optimization procedure. Out of many possibil-
ities, two representative initializations are picked in the following to demonstrate
the potential of the non-systematic approach:

1. The first initialization is chosen as

A
(0) = P, (4.25)

which implies T(0) = T and

G
(0) = P

[
I TT

]T
= G. (4.26)

The iterative optimization process consequently starts with the code gen-
erator matrix G of the systematically encoded UW-OFDM concept, which
can definitely be assumed to be a good initial starting point. The resulting
optimum code generator matrix (found after convergence of the algorithm)
is denoted with G′.

2. For the second initialization each element ofA(0) is a realization of a Gaussian
random variable with zero mean and variance one, i.e.,

[

A
(0)
]

ij
∼ N (0, 1). (4.27)

The resulting code generator matrix is labeled as G′′.
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4. Non-Systematically Encoded Unique Word OFDM

For both JBLUE and JLMMSE, the steepest descent algorithm converges at least
one order of magnitude faster when initialized with (4.25) instead of (4.27). For
the random initialization approach the resulting code generator matrix generally
varies from trial to trial.

The columns of G′ (Fig. 4.2) reveal that the energy of one data symbol is mainly
(however, not exclusively) spread locally. G′ can actually be regarded as the
natural perfecting of G. In fact, it also possesses the same symmetry property as
G with

G
′ = [g′

0 · · ·g′
Nd/2−1 flip{(g′

Nd/2−1)
∗} · · ·flip{(g′

0)
∗}]. (4.28)
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Figure 4.2.: |G′|, magnitude of entries of generator matrix G′.

Properties drawn from single subcarrier symbols. Furthermore, studying the rows
corresponding to code word symbols ci (from c = G′d) that have originally been
dedicated data symbols in the systematic code (G), reveals that the weighted sum
of Nd iid data symbols yielding a particular ci is dominated by one particular data
symbol (see the black entries of the matrix plot in Fig. 4.2). A condition for the CLT
to hold is that no single term in the sum dominates [55], which is clearly violated
in these cases. This is exemplarily demonstrated in the middle plot of Fig. 4.3,
where the PDF of the real part of c0 – estimated by a distribution of the relative
frequencies – is not Gaussian anymore, but instead shows a bimodal behavior. In
contrast, the CLT condition is fulfilled for (the real and imaginary parts of) all
code word symbols ci that originally corresponded to redundant symbols in the
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systematically encoded case. Here, no single term in the weighted sum dominates.
The PDFs of these ci’s may be well approximated by a complex Gaussian PDF
CN (0, σ2

ci) with σ2
ci =

[
E
{
ccH

}]

ii
= [Ccc ]ii, whereas the real and imaginary

parts of ci can be approximated by a PDF of the form N (0, σ2
ci/2). Exemplarily,
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Figure 4.3.: Distribution of relative frequencies to estimate the PMF/PDFs of the
real part of c0 for G, G′, and G′′, respectively. A fitted Gaussian PDF
serves as reference in the lower plot.

the middle plot of Fig. 4.4 provides an estimated PDF of the real part of c1 by
displaying a distribution of relative frequencies, and compares it with a PDF drawn
from a fitted Gaussian distribution.

The situation is different for G′′ (see Fig. 4.5), since G′′ spreads the energy of
each data symbol over the whole code word c. The CLT holds for (the real and
imaginary parts of) all code word symbols ci, consequently the PDF of each ci is
approximated well by a complex Gaussian PDF CN (0, σ2

ci
) with σ2

ci
= [Ccc ]ii (see

the lower parts of Fig. 4.4 and Fig. 4.3).

4.2. Optimization Algorithm

In this section, a realization of the steepest descent algorithm is presented. This
realization allows for numerically finding generator matrices that implement a non-
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Figure 4.4.: Distribution of relative frequencies to estimate the PDFs of the real
part of c1 for G, G′, and G′′, respectively. A fitted Gaussian PDF
serves as reference.
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Figure 4.5.: |G′′|, magnitude of entries of generator matrix G′′.
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systematically encoded UW-OFDM system. More in detail, the presented algo-
rithm solves the optimization problem in (4.11). Any cost function J can be utilized
within this algorithm, in this work, however, J is chosen out of {JBLUE, JLMMSE}.
The found generator matrices are optimum w.r.t. these cost functions and fulfill
the properties analytically derived in Sec. 4.1.

Note that a steepest descent algorithm is in general only able to find a local min-
imum, but it is not clear, whether the local minimum coincides with the global
minimum. However, the analytical derivations in Sec. 4.1 proved the found gener-
ator matrices to be globally optimum as well.

Algorithm 3 steepest descent algorithm starts with initializing A. Note that the
approach from (2.42) of choosing G = A [ I

T ] is essential for successfully applying
this optimization algorithm, as it can only deal with unconstrained optimization
problems. For the exemplary generator matrices G′ and G′′ considered in this
work, the specific initialization approaches A(0) = P and [A(0)]ij ∼ N (0, 1) have
been used, respectively. Based on the resulting generator matrix, an initial value
for J is calculated. Next, the function calculate gradient is called to evaluate the
gradient matrix ∂J

∂A
∈ C

(Nd+Nr)×(Nd+Nr) defined as

∂J

∂A
=










∂J
∂[A]11

∂J
∂[A]12

. . . ∂J
∂[A]1(Nd+Nr)

∂J
∂[A]21

∂J
∂[A]22

. . . ∂J
∂[A]2(Nd+Nr)

...
...

. . .
...

∂J
∂[A](Nd+Nr)1

∂J
∂[A](Nd+Nr)2

. . . ∂J
∂[A](Nd+Nr)(Nd+Nr)










. (4.29)

The partial derivatives ∂J/∂[A]ij are approximated by

∂J

∂[A]ij
≈ J([A]ij + ǫ1)− J([A]ij − ǫ1)

2ǫ1
, (4.30)

with a very small ǫ1.

After obtaining Jgrad, a new instance of A is derived by going along the gradient for
a distance of ǫ2. Subsequently, G and then J are updated. In case the new value of
J is higher than the initial value, the distance ǫ2 is cut in half. This is repeatedly
executed until a smaller value for J is obtained. In case the new small value of
J is below the previous one by at least ǫ3, the optimization process continues. In
the other case, it is assumed that the (local) minimum is already found and the
optimization procedure stops. The values for ǫ1, ǫ2 and ǫ3 are subject to a tradeoff
between accuracy of results and simulation time. In this work, the values have
been set to ǫ1 = 10−7, ǫ2 = 2 · 10−2 and ǫ3 = 10−6.

The solution of the optimization problem in (4.11) is ambiguous, which in turn al-
lows to choose those generator matrices that meet other criteria as well, e.g., peak to
power ratio (PAPR) or spectral shaping requirements.
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Algorithm 3 steepest descent algorithm

1: initialize A, ǫ1, ǫ2, ǫ3
2: calculate T and G using A (cf. (2.44), (2.47) and (2.42))
3: calculate cost function J
4: Jold ← J
5: stop ← false
6: while not stop do

7: (Jgrad)← calculate gradient(A, ǫ1)

8: Anew ← A− ǫ2 Jgrad

‖Jgrad‖2
9: update G, J

10: while J > Jold do

11: ǫ2 ← ǫ2
2

12: Anew ← A− ǫ2 Jgrad

‖Jgrad‖2
13: update G, J
14: end while

15: reinitialize ǫ2
16: if J < Jold − ǫ3 then

17: Jold ← J
18: A← Anew

19: else

20: stop ← true
21: end if

22: end while

23: Jopt ← Jold
24: Aopt ← A

Algorithm 4 calculate gradient

1: function calculate gradient(A, ǫ1)
2: for k = 0, 1, ..., (Nd +Nr − 1) do
3: for l = 0, 1, ..., (Nd +Nr − 1) do
4: A[k, l]← A[k, l] + ǫ1
5: calculate G, J
6: J ′ ← J
7: A[k, l]← A[k, l]− 2ǫ1
8: update G, J
9: A[k, l]← A[k, l] + ǫ1

10: Jgrad[k, l]← J′−J
2ǫ1

11: end for

12: end for

13: return (Jgrad)
14: end function
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4.3. Performance Evaluation

The following section evaluates the performance of non-systematically encoded
UW-OFDM in terms of spectral properties and BER behavior. CP-OFDM will
again serve as reference system. Since the non-systematic approach shall annihi-
late the flaws of the systematic concept, the latter is also considered for compari-
son.

4.3.1. Power Spectral Density

The Welch power spectral densities (PSDs) presented in the following are based on
simulated UW-OFDM and CP-OFDM bursts, whereas the parameters have been
chosen identically to the PSD analysis in Sec. 3.5.2. A burst is composed of a
preamble (in all cases the IEEE 802.11a preamble [36]) and a data part compris-
ing 8000 information bits. An outer channel code with coding rate r = 1/2 is
employed. Note that no additional filters are applied for spectral shaping. For
a better comparison, the PSDs have been normalized such that the passband of
each spectral mask is centered at 0 dB. Fig. 4.6 highlights the significantly better
sidelobe suppression of UW-OFDM compared to the CP-OFDM spectrum. The
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Figure 4.6.: Comparison of normalized Welch power spectral densities: CP-OFDM
against UW-OFDM with G, G′ and G′′.

out-of-band emissions generated by G and G′ are more than 15 dB below the
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emissions of the CP-OFDM system. The emissions are even notably lower for G′′.
These properties make UW-OFDM also an attractive candidate for cognitive radio
networks [77].

Note that the spectra for G′ andG′′ feature an extremely flat passband region com-
pared to systematically encoded UW-OFDM with G. This can be explained by the
fact, that for the latter the mean power strongly varies between data and redundant
subcarriers (Fig. 3.4), while all subcarriers (except the ones at the band edges) show
almost equal power in the non-systematic case (Fig. 4.1).

4.3.2. Bit Error Ratio Simulations

Clearly, OFDM is designed for data transmission in dispersive channels, e.g., trans-
mitting in a frequency selective environment. Nevertheless, the BER investigations
start with results in AWGN, since the non-systematic code generator matrices are
optimized for that particular case. In Fig. 4.7 the BER behavior of the IEEE
802.11a CP-OFDM based standard, and of both, the systematically encoded (G)
and the non-systematically encoded UW-OFDM approach are compared (note that
G′ and G′′ perform identical in AWGN). No outer code is used for these simu-
lations. Results are provided for a BLUE and an LMMSE data estimator. As
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Figure 4.7.: BER comparison of UW-OFDM (G, G′ and G′′) and CP-OFDM for
uncoded transmission in AWGN.
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expected, the LMMSE estimator slightly outperforms the BLUE in case of system-
atically encoded UW-OFDM in the low Eb/N0 region. For the non-systematically
encoded approach though, both estimators perform completely identical. This is
somewhat surprising, since the error variances after data estimation are not identi-
cal, cf. (4.15) and (4.24). However, it turns out that in the AWGN case the QPSK
symbol estimates of the BLUE and of the LMMSE data estimator always lie in
the same decision region of the constellation diagram (Fig. 4.8), and the difference
in the error variances does not translate into a difference in the BER performance
[78]. This originates from the LMMSE estimator (2.83) corresponding to a scaled
version of the BLUE (2.75)

d̂BLUE = G
H
ỹ (4.31)

d̂LMMSE =
σ2
d

σ2
d +Nσ2

n

G
H
ỹ = α1d̂BLUE (4.32)

in case of H = I, GHG = αI and with α1 < 1. As a side effect, this example ad-
ditionally illustrates the biasedness property of an LMMSE estimator discussed in
Sec. 2.3.2. Systematically encoded UW-OFDM performs slightly worse compared

Re

Im

α1d̂BLUE

d̂BLUE

BLUE

LMMSE

Figure 4.8.: Relationships between the BLUE and LMMSE estimates in the AWGN
channel for non-systematically encoded UW-OFDM.

to the CP-OFDM reference system, the non-systematically encoded UW-OFDM
system tops CP-OFDM by 1dB and the systematic approach (with LMMSE data
estimation) by 1.6 dB, confirming a remarkable performance enhancement by the
non-systematic concept.

The remaining part of this section concentrates on results in a frequency selective
environment, which is a more realistic field of application for OFDM than AWGN.
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Analogously to Sec. 3.5.3, simulation results are obtained by averaging over the
same fixed set of 104 CIR realizations. These CIR realizations were derived from
the channel model in Sec. 2.4.2, with the channel delay spread τRMS as input
parameter.

In the following, all considerations of the non-systematic approach focus on G′

only, results for G′′ are provided at the end of this section. Fig. 4.9 illustrates
the BER performance in case no outer channel code is applied. The simulations
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Figure 4.9.: BER comparison of UW-OFDM (G and G′) and CP-OFDM for un-
coded transmission in a multipath environment with τRMS = 100 ns.

reveal that already the systematically encoded approach provides a diversity gain
over the CP-OFDM concept. This diversity gain translates to different slopes of
the BER curves. Non-systematically encoded UW-OFDM delivers an additional
coding gain of 1.3 dB (visible as a horizontal shift of the BER curve to the left),
ending up in a total gain of 21.2 dB over CP-OFDM. Fig. 4.10 displays the results in
case an additional outer channel code is applied. For r = 3/4, the non-systematic
approach provides an additional gain of 1.3 dB over the systematic one, leading
to an outperformance of 2.4 dB over CP-OFDM. Interestingly, the whole gain of
1.3 dB between both UW-OFDM approaches obtained in the uncoded case is also
transferred to the coded scenario. In case of r = 1/2 the gain increases by 1.0 dB
to a total of 1.5 dB over CP-OFDM.

To provide results for higher order modulation as well, Fig. 4.11 plots the uncoded
(r = 1) and coded (r = 1/2 and r = 3/4) performance in case of 16-QAM. The
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Figure 4.10.: BER comparison of UW-OFDM (G and G′) and CP-OFDM for
coded transmission (r = 1/2 and r = 3/4) in a multipath environment
with τRMS = 100 ns.

same tendencies as for QPSK can be observed. UW-OFDM surpasses CP-OFDM
by 1.6 dB for r = 1/2 and 1.7 dB in case of r = 3/4.

The next part provides a performance comparison between the two exemplary de-
rived code generator matrices G′ and G′′. Clearly, both present exactly the same
performance in AWGN, since every optimum code generator matrix features the
same error covariance matrix (4.24) in this scenario. Nevertheless, G′ and G′′

show quite a different behavior in dispersive channels such as frequency selective
channels. Sec. 4.1 already discussed the different structures of G′ and the par-
ticularly chosen G′′. As a reminder, G′ spreads the energy of one data symbol
mainly locally (see Fig. 4.2) and can be regarded as the natural perfecting of G.
In contrast, G′′ displayed in Fig. 4.5 spreads the energy of each data symbol ap-
proximately uniformly over the code word c and thus over the whole bandwidth.
From this point of view a system with G′′ behaves comparable to a single-carrier
system, where the energy of each individual data symbol is distributed uniformly
over the whole bandwidth. A system with G′, however, rather shares similarities
with classical OFDM, where a subcarrier is loaded with exactly one data symbol.
This condition does not hold true for G′, but a subcarrier is still dominated by a
single data symbol.

Fig. 4.12 shows that G′′ features extremely good results without an outer code,
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Figure 4.11.: BER comparison of UW-OFDM with G′ and CP-OFDM for uncoded
(r = 1) and coded transmission (r = 1/2 and r = 3/4) in a multi-
path environment with τRMS = 100 ns and 16-QAM as modulation
alphabet.

exceeding G′ significantly in that case. For r = 3/4, G′′ is still slightly better
than G′, while for r = 1/2, G′ clearly outperforms G′′. The coding gain achieved
by a strong outer code in a frequency selective channel is high for G′ as it might
be expected for a system rather related to classical OFDM, while it is comparably
low for G′′ with its precoding properties making the transceiver rather behave
like a single-carrier system. In other words, a severe fading hole will most likely
erase one data symbol completely in case of G′. However, channel codes normally
handle single errors well and are able to recover those data symbols. In case of G′′

and its almost uniform spreading of the data symbols over the whole bandwidth,
all are degraded by a certain extent, which usually determines a less optimum
prerequisite for channel codes. From an information theory point of view, this
behavior can also be considered as a consequence of memory increasing mutual
information [79].

Furthermore, Fig. 4.13 extends the analysis to BER performance results in channels
exceeding the guard interval length. This is clearly given here with a channel delay
spread of τRMS = 200 ns, thus explaining the emerging error floor in uncoded trans-
mission. In coded transmission, the best UW-OFDM system outplays CP-OFDM
by 1.4 dB for r = 1/2 (G′) and 3.5 dB for r = 3/4 (G′′). Note that in general,
it is much easier in UW-OFDM to adapt to different channel conditions than in

108



4.3. Performance Evaluation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−6

−5

−4

−3

−2

−1

0

r = 1
2

r = 3
4

r = 1

Eb/N0 [dB]

lo
g
1
0
(B

E
R
)

CP-OFDM

UW-OFDM, G′

UW-OFDM, G′′

Figure 4.12.: BER comparison of UW-OFDM between G′ and G′′ for uncoded
(r = 1) and coded transmission (r = 1/2 and r = 3/4) in a multipath
environment with τRMS = 100 ns.
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Figure 4.13.: BER comparison of UW-OFDM (G′ and G′′) and CP-OFDM for
uncoded (r = 1) and coded transmission (r = 1/2 and r = 3/4) in a
multipath environment with τRMS = 200 ns.
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any other signaling schemes. Based on the dispersity properties of the channel,
the guard interval length Nu can be adapted without changing the DFT length
and thus the framing structure. Especially w.r.t. providing flexible communication
setups, this is a strong argument for UW-OFDM.

There are several insights that can be derived from this section:

• UW-OFDM in general offers a superior sidelobe suppression compared to
CP-OFDM. It depends on the specific instance of the generator matrix, if
the non-systematic or the systematic approach provides better results. How-
ever, these differences are on a high level anyway. In the passband though,
non-systematically encoded UW-OFDM always outperforms the systematic
concept due to its relatively flat spectrum.

• In terms of BER performance, non-systematically encoded UW-OFDM pro-
vides an additional coding gain over the systematic approach.

• In contrast to the introduction of additional redundant subcarriers or system-
atic noise, cf. Sec. 3.6 and 3.7 , the presented concept offers a performance
gain without sacrificing bandwidth efficiency or introducing an error floor.

• There are infinitely many different generator matrices that meet the condi-
tions of the non-systematically encoding idea. The matrix can thus be op-
timized towards a specific setup, e.g., the outer channel encoder, to achieve
the best BER performance.

• Although not explicitly shown, the degree of freedom offered in designing
the generator matrix can also be utilized to optimize towards any other cri-
teria. Reasonable criteria might be the PAPR or peak to minimum power
ratio (PMR) performance [56, 80], dedicated spectral properties or particular
channel instances [74, 75].

In conclusion, non-systematically encoded UW-OFDM is the most beneficial con-
cept out of all presented ones to implement the idea of UW-OFDM.

4.3.3. Impact of Setup and UW

As already stressed several times within this work, CP-OFDM is currently the
most popular multi-carrier technique and thus denotes the gold standard test for
all other signaling schemes. When evaluating two different concepts against each
other, there are always several ways of how to compare them. For most of the
simulations so far, the focus has been laid on practical scenarios and thus a CP-
OFDM setup based on the parameters of the IEEE 802.11a standard has been
considered [36]. For a fair comparison it is crucial to choose a UW-OFDM setup
as similar as possible to the reference CP-OFDM setup. The utilized UW-OFDM
setup A shares thus the same
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• DFT length,

• sampling frequency,

• number of subcarriers,

• subcarrier spacing, and also the same

• guard interval length.

Nevertheless, both setups differ in the

• OFDM symbol duration and the

• number of data subcarriers per OFDM symbol.

The first follows from the guard interval already being part of the DFT output, the
latter is due to the necessity of redundancy in UW-OFDM to generate the desired
UW in the time domain. The CP-OFDM system based on setup A provides thus a
6.67% higher theoretical data rate (additional overhead like e.g., a preamble for es-
timation and synchronization tasks are not considered here) than the corresponding
UW-OFDM system. The UW-OFDM achieves a lower data rate on one hand, but it
also requires less bandwidth on the other hand, cf. Fig. 4.6, both systems show thus
almost the same bandwidth efficiency in bits/s/Hz. Hence, this seems to be a rea-
sonable and fair comparison considering that bandwidth is an expensive resource,
especially w.r.t. real-world communication scenarios.

In this section, setup C (see Tab. 2.2 and 2.3 in Sec. 2.4) is used now for both con-
cepts, leading to the same theoretical data rate of the CP-OFDM and UW-OFDM
system. For a DFT size of N = 64, CP-OFDM allows to transmit 64 data symbols
within an OFDM symbol duration of 4µs. In order to achieve the same data rate for
the UW-OFDM concept, the DFT size is enlarged to N = 80 and the DFT period
(and thus also the OFDM symbol duration) to 4µs. Hence, both systems provide
the same theoretical data rate, but now differ in the

• DFT size,

• DFT period and consequently also in

• subcarrier spacing.

This section will demonstrate that UW-OFDM surpasses CP-OFDM regardless of
the particular configuration. The considerations start with uncoded transmission in
the AWGN channel, followed by an analysis of multipath communications. Further-
more, the effect of different UW configurations is investigated.

Applying the linear model in (2.68) to CP-OFDM, i.e., G = I, and taking into
account the AWGN condition H̃ = I yields

ỹ = d+ v, (4.33)
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with the noise vector v ∼ CN (0, σ2
vI) and σ2

v = Nσ2
n. Eq. (4.33) denotes the

final model for data estimation, possible zero or pilot subcarriers are consequently
already excluded. Restricting the estimator to be linear, d̂ = ỹ determines already
the best estimate. The error e = d̂−d can be characterized by the error covariance
matrix

Cee,cp = E
{

ee
H
}

= σ2
vI. (4.34)

The error covariance matrix serves later as a means to assess the BER performance.
As a first step towards this assessment, the average energy of a CP-OFDM symbol
calculates as

Ex,cp = (E′
d + E′

p)
(N ′ +N ′

g)

N ′ =

(
σ2
dN

′
d

N ′ + E′
p

)
N ′ +N ′

g

N ′ , (4.35)

where N ′ determines the DFT size, N ′
g the guard interval size, E′

d the mean energy
of the data symbols and E′

p the mean energy of the pilot symbols. Note that in
this context, the notation ’ serves as a means to distinguish CP-OFDM variables
from UW-OFDM ones. With (4.35) and assuming now any given Eb/N0 value,
σ2
v,cp follows as

σ2
v,cp = N ′σ2

n,cp (4.36)

= N ′Ex,cp

2bEb
N0

(4.37)

= N ′ 1

2qN ′
d
Eb
N0

(σ2
dN

′
d +N ′E′

p)(N
′ +N ′

g)

N ′2 (4.38)

=
1

2q Eb
N0

(
σ2
dN

′
d(N

′ +N ′
g)

N ′N ′
d

+
N ′E′

p(N
′ +N ′

g)

N ′N ′
d

)

(4.39)

=
1

2q Eb
N0

(

σ2
d

(

1 +
N ′
g

N ′

)

+ E′
p

N ′ +N ′
g

N ′
d

)

. (4.40)

Here, b = qN ′
d denotes the number of bits per OFDM symbol and q the number

of bits per symbol of the modulation alphabet, e.g., q = 2 in case of QPSK. It is
immediately apparent from (4.40) that for E′

p = 0, both used CP-OFDM setups
A and B (see Tab. 2.3) have the same error covariance matrix and thus BER
performance in AWGN.

According to the derivations in Sec. 4.1, the mean symbol energy of a non-systematically
encoded UW-OFDM symbol with zero word is

Ex =
σ2
dtr
(
GHG

)

N
=
σ2
dNd
N

. (4.41)

Adding a UW yields
Ex′ = Ex + Exu = Ex(1 + β). (4.42)
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The factor β depends on the amount of energy spent for the UW and is detailed
later in this section. With (2.85), (4.41), (4.42) and a fixed Eb/N0 value, the noise
variance is given by

σ2
v,uw = Nσ2

n,uw (4.43)

= N
1

2qNd
Eb
N0

Ex (1 + β) (4.44)

=
1

2q Eb
N0

N

Nd

σ2
dNd
N

(1 + β) (4.45)

=
1

2q Eb
N0

σ2
d (1 + β) . (4.46)

In (4.15) and (4.24) the error covariance matrices for a BLUE and an LMMSE
estimator are derived. Since the LMMSE estimator collapses into the BLUE for
high Eb/N0 values anyway, and for reasons of simplicity, the focus is on the error
covariance matrix of the BLUE defined as

Cee,uw = σ2
v,uwI, (4.47)

derived from (4.6) with tr
(
GHG

)
= Nd, inserting into (4.15) and taking into

account Nσ2
n = σ2

v
!
= σ2

v,uw. An unanswered question is still the energy Exu
spent on the UW and its effect on the performance. In principle, there are three
configurations suitable for comparison:

1. Zero word as UW. In this case no energy is spent on pilot symbols in UW-
OFDM as well as in CP-OFDM. This is the default configuration in this
work.

2. Same relative amount of energy for UW and pilot subcarriers. In this case
the UW is scaled such that the ratio between UW energy and energy of the
rest of the OFDM symbol is the same as the ratio between pilot and data
symbols in CP-OFDM.

3. Same average power as the rest of the OFDM symbol. Here, the UW is scaled
such that its samples experience the same average power as the remaining
N −Nu samples of the OFDM symbol.

The different values of β in (4.42) based on the chosen UW configuration are
summarized in Tab. 4.1. The first and the last scaling factor are immediately
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apparent, the second one follows from

Ex′ = Ex +
E′
p

E′
d + E′

p

Ex′ (4.48)

Ex′

(

1− E′
p

E′
d + E′

p

)

= Ex (4.49)

Ex′ = Ex
1

1− E′
p

E′
d
+E′

p

(4.50)

= Ex
1

E′
d
+E′

p−E′
p

E′
d
+E′

p

(4.51)

= Ex
E′
d +E′

p

E′
d

(4.52)

= Ex

(

1 +
E′
p

E′
d

)

. (4.53)

Table 4.1.: Summary of β values to determine the UW energy Exu in (4.42).

configuration 1 2 3

β 0
E′

p

E′
d

Nu
N−Nu

UW scaling zero UW partial scale full scale

To conclude from σ2
v,uw in (4.46) and Tab. 4.1, all UW-OFDM setups with a zero

word provide the same AWGN performance, independent of the specific values
for DFT size N , UW length Nu, number of data subcarriers Nd or redundancy
Nr. The same holds true for UW-OFDM setups with a UW scaling based on
the second configuration. Note that performance equality of the different se-
tups does not hold in multipath communications. For the third configuration in
Tab. 4.1, the specific setup influences the BER behavior in multipath as well as
AWGN.

Since Cee,cp as well as Cee,uw correspond to scaled identity matrices, the BER
performance gain of UW-OFDM over CP-OFDM in uncoded AWGN transmission
can simply be calculated as

G = 10log10

(
σ2
v,cp

σ2
v,uw

)

dB. (4.54)
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For the default configuration with zero UW and zero pilot symbols, it follows that
β = 0 and E′

p = 0 and the gain gets

G = 10log10

(

1 +
N ′
g

N ′

)

= 0.97 dB. (4.55)

Since in case of a zero UW σ2
v,uw does not depend on the parameters of the spe-

cific setup, the performance gain between UW-OFDM and CP-OFDM stays the
same for setup A as well as setup C. The same gain of G = 0.97 dB as for the
zero energy approach is achieved when evaluating (4.54) for the second UW scal-
ing approach in Tab. 4.1, setup A and E′

p = 4/N ′, the latter value originating
from the pilot symbols {1,−1, 1, 1} defined in [36]. Both cases are thus equiva-
lent when considering the BER performance difference between UW-OFDM and
CP-OFDM. The gain vanishes to 0.07 dB for a fully scaled UW (third column in
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Figure 4.14.: BER comparison of UW-OFDM and CP-OFDM for different UW
energy configurations according to Tab. 4.1 in case of uncoded trans-
mission in AWGN, with setup A and C according to Tab. 2.2 and
2.3.

Tab. 4.1). CP-OFDM and UW-OFDM perform even identically in case of setup C
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and a fully scaled UW. All results are also confirmed by means of simulations in
Fig. 4.14.

The last two examples raise the impression that the performance gain of UW-
OFDM only originates from an energy argument, and that there is no advantage
over CP-OFDM without it. In this case, however, UW-OFDM would then offer the
benefit of (more) pilot symbols and the spent energy Exu could serve as a means to
balance the gain between pilot symbols and BER performance. Contrary to UW-
OFDM, a CP-OFDM system does not offer the possibility to trade the energy spent
for the cyclic prefix against an improved BER behavior. Furthermore and most
important, the BER performance of UW-OFDM and CP-OFDM is only equivalent
in case of AWGN, which is definitely not the scenario an OFDM signaling scheme
is designed for.

Fig. 4.15 illustrates the uncoded performance in a multipath environment for setup
C and zero UW/pilots. As expected, a similar gain as for setup A is achieved. Using
a non-zero UW would now result in the same shift of the BER curve as in AWGN,
however, the diversity order (visible as the slope of the BER curve) would stay
unaffected.
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Figure 4.15.: BER comparison of UW-OFDM (G′ and G′′) and CP-OFDM for un-
coded transmission in a multipath environment with τRMS = 100 ns,
setup C according to Tab. 2.2.

Fig. 4.16 compares the coded BER performance for setup C, again with zero
UW/pilots. Note that for both (outer) coding rates, the two UW-OFDM ap-
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proaches always beat the CP-OFDM system. Whereas the UW-OFDM system
utilizing G′′ as code generator matrix achieves only a marginal gain of 0.1 dB in
case of r = 1/2, this gain increases to 1.1 dB when G′ is applied. For an (outer)
coding rate of r = 3/4, both systems outperform the conventional CP-OFDM con-
cept remarkably, namely by 3 dB and 2 dB, respectively. Using a non-zero UW
would also lead to a shift of the BER curves. A general quantification of this
shift is rather difficult for coded transmission, the remaining gain over CP-OFDM
depends on the utilized (outer) channel code and its interaction with the general
setup.
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Figure 4.16.: BER comparison of UW-OFDM (G′ and G′′) and CP-OFDM for
coded transmission (r = 1/2 and r = 3/4) in a multipath environment
with τRMS = 100 ns, setup C according to Tab. 2.2.

Fig. 4.17 compares the coded performance for setup C when transmitting over
multipath channels featuring a channel delay spread of 200 ns. Again the same
tendencies are observed. The UW-OFDM approaches surpass the CP-OFDM sys-
tem by 0.2 and 1.3 dB in case of r = 1/2 and by 3.3 dB and 2.1 dB in case of
r = 3/4.

4.3.4. Impact of Imperfect Channel Knowledge

The performance results presented so far assumed perfect channel knowledge at the
receiver, hence the effect of channel estimation errors on the BER performance is in-
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Figure 4.17.: BER comparison of UW-OFDM (G′ and G′′) and CP-OFDM for
coded transmission (r = 1/2 and r = 3/4) in a multipath environment
with τRMS = 200 ns, setup C according to Tab. 2.2.

vestigated next. Since in UW-OFDM the channel H̃ (and consequently its estimate
ˆ̃
H) is incorporated differently into the receiver processing than in CP-OFDM, it is
not immediately obvious, whether channel estimation errors will degrade the BER
performance in the same scale. One difference originates from the data estimators.
In CP-OFDM the best linear estimator is simply given by the channel inverter
E = H̃−1, in UW-OFDM more advanced concepts like BLUE or LMMSE estima-
tor can be applied. Furthermore, in UW-OFDM channel estimation errors have an
additional impact, namely in the processing step where the influence of the UW is
subtracted from the received symbol, cf. (2.66)-(2.68).

A preamble based channel estimation procedure described briefly in the following
is applied to investigate the influence of channel estimation errors. The UWs
are intentionally left out for this estimation task to ensure a fair comparison
with the CP-OFDM reference system by using the same algorithm. The IEEE
802.11a preamble defined in [36] is utilized, which contains two identical BPSK
(binary phase shift keying) modulated OFDM symbols (preceded by a guard in-
terval) denoted by xp = xp1 = xp2 ∈ C

N×1. Note that the downsized frequency
domain version x̃p,d = BTFNxp corresponds to x̃p,d ∈ {−1, 1}(Nd+Nr)×1. Let
yp1 and yp2 be the received noisy preamble symbols in time domain, and let
˜̄yp,d = BTFN (yp1 +yp2)/2. Then a first course unbiased estimate of the vector of
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channel frequency response coefficients is obtained as

ˆ̃
h1[k] =

˜̄yp,d[k]

x̃p,d[k]
= ˜̄yp,d[k]x̃p,d[k] (4.56)

for k = 0, ..., (Nd +Nr − 1). The latter step follows from x̃p,d[k] ∈ {−1, 1}. This
course channel estimate can be significantly improved or rather noise reduced by
exploiting the usually valid assumption of the channel impulse response not exceed-
ing the guard duration Nu. With the vector of channel impulse response coefficients
h ∈ C

Nu×1 and its zero padded version hzp ∈ C
N×1, this assumption is incorpo-

rated by modelling the course channel estimate as

ˆ̃
h1 = B

T
FNhzp +B

T
FNn

= B
T
FN

[
h

0

]

+ v, (4.57)

where v ∈ C
(Nd+Nr)×1 represents a zero-mean Gaussian noise vector with v ∼

CN (0, Nσ2
nI). Decomposing the DFT matrix into FN =

[
M1 M2

]
with M1 ∈

C
N×Nu and M2 ∈ C

N×(N−Nu), (4.57) is developed to

ˆ̃
h1 = B

T
M1h+ v. (4.58)

Based on the linear model in (4.58) the MVU estimator [42] of the channel impulse
response is given as

ĥ =
(

M
H
1 BB

T
M1

)−1

M
H
1 B

ˆ̃
h1. (4.59)

Returning to frequency domain and again excluding the zero subcarriers from
further operation delivers the final and highly noise reduced frequency domain
channel estimate

ˆ̃
h2 = B

T
FN

[
ĥ

0

]

= B
T
M1

(

M
H
1 BB

T
M1

)−1

M
H
1 B

︸ ︷︷ ︸
W

ˆ̃
h1. (4.60)

Note that the smoothing matrix W ∈ C
(Nd+Nr)×(Nd+Nr) does not depend on the

channel and has to be calculated only once during system design. The preamble

based estimate of the channel matrix is therefore given by ˆ̃
H = diag

(
ˆ̃
h2

)

.

Fig. 4.18 compares the performance loss of CP-OFDM and non-systematically en-
coded UW-OFDM in case of imperfect channel estimation based on (4.60). For the
latter a CAZAC sequence [65] as a representative of a non-zero UW instead of the
usual zero UW case has been applied to cover the effect of an imperfect subtraction
of the UW offset as well. For reasons of fair comparison, the UW has been scaled
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4. Non-Systematically Encoded Unique Word OFDM

such that the ratio between UW energy and energy of the rest of the OFDM symbol
is the same as the ratio between pilot and data symbols in CP-OFDM. Details can
be found in Sec. 4.3.3, the corresponding scaling factor in Tab. 4.1 is labeled as ’par-
tial scaling’. It turns out that an UW-OFDM system with G′ loses about 0.7 dB
independent of the outer coding rate, a system with G′′ approximately 1.2 dB for
r = 1/2 and 0.7 dB for r = 3/4. For CP-OFDM and r = 1/2, the performance
degrades about 1.2 dB and in case of r = 3/4 around 0.6 dB compared to perfect
channel knowledge. The results confirm that UW-OFDM is at least equivalently
robust to channel estimation errors as CP-OFDM. Furthermore, keeping in mind
that a combination of G′′ and r = 1/2 will not be used in practice, as G′ and
r = 1/2 is simply better suited (see Fig. 4.18), UW-OFDM shows for this coding
rate a significantly better robustness than CP-OFDM. This outcome becomes even
more meaningful considering that in contrast to CP-OFDM, UW-OFDM suffers
from channel estimation errors in a twofold manner, namely imperfect data esti-
mation and additionally imperfect UW subtraction.
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Figure 4.18.: Impact of imperfect channel estimation on the BER performance of
UW-OFDM (G′ and G′′) with a CAZAC sequence as UW in com-
bination with ’partial scaling’ (Tab. 4.1) and CP-OFDM for coded
transmission (r = 1/2 and r = 3/4) in a multipath environment with
τRMS = 100 ns.

Finally, Fig. 4.19 shows the performance degradation in case the UW samples are
scaled to have the same average power as the remaining N − Nu samples of the
OFDM symbol, cf. Tab. 4.1 and ’full scaling’. CP-OFDM is missing in this graph,
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as there is no equivalent setup defined in this work with appropriate pilot symbol
energy E′

p to ensure a fair comparison. The performance of UW-OFDM degrades
for G′ by 0.8 dB and 0.7 dB and for G′′ by 1.2 dB and 0.9 dB in case of r = 1/2
and r = 3/4, respectively. In comparison to the results in Fig. 4.18, the relative
performance loss due to imperfect channel estimation increases by at most 0.2 dB,
therefore determining only a moderate additional loss.
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Figure 4.19.: Impact of imperfect channel estimation on the BER performance of
UW-OFDM (G′ and G′′) with a CAZAC sequence as UW in combi-
nation with ’full scaling’ (Tab. 4.1) for coded transmission (r = 1/2
and r = 3/4) in a multipath environment with τRMS = 100 ns.
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5. Inclusion of Pilot Tones in Unique Word

OFDM

Pilot tones are a popular means – especially in multi-carrier techniques – to es-
timate various system parameters at the receiver. This chapter extends the UW-
OFDM concept in a way that it also enables the inclusion of deterministic pilot
symbols p ∈ C

Np×1 at dedicated subcarriers in the frequency domain. Since the
UW already constitutes a collection of deterministic pilot symbols in the time do-
main, the necessity of additional pilot tones might be questioned at first hand.
Nevertheless, this work shall provide the prerequisites, the decision whether pa-
rameter estimation is based solely on UWs, pilot tones or a combination of both is
decided best from situation to situation.

The presented framework is based on partitioning the transmit signal into two
additive terms. The first term maps the data symbols on the signal by using a
generator matrix Gd ∈ C

(Nd+Nr+Np)×Nd , and the second term incorporates the
pilot symbols by usingGp ∈ C

(Nd+Nr+Np)×Np , yielding

x = F
−1
N BBpĞd

︸ ︷︷ ︸
Gd

d+ F
−1
N BGpp (5.1)

= F
−1
N BGdd+F

−1
N BGpp =

[
xd
0

]

. (5.2)

B ∈ C
N×(Nd+Nr+Np) models the insertion of zero subcarriers and exactly co-

incides in design and size with matrix B from the previous chapters, only the
definition of the size itself slightly varies due to the additional parameter Np

1.
Bp ∈ C

(Nd+Nr+Np)×(Nd+Nr) takes care of inserting Np additional zeros at the po-
sitions of the pilot subcarriers. Consequently, the data part Gdd will not influence
the pilot subcarriers, in contrast however, the pilot part with Gpp is allowed to
overlay the data part.

Note that the definition of Gd = BpĞd (Ğd ∈ C
(Nd+Nr)×Nd) has been introduced

to simplify notational matters in terms of taking care of only one zero subcarrier
insertion matrix. This will especially be useful in the next chapter. Indepen-
dent of the specific notation though, the partition of the transmit signal in (5.2)
into two additive and independent terms shows that the generator matrices can

1Contrary to the previous chapters, in this one it holds that N −Nz = Nd +Nr +Np instead
of N − Nz = Nd + Nr.
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be optimized independently from each other as part of two distinct optimization
problems with distinct cost functions. These problems will be tackled in the fol-
lowing.

5.1. Optimization of Data Generator Matrix

The optimization problem for the data generator matrix is given as

Ǧd = argmin
Gd

{Jd} s.t. F−1
N BGd =

[
Ξ

0

]

, (5.3)

with Jd denoting a freely selectable cost function. In order to achieve an un-
constrained optimization problem as in the previous chapters, let us choose the
approach

Gd = BpA

[
I

T1

]

, (5.4)

whereas A ∈ R
(Nd+Nr)×(Nd+Nr) and T1 ∈ C

Nr×Nd with T1 = M′
22

−1M′
21.

The submatrices M′
21 ∈ C

Nu×Nd and M′
22 ∈ C

Nu×Nr with Nu = Nr follow
from

F
−1
N BBpA =

[
M′

11 M′
12

M′
21 M′

22

]

. (5.5)

For pilotless UW-OFDM systems, minimizing the sum of the error covariances
after data estimation at a fixed SNR turned out to deliver generator matrices
with very good BER performance (see Sec. 3.4 and chapter 4). This motivates
to apply the same optimization criterion in case of UW-OFDM symbols with pi-
lot subcarriers. With (2.37) and (5.2), the transmit signal x′ can be modelled
as

x
′ = F

−1
N (BGdd+BGpp+ x̃u) , (5.6)

where x̃u = FN
[
0T xTu

]T
represents the frequency domain version of the UW.

Similar to (2.65), the frequency domain signal at the receiver (the zero subcarriers
are already excluded) corresponds to an affine model

ỹd = H̃Gdd+ H̃Gpp+ H̃B
T
x̃u +B

T
FNn. (5.7)

As a preparatory step, the known signal parts (assuming that H̃ or at least an
estimate of it is available) caused by the UW and the pilots are subtracted from
ỹd, yielding the linear model

ỹ = ỹd − H̃B
T
x̃u − H̃Gpp (5.8)

= H̃Gdd+ v. (5.9)
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5.2. Optimization of Pilot Generator Matrix

This model is equivalent to (2.68) and confirms that every UW-OFDM approach –
regardless of the presence of pilot symbols in the frequency domain – leads to the
very same transmission model. The only difference between an UW-OFDM system
with and without pilot tones is an additional subtraction of the pilot induced offset
on top of the UW part to yield the linear model. Based on (5.9), the following
conclusions can already be drawn:

• The same linear transmission model enables the deployment of the same
estimator concepts as in the case without pilots.

• In the previous chapters, the generator matrix has been optimized w.r.t.
the whole transceiver performance, e.g., by minimizing the sum of the error
variances at a given SNR in case of an LMMSE estimator. Due to the same
linear transmission model, the same optimization criteria can be followed,
leading to Jd = JLMMSE or Jd = JBLUE, cf. (4.11).

• Pilots are introduced for system parameter estimation purposes and then
simply subtracted before the data estimation process, as they do not con-
tribute any information to the latter. In this sense, pilots denote a certain
overhead to the primary task of data estimation in a receiver that should
be kept as small as possible. From that perspective, Gp shall be designed
such that it enables the insertion of pilot symbols and fulfills the constraint
in (5.2), while keeping the required energy at a minimum. The design of Gp

is the topic of Sec. 5.2.

Within this notation, Gd as defined in (5.4) takes over the tasks of G from the
pilotless case. Consequently, the same cost functions and the very same steepest
descent algorithm from Sec. 4.2 can be used. Fig. 5.1 illustrates the generator
matrices G′

d and G′′
d , whereas the steepest descent algorithm has been initialized

once with A(0) = P′ and once with
[

A(0)
]

ij
∼ N (0, 1). Note that P′ generally

varies from P in (4.25), as the indices of the pilot subcarriers are excluded as
optimization parameters for the permutation matrix. Still, the similarities with G′

and G′′ from the pilotless case in chapter 4 are highly visible. The pilot based UW-
OFDM system is based on setup F in Tab. 2.3. This setup is a modified version of
setup A with additional Np = 4 pilot subcarriers at indices I = {7, 21, 43, 57}, the
number of data symbols reduces therefore to Nd = 32.

5.2. Optimization of Pilot Generator Matrix

The optimization problem for the pilot generator matrix is given as

Ǧp = argmin
Gp

{Jp} s.t. F−1
N BGp =

[
Ξ

0

]

, (5.10)
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Figure 5.1.: Magnitude of entries of data generator matrices Gd.

with Jp denoting a freely selectable cost function. This generator matrix shall
place the pilot symbols on dedicated subcarriers and load the remaining subcarriers
such that the zero word constraint is fulfilled. Further, the linear model in (5.9)
demonstrates that the pilots cannot be used for the primary task of data estimation,
thus suggesting an optimization of Gp w.r.t. an energy minimization. In fact, this
optimization problem shows strong similarities with the one for finding generator
matrices of a systematically encoded UW-OFDM system. Consequently, let us
choose the approach

Gp = Pp

[
I

T2

]

, (5.11)

whereas Pp ∈ {0, 1}(Nd+Nr+Np)×(Nd+Nr+Np) is a permutation matrix that places
the pilot symbols at the corresponding subcarrier positions, andT2 ∈ C

(Nd+Nr)×Np

is responsible for loading the other subcarriers such that the zero word constraint
is fulfilled. T2 is calculated as T2 = −M′′

22
†M′′

21 with the submatrices M′′
21 ∈

C
Nu×Np andM′′

22 ∈ C
Nu×(Nd+Nr) with Nu = Nr derived from

F
−1
N BPp =

[
M′′

11 M′′
12

M′′
21 M′′

22

]

. (5.12)

The energy induced by the pilots is given by the cost function2

Jp = E(r)
p N = p

H
G
H
p Gpp. (5.13)

The two different factors influencing the resulting energy E
(r)
p are

• the positions of the pilot subcarriers determined by Pp, and

• the values of the pilot symbols.

2A scaling of the energy term by N is introduced to omit the prefactor 1
N and simplify the

resulting cost function Jp.
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5.2. Optimization of Pilot Generator Matrix

A close to uniform distribution of the pilot subcarriers over the available bandwidth
is beneficial for various system parameter estimation tasks, cf. [81]. Keeping in
mind the main purpose of pilot symbols, the positions are thus usually ruled out as
a degree of freedom to minimize (5.13). This leaves the pilot symbols p as optimiza-
tion parameters. In the following, the pilot symbols are constrained to have unit en-
ergy with |pi| = 1, leading to the problem formulation

p̌ = argmin
p

{Jp} s.t. F
−1
N BGp =

[
Ξ

0

]

∧ |pi| = 1. (5.14)

The optimization problem has been solved by an exhaustive search, whereas a pilot
symbol is drawn from an alphabet

A =
{

e
j 2πk

|A|

}

k = 0 . . . |A| − 1 (5.15)

with cardinality |A|, resulting in |A|Np different combinations in case of Np pilot

subcarriers. Tab. 5.1 shows the resulting minimum value for E
(r)
p as a function

of the cardinality of the pilot symbol alphabet. Note that a scaling factor N

Table 5.1.: Minimum pilot induced energy E
(r)
p as a function of the cardinality of

A.

|A| 2 4 6 10 20

N · E(r)
p 5.4633 5.2423 5.1969 5.1864 5.1783

originating from the DFT has been introduced to easier link the resulting energies
with the number of pilots Np. Since the performance does not significantly vary
with the cardinality |A|, the granularity of the alphabet can thus kept low. Fig. 5.2

illustrates the realization of Gp achieving minimum energy E
(r)
p for |A| = 20. The

corresponding pilot symbols pi are derived from (5.15) with k = ki and ki denoting
the ith element of the vector k = [17, 14, 3, 0].
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6. Carrier Frequency Offset

A well-known critical issue for OFDM systems is the presence of a carrier frequency
offset (CFO). A CFO is the result of an oscillator mismatch between transmitter
and receiver, or of a Doppler effect due to a movement of at least one of the two.
The CFO experienced by a real communication system can be quite high, i.e., in the
order of multiples of the subcarrier spacing. Due to the high sensitivity of OFDM,
an accurate estimation and compensation of the CFO is essential. Covering a large
range while at the same time providing high accuracy are, in general, contradic-
tory requirements on an estimation task. Therefore, estimation and compensation
is usually split up in two phases, the acquisition and the tracking phase [82]. This
allows the deployment of two distinct algorithms, where one is optimized to offer
a large range while the other provides high accuracy. In the acquisition phase, a
rough estimate is obtained which is usually valid for a whole burst. The acquisition
is often based on a preamble that is sent at the beginning of each burst, a typical
example would be the IEEE802.11a standard [36]. The estimate obtained in this
phase should compensate for the integer part of the CFO (measured in integer units
of the subcarrier spacing), but to a certain extent also for the fractional part (mea-
sured as a fraction of the subcarrier spacing). In the subsequent tracking phase, the
remaining CFO can be safely assumed not to exceed 10% of the subcarrier spac-
ing, thus enabling a finer estimation. This estimation and compensation is usually
performed on an OFDM symbol by symbol basis.

In general, the acquisition phase in UW-OFDM does not differ from that of other
signaling schemes as e.g., CP-OFDM. Utilizing the same preamble and algorithms
will deliver the same results, therefore no additional insights can be gained. Hence,
only the tracking phase will be considered in the following. For all investigations
carried out in the following, the CFO is modelled to be static during transmission.
Furthermore, ideal timing synchronization with a perfect detection of the beginning
of a burst is assumed.

This chapter starts with introducing a mathematical description of the CFO and
incorporating it in the present UW-OFDM model1. Subsequently, the model is
expanded to the receiver side as well (Sec. 6.2). In Sec. 6.3 the effect of imperfect
UW and pilot tone subtraction due to nonideal CFO estimation is elaborated.
Sec. 6.4 shows the potential of different CFO compensation techniques under the
assumption that the additive parts of UW and pilot tones have been perfectly

1Note that parts of the CFO model have already been developed in [83].
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subtracted. Next, Sec. 6.5 details a CFO estimation technique based on pilot
subcarriers, of which the results have already been implicitly used in the precedent
sections. Of course, the UWmay also be used for CFO estimation, hence additional
pilots in the frequency domain may seem unnecessary. However, the main goal
of this CFO analysis is to investigate the impact of a CFO on the performance
of UW-OFDM and to compare it against CP-OFDM. In order to ensure a fair
comparison, the same estimation method based on pilot tones is thus employed,
an intentional utilization of the UW is avoided. Finally, Sec. 6.6 concludes this
chapter by investigating the degrading effects of a CFO on the BER performance
of UW-OFDM and CP-OFDM.

Considerations of non-zero UWs in this chapter are restricted to investigations,
whether they influence the performance of the system in the presence of a CFO.
In this case, the samples of a non-zero UW have been scaled such that the average
power of an UW sample corresponds to the average power of the non-zero samples of
an UW-OFDM symbol with zero word (cf. Sec. 4.3.3). Therefore, all samples of the
resulting UW-OFDM symbol have the same average power.

Two different classes of generator matrices are considered in this chapter. For vi-
sualizing the effects of a CFO in Sec. 6.1, the matrices G′ and G′′ already known
from chapter 4 are investigated. Since these matrices do not incorporate pilot tones
for CFO estimation, G′

d or G′′
d in combination with Gp derived in chapter 5 are

taken from Sec. 6.2 on. Note that G′
d and G′ as well as G′′

d and G′′ share the same
optimization criterion and initialization of the optimization algorithm, hence also
show similar properties and CFO behavior. The decision to use the pilotless gen-
erator matrices in Sec. 6.1 anyway is due to the reader’s high familiarity with G′

and G′′ from the detailed analysis in chapter 4. This should ensure a better under-
standing of the CFO effects specific to UW-OFDM and different to other signaling
schemes. Although many findings apply to the systematic UW-OFDM approach as
well, the focus is laid on non-systematically encoded UW-OFDM in this chapter.
This is due to the current research status suggesting non-systematically encoded
UW-OFDM to be the more attractive approach.

In order to provide a thorough analytical framework, the following derivations in-
corporate an additive white Gaussian noise term. However, for all simulations
presented in this chapter except for Sec. 6.6, the additive noise is always cho-
sen to be zero to clearly identify and elaborate the error only caused by CFO
effects.
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6.1. CFO Model

6.1. CFO Model

Assuming a carrier frequency offset fCFO present in a system, the time domain sam-
ples in the complex baseband experience an incremental phase offset of

y(uTs) = ej2πfCFOuTsejφ0x(uTs), (6.1)

where u denotes the discrete time variable, Ts the sampling time and φ0 denotes
an arbitrary phase offset. Perfect timing synchronization is expected to take care
of φ0, hence it is set to φ0 = 0 and discarded in the following. The impact of
fCFO on the OFDM system performance depends on the relative proportion to
the subcarrier spacing ∆f rather than on the absolute value, thus motivating to
introduce a relative carrier frequency offset

ǫ =
fCFO

∆f
=
fCFO

fs/N
=
fCFON

fs
= fCFONTs. (6.2)

With (6.2) the incremental phase offset in (6.1) translates to ej
2πǫu
N (where u =

0, 1, . . . N − 1 when considering only one OFDM symbol) and in matrix notation
to

y = Λ
′
x (6.3)

with Λ′ ∈ C
N×N given as

Λ
′ = diag

([

1 ej
2πǫ
N · · · ej

2πǫ(N−1)
N

]T
)

. (6.4)

In order to take into account the phase accumulated by previous OFDM sym-
bols and the additional UW in front of the burst (which ensures the cyclic struc-
ture for the first OFDM symbol, cf. Fig. 2.8), a diagonal matrix Λ′(l) ∈ C

N×N

with

Λ
′(l) = ejψlΛ

′ = ej
2πǫ(Nl+Nu)

N










1 0 · · · 0

0 ej
2πǫ
N

. . .
...

...
. . .

. . . 0

0 · · · 0 ej
2πǫ(N−1)

N










(6.5)

is introduced, whereas l ∈ {0, 1, . . . L−1}, L denotes the number of OFDM symbols
per burst, and ψl is a phase offset defined as

ψl =
2πǫ (Nl +Nu)

N
. (6.6)

In the following, matrices with the notation ′ as e.g., Λ′ encompass the whole fre-
quency range including the zero subcarriers. The counterpart Λ and similar matri-
ces introduced later will only comprise non-zero subcarriers.
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6. Carrier Frequency Offset

Starting with the transmit signal in (5.6) and taking into account (6.5), the lth
OFDM time domain symbol at the receiver can be modelled as

y
(l)
r = Λ

′(l)
HcF

−1
N (BGdd+BGpp+ x̃u) + n (6.7)

= Λ
′(l)

F
−1
N FNHcF

−1
N

(

x̃
(l)
d + x̃p + x̃u

)

+ n (6.8)

= Λ
′(l)

F
−1
N H̃

′
x̃
′′(l) + n, (6.9)

with x̃′′(l) = x̃
(l)
d + x̃p + x̃u ∈ C

N×1 summarizing the effects of data, pilots and
the UW in one frequency domain vector. Let us highlight again at this point, that
in time domain a CFO leads to an accumulation of a phase offset from sample to
sample of an OFDM symbol. This insight is required later on when detailing the
effects of a CFO on UW-OFDM. In order to fully explain these effects, an analysis
of a CFO in the frequency domain is also necessary. Applying the DFT yields the
frequency domain OFDM symbol

ỹ
(l)
r = FNy

(l)
r (6.10)

= FNΛ
′(l)

F
−1
N H̃

′
x̃
′′(l) + FNn (6.11)

= Λ̃
′(l)

H̃
′
x̃
′′(l) + v

′, (6.12)

with a noise vector v′ ∈ C
N×1 defined as

v
′ = FNn ∼ CN (0, Nσ2

nI), (6.13)

which has a simple relationship with the noise vector v used in the previous chapters
so far (see e.g., (2.68))

v = B
T
FNn = B

T
v
′. (6.14)

Since Λ′(l) is diagonal, multiplying with FN and F−1
N results in a circulant matrix

Λ̃′(l). In order to provide a better insight on Λ̃′(l) and its relationship to ǫ, let us
start with the definition of the kth element of vector ỹ

(l)
r

ỹ(l)r [k] = [FN ]k,∗ y
(l)
r =

N−1∑

u=0

e−j
2πku
N y(l)r [u]. (6.15)

According to (6.9), the uth element is expressed as

y(l)r [u] =
[

Λ
′(l)
]

u,∗
F

−1
N H̃

′
x̃
′′(l) + n[u] (6.16)

= ejψlej
2πǫu
N
[
F

−1
N

]

u,∗ H̃
′
x̃
′′(l) + n[u] (6.17)

= ejψlej
2πǫu
N

1

N

N−1∑

m=0

ej
2πmu

N

[

H̃
′
]

m,m
x̃′′(l)[m] + n[u], (6.18)

132



6.1. CFO Model

where [·]u,∗ represents all elements of row number u. Note that (6.17) follows from

(6.16) by considering that only the uth element of the vector
[

Λ′(l)
]

u,∗
is non-zero.

Plugging (6.18) into (6.15) and rearranging yields

ỹ(l)r [k] =

N−1∑

u=0

e−j
2πku
N ejψlej

2πǫu
N

· 1
N

N−1∑

m=0

ej
2πmu

N

[

H̃
′
]

m,m
x̃′′(l)[m] + v′[k]

= ejψl
1

N

N−1∑

u=0

N−1∑

m=0

ej
2π(m+ǫ−k)u

N

[

H̃
′
]

m,m
x̃′′(l)[m] + v′[k]

= ejψl
1

N

N−1∑

m=0

[

H̃
′
]

m,m
x̃′′(l)[m]

N−1∑

u=0

ej
2π(m+ǫ−k)u

N + v′[k].

(6.19)

The relationship between ỹ
(l)
r and x̃′′(l) is fully determined by Λ̃′(l)H̃′, cf. (6.12).

Applying this knowledge on (6.19) together with Λ̃′(l) = ejψlΛ̃′ leads to the defi-
nition

[

Λ̃
′
]

k,m
=

1

N

N−1∑

u=0

ej
2π
N

(m+ǫ−k)u k = 0 . . . N − 1; m = 0 . . . N − 1. (6.20)

(6.21)

These formulas allow a compact notation of Λ̃′(l), however, an immediate interpre-
tation of the CFO impact in the frequency domain is rather difficult. This will thus

be provided in the following. Let x̃
(l)
h [m] =

[

H̃′
]

m,m
x̃′′(l)[m] for reasons of com-

pactness, and separate the impact of the subcarrier in consideration (indicated with
index k) from all others, then (6.19) can be rewritten as

ỹ(l)r [k] =
1

N
ejψl x̃

(l)
h [k]

N−1∑

u=0

ej
2πǫu
N

+
1

N
ejψl

N−1∑

m=0,m6=k
x̃
(l)
h [m]

N−1∑

u=0

ej
2π(m+ǫ−k)u

N + v′[k] (6.22)

=
1

N
ejψl x̃

(l)
h [k]

1− ej2πǫ

1− ej
2πǫ
N

+
1

N
ejψl

N−1∑

m=0,m6=k
x̃
(l)
h [m]

1− ej2π(m+ǫ−k)

1− ej
2π(m+ǫ−k)

N

+ v′[k] (6.23)

=
1

N
ejψl

ejπǫ
(
e−jπǫ − ejπǫ

)

ej
πǫ
N

(
e−j

πǫ
N − ej

πǫ
N

) x̃
(l)
h [k] +

1

N
ejψl
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·
N−1∑

m=0,m6=k
x̃
(l)
h [m]

ejπ(m+ǫ−k)
(

e−jπ(m+ǫ−k) − ejπ(m+ǫ−k)
)

ej
π(m+ǫ−k)

N

(

e−j
π(m+ǫ−k)

N − ej
π(m+ǫ−k)

N

) + v′[k] (6.24)

= ejψlej
πǫ(N−1)

N
sin(πǫ)

N sin(πǫ
N
)
x̃
(l)
h [k] + ejψlej

πǫ(N−1)
N

·
N−1∑

m=0,m6=k
ej

π(m−k)(N−1)
N

sin (π(m+ ǫ − k))
N sin

(
π(m+ǫ−k)

N

) x̃
(l)
h [m] + v′[k]. (6.25)

Note that (6.23) follows from (6.22) by applying the formula for the sum of a

geometric series Sn =
∑P−1
p=0 r

p = 1−rP
1−r , and (6.24) is a preparation step to apply

(
e−ja − eja

)
= 2j sin(a). Finally, the frequency domain receive signal corrupted

by CFO is

ỹ(l)r [k] = ejψlej
2π
N
ǫ(N−1

2 ) sin(πǫ)

N sin(πǫ
N
)

[

H̃
′
]

k,k
x̃′′(l)[k] + i(l)[k] + v′[k] (6.26)

= ejϕl
sin(πǫ)

N sin(πǫ
N
)

[

H̃
′
]

k,k
x̃′′(l)[k] + i(l)[k] + v′[k], (6.27)

with an intercarrier interference (ICI) i(l)[k] given as

i(l)[k] = ejϕl

N−1∑

m=0,m6=k
ej

π(m−k)(N−1)
N

sin (π(m+ ǫ− k))
N sin

(
π(m+ǫ−k)

N

)

[

H̃
′
]

m,m
x̃′′(l)[m], (6.28)

and a phase offset

ϕl = ψl +
2π

N
ǫ

(
N − 1

2

)

=
2π

N
ǫ

(

Nl +Nu +
N − 1

2

)

. (6.29)

In order to simplify notation further for subsequent derivations, let us additionally
introduce

ψ =
2π

N
ǫ

(
N − 1

2

)

(6.30)

to yield

ϕl = ψl + ψ. (6.31)

There are three effects of a CFO on a subcarrier symbol x̃′′(l)[k]:

• A phase offset by ϕl,

• an attenuation of sin(πǫ)
N sin(πǫ/N)

, and
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6.1. CFO Model

• an intercarrier interference term i(l)[k] with similar properties as additive
noise.

It will be shown later in this section that ϕl causes a rotation of the data symbols
in the underlying constellation diagram. Therefore, and also to distinguish from
other phase offsets presented in the following, the phase offset caused by ϕl will
from now on be referred to as phase rotation.

In matrix notation, (6.27) translates to

ỹ
(l)
r = Λ̃

′(l)
H̃

′
x̃
′′(l) + v

′

= ejψlΛ̃
′
H̃

′
x̃
′′(l) + v

′

= ejψlejψΛ̃′
statH̃

′
x̃
′′(l) + v

′

= ejϕlΛ̃
′
statH̃

′
x̃
′′(l) + v

′. (6.32)

Note that Λ̃′
stat ∈ C

N×N with

Λ̃
′
stat = e−jψΛ̃′, (6.33)

[

Λ̃
′
stat

]

k,m
=

sin (π(m+ ǫ− k))
N sin

(
π(m+ǫ−k)

N

) ej
π(m−k)(N−1)

N . (6.34)

For the main diagonal entries with k = m, (6.34) collapses to sin(πǫ)
N sin(πǫ

N
)
. In other

words, the corresponding frequency domain symbol x̃′′(l)[k] experiences only an
attenuation but no phase rotation. Furthermore, the main diagonal entries are
independent of the subcarrier index k and the OFDM symbol number l, thus
motivating the nomenclature static.

The derivations so far characterize a CFO effect in the time as well as in the
frequency domain. Nevertheless, the impact on an actual UW-OFDM transmission
system is still not clear. The reason is that for non-systematically encoded UW-
OFDM the data symbols lie somewhere between these two domains, which will
be elaborated subsequently. Of course, this approach of lying between domains is
only a conceptual idea to make the occurring CFO effects more comprehensible.
As a preparatory step, let us extend (6.32) such that the CFO effects on the data
symbols can be modelled as

d
(l)
CFO = Eỹ

(l)
r

= EejϕlΛ̃
′
statH̃

′
x̃
′′(l) +Ev

′

= EejϕlΛ̃
′
statIBGd

(l) +Ev
′

= ejϕlEΛ̃
′
statĞd

(l) +Ev
′. (6.35)

AWGN conditions with H̃ = I as well as x̃p = 0 and x̃u = 0 are assumed for
better isolating the impact of a CFO. E determines any potential linear estimator,
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6. Carrier Frequency Offset

G corresponds to a generator matrix of an UW-OFDM system and B models an
optional insertion of zero subcarriers. G and B are merged to Ğ = BG to span the
whole frequency range. This notation does not change any properties, but avoids
taking care of B separately on the one hand, and additionally eases a comparison
of UW-OFDM with other signaling schemes on the other hand. Alternatively, the
impact on the kth data symbol corresponds to

d
(l)
CFO[k] = ejϕl [E]k,∗ Λ̃

′
statĞd

(l) + [E]k,∗ v
′

= ejϕl [E]k,∗ Λ̃
′
stat

[

Ğ
]

∗,k
d(l)[k]

+ ejϕl [E]k,∗ Λ̃
′
stat

Nd−1
∑

m=0,m6=k

[

Ğ
]

∗,m
d(l)[m] + [E]k,∗ v

′

= ejϕle
T
k Λ̃

′
statğkd

(l)[k]
︸ ︷︷ ︸
corrupted data symbol

+ejϕle
T
k Λ̃

′
stat

Nd−1
∑

m=0,m6=k
ğmd

(l)[m]

︸ ︷︷ ︸
interdata interference

+ [E]k,∗ v
′

︸ ︷︷ ︸
additive noise

.

(6.36)

Both, the elementwise and matrix notation are used in the following, depending
on which notation provides the best prerequisites for interpretation. There are
now three terms in (6.36) determining d

(l)
CFO[k], namely a corrupted version of

the actually transmitted data symbol d(l)[k], an interference term caused by the
other data symbols denoted as interdata interference, and an additive noise term,
the latter without any connection to a CFO. It seems important to stress at this
point, that a CFO still introduces the degrading effects phase rotation, attenuation
and intercarrier interference as stated in (6.27). Nevertheless, these effects have a
different impact depending on the specific signaling scheme, which will be shown
in the subsequent paragraphs.

For a better understanding it is beneficial to classify all signaling schemes based
on the domain in which data symbols are specified. Hence, on one side there are so
called single-carrier systems (preferably implemented as single-carrier/frequency
domain equalization (SC/FDE)), and on the other side multi-carrier systems (in
this case with special focus on OFDM systems). Characteristic for the first group
is the consecutive placement of data symbols next to each other in time domain.
As a consequence, the symbols are orthogonal in time and thus are also detected in
the very same domain. In contrast, data symbols in OFDM systems are orthogonal
to each other and detected in frequency domain. According to this classification,
all other schemes like e.g., precoded OFDM or UW-OFDM as well, can be in-
terpreted as a mixture of these two concepts, meaning that the data symbols “lie
somewhere between” time and frequency domain. In fact, the following derivations
demonstrate that the CFO effects on UW-OFDM data symbols highly depend on
the design of the generator matrix Ğ.
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6.1. CFO Model

Starting with single-carrier systems2, let Ğ = FN and E = F−1
N (and of course

with appropriately sized vector d(l)), then

d
(l)
CFO = ejϕlF

−1
N Λ̃

′
statFNd

(l) + F
−1
N v

′

= ejϕle−jψF−1
N Λ̃

′
FNd

(l) + n

= ejϕle−jψΛ′
d
(l) + n. (6.37)

Eq. (6.37) follows from Λ̃′ = ejψΛ̃′
stat defined in (6.33) and the fact that multiply-

ing with F−1
N and FN diagonalizes the circulant matrix Λ̃′. W.r.t. the notation in

(6.36), this diagonalization simply means that the second term modelling intercar-
rier interference vanishes. Assuming now that each data symbol is drawn from a
QPSK alphabet with unit variance, Fig. 6.1 exemplarily illustrates the effects of a
CFO on the data symbols. As already indicated before, each time domain sample
and therefore each data symbol experiences a phase rotation, whereas the phase
rotation increases with each sample. Consequently, the rotation is different for all
data symbols.
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received symbols d
(l)
CFO

Figure 6.1.: Constellation diagram of one single data symbol vector instance d
(l)
CFO

with d(l)[k] ∈ 1/
√
2{−1− j,−1+ j, 1− j, 1+ j} for Ğ = FN , E = F−1

N

(i.e., single-carrier), ǫ = 0.1, l = 0 and σ2
v = 0.

2Note that pulse shaping filters, which are usually part of communication systems, are omitted
for simplicity.

137



6. Carrier Frequency Offset

An OFDM system is modelled as Ğ = IN and E = IN , yielding

d
(l)
CFO = ejϕl IΛ̃

′
statId

(l) + v
′ (6.38)

= ejϕl Λ̃
′
statd

(l) + v
′. (6.39)

Again, the size of d(l) is adjusted accordingly. W.r.t. one single element, the second
term in (6.36) remains and eTk Λ̃

′
statğk in the first term collapses to a constant scal-

ing factor corresponding to the normalized sinc function

sinc(ǫ) =
sin(πǫ)

N sin(πǫ
N
)
. (6.40)

The CFO effects on the data symbols differ substantially, cf. Fig. 6.2. First, the
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rotated symbols

rotated and attenuated symbols

Figure 6.2.: Constellation diagram of one single data symbol vector instance d
(l)
CFO

with d(l)[k] ∈ 1/
√
2{−1 − j,−1 + j, 1 − j, 1 + j} for Ğ = E = I (i.e.,

conventional OFDM), ǫ = 0.1, l = 0 and σ2
v = 0.

data symbols are rotated by an angle ϕl. Isolating this effect would deliver symbols
corresponding to the circles. Contrary to single-carrier based systems, all data
symbols within one OFDM symbol share the very same phase rotation. Second, the
data symbols experience an attenuation indicated by the diamond symbols. Third,
each constellation point is additionally expanded to a cloud due to intercarrier
interference, leading to the actually received symbols d

(l)
CFO displayed as crosses.

The latter two effects can be well explained from Fig. 6.3. In frequency domain,
each subcarrier symbol is in fact represented by a sinc function (6.40) weighted
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Figure 6.3.: Intercarrier interference and magnitude attenuation due to CFO shown
at the decomposed magnitude spectrum of one data symbol vector
d
(l)
CFO from a conventional OFDM system.

with d(l)[k]. This sinc function is one at the subcarrier position it belongs to
and zero at all others. For ǫ = 0 and thus perfect alignment, the effect of the
sinc function is thus not noticeable at the receiver side. In case of ǫ 6= 0, a data
symbol experiences an attenuation and an additive interference term caused by
intercarrier interference. For ǫ = 0.1, the absolute value of the main diagonal
entries of Λ̃′

stat and thus the attenuation corresponds to 0.98. The entries off the
main diagonal determine the interference and decrease with the distance to the
main diagonal; for this particular ǫ value from 0.1 for the first to already 0.03
for the third minor diagonal. Hence, the performance degradation of these two
effects is rather limited. The most prominent effect arises from the phase rotation
by ϕl and is typically the only one which needs to be estimated and taken care
of to achieve sufficient CFO compensation in current communications systems.
This kind of compensation is also known as carrier phase synchronization in the
literature.

Having elaborated on both border concepts, the next part investigates UW-OFDM.
One interesting candidate is UW based SC/FDE [22, 23, 30] with a generator
matrix defined as

Ğ = Guw-sc = FN

[
I

0

]

(6.41)
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and an estimator

E =
[
I 0

]
F

−1
N . (6.42)

Inserting into (6.35) immediately yields

d
(l)
CFO = ejϕle−jψΛsubd

(l) + n, (6.43)

where Λsub ∈ C
(N−Nu)×(N−Nu) denotes a submatrix according to Λ′ = [Λsub ∗

∗ ∗ ].
Obviously, data symbols in UW-SC/FDE experience the same linear incremental
phase rotation as in classical SC based systems, only the range of the phase ramp
differs due to the last Nu samples dedicated to the UW. Fig. 6.4 displays the
resulting constellation diagram.
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Figure 6.4.: Constellation diagram of data symbol vectors d
(l)
CFO (several instances)

with d(l)[k] ∈ 1/
√
2{−1 − j,−1 + j, 1 − j, 1 + j} for an UW based

SC/FDE system Ğ = FN
[
I 0T

]T
, E =

[
I 0

]
F−1
N , ǫ = 0.1, σ2

v = 0
and ϕl = 0.

A little bit further away but still showing ties to SC systems is the generator matrix
G′′ visualized in Fig. 4.5. With Ğ = BG′′ and E = (BG′′)

†
, the phase ramp is

not linearly increasing in k anymore as for UW-SC/FDE (where k denotes the data

symbol index in d
(l)
CFO[k]), but there is still a ramp behavior when displaying the

phase rotations in ascending order, cf. Fig. 6.5. As expected, Ğ = BG′ (cf. Fig. 4.2)

with E = (BG′)
†
is closer to conventional OFDM systems. The data symbols of

one OFDM symbol do not experience one common phase rotation. However, the
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Figure 6.5.: Phase rotation experienced by the data symbols d
(l)
CFO[k] due to a CFO

of ǫ = 0.1. For easier comparison, an individual offset φsystem is added
to the phase trajectory of each system to start at zero radiants.

number of different angles is still rather limited compared to SC systems. Fig. 6.6
and 6.7 visualize the constellation diagram of d

(l)
CFO for G′ and G′′, respectively,

whereas d
(l)
CFO is split up into two terms according to (6.36), with σ2

v = 0 and

ϕl = 0 for easier comparison. The data symbols d
(l)
CFO[k] experience almost no

attenuation in case of both matrices, but the phase rotations differ. The power of
the interdata interference term (averaged over data and OFDM symbols) is very
similar for both matrices, but lower than in a conventional OFDM system presented
in Fig. 6.2 (about a factor 2 for the considered setups). This is one reason for a
higher robustness of UW-OFDM against CFO performance degradation effects
(Sec. 6.3) compared to conventional OFDM systems. The second reason is due to
a better CFO estimation (Sec. 6.5) which again results from a difference in the
interference power.
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Figure 6.6.: Constellation diagram of data symbol vectors d
(l)
CFO (several instances)

with d(l)[k] ∈ 1/
√
2{−1− j,−1+ j, 1− j, 1+ j} for non-systematically

encoded UW-OFDM Ğ = BG′, E = (BG′)
†
, ǫ = 0.1, σ2

v = 0 and
ϕl = 0.
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Figure 6.7.: Constellation diagram of data symbol vectors d
(l)
CFO (several instances)

with d(l)[k] ∈ 1/
√
2{−1− j,−1+ j, 1− j, 1+ j} for non-systematically

encoded UW-OFDM Ğ = BG′′, E = (BG′′)
†
, ǫ = 0.1, σ2

v = 0 and
ϕl = 0.
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6.2. Receiver Model

Fig. 6.8 summarizes the relationship between CFO effects and the domain data
symbols lie. Depending on the specific properties, UW-OFDM experiences CFO
effects either related to single-carrier or multi-carrier systems. In a certain way,
choosing a generator matrix allows also choosing the impact of the CFO effects on
an UW-OFDM system.

OFDM SC/FDE

G′ G′′ GUW-SC/FDE

Figure 6.8.: Categorization of the carrier frequency offset effects on the different
UW-OFDM generator matrices.

6.2. Receiver Model

After modelling the CFO effects properly, the next part evaluates the impact on
the performance of an UW-OFDM system. For performance analysis it suffices
to consider the non-zero subcarriers only and thus zero subcarriers are discarded,
yielding the downsized vector

ỹ
(l)
d = B

T
ỹ
(l)
r . (6.44)

Excluding zero subcarriers is straightforward in (5.7) due to the diagonal structure
of the channel matrix H̃. However, Λ̃′(l) in (6.12) is a dense matrix, requiring thus
more in-depth investigations. For an easier understanding, introducing a permuta-
tion matrix Ps yields a sorted vector x̃s ∈ C

N×1 with

x̃s = Psx̃
′′(l) =

[
x̃z
x̃n

]

, (6.45)

where x̃z ∈ C
Nz×1 denotes the load on the zero and x̃n ∈ C

(N−Nz)×1 on the non-
zero subcarriers. Note that for all vectors and matrices which are used only locally
to derive the receiver model, the subindex l is dropped for the sake of simplicity.
PTs Ps = I, BT =

[
0 I

]
Ps, (6.12),(6.14) and (6.45) deliver

ỹ
(l)
d = B

T
Λ̃

′(l)
H̃

′
x̃
′′(l) +B

T
v
′ (6.46)

= B
T
Λ̃

′(l)
P
T
s PsH̃

′
P
T
s Psx̃

′′(l) + v (6.47)

=
[
0 I

]
PsΛ̃

′(l)
P
T
s PsH̃

′
P
T
s Psx̃

′′(l) + v (6.48)

=
[
0 I

]
Λ̃

′
sH̃

′
sx̃s + v. (6.49)
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6. Carrier Frequency Offset

H̃′
s ∈ C

N×N and Λ̃′
s ∈ C

N×N represent sorted versions defined as

H̃
′
s = PsH̃

′
P
T
s =

[
H̃z 0

0 H̃n

]

(6.50)

Λ̃
′
s = PsΛ̃

′(l)
P
T
s =

[
Λ̃zz Λ̃nz

Λ̃zn Λ̃nn

]

, (6.51)

with the diagonal submatrices H̃z ∈ C
Nz×Nz and H̃n ∈ C

(N−Nz)×(N−Nz), and
the dense matrices Λ̃zz ∈ C

Nz×Nz , Λ̃nz ∈ C
Nz×(N−Nz), Λ̃zn ∈ C

(N−Nz)×Nz ,
and Λ̃nn ∈ C

(N−Nz)×(N−Nz). The nomenclature of the submatrices of Λ̃′
s de-

termines the origin and the sink, e.g., a subindex nz denotes the influence of
the non-zero subcarrier symbols on the zero subcarriers. These definitions lead
to

ỹ
(l)
d =

[
0 I

]
[
Λ̃zz Λ̃nz

Λ̃zn Λ̃nn

] [
H̃z 0

0 H̃n

] [
x̃z
x̃n

]

+ v (6.52)

= Λ̃znH̃zx̃z + Λ̃nnH̃nx̃n + v. (6.53)

The matrices Λ̃nn and H̃n originate from excluding all elements with indices cor-
responding to zero subcarriers, hence

Λ̃nn = B
T
Λ̃

′(l)
B = Λ̃

(l) ∈ C
(N−Nz)×(N−Nz) (6.54)

H̃n = B
T
H̃

′
B = H̃ ∈ C

(N−Nz)×(N−Nz), (6.55)

the latter already known from (2.63). Consequently, (6.53) follows to

ỹ
(l)
d = Λ̃

(l)
H̃x̃n + Λ̃znH̃zx̃z + v. (6.56)

Taking into account

x̃n =
[
0 I

]
x̃s =

[
0 I

]
Psx̃

′′(l) = B
T
x̃
′′(l), (6.57)

the first term in (6.56) translates to

Λ̃
(l)
H̃x̃n = Λ̃

(l)
H̃B

T
x̃
′′(l) (6.58)

= Λ̃
(l)
H̃B

T
(

BGdd
(l) +BGpp+ x̃u

)

(6.59)

= Λ̃
(l)
H̃Gdd

(l) + Λ̃
(l)
H̃Gpp+ Λ̃

(l)
H̃B

T
x̃u. (6.60)

Based on (6.8) and (6.45), the load on the zero subcarriers x̃z can be decomposed
into three components

x̃z = x̃d,z + x̃p,z + x̃u,z, (6.61)

whereas the part of the data x̃d,z and the pilots x̃p,z is zero by definition, leaving
x̃z = x̃u,z. This insight yields

ỹ
(l)
d = Λ̃

(l)
H̃Gdd

(l) + Λ̃
(l)
H̃Gpp+ Λ̃

(l)
H̃B

T
x̃u + Λ̃znH̃zx̃u,z + v. (6.62)
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6.2. Receiver Model

In contrast to (5.7), the zero subcarriers cannot simply be excluded anymore. There
is now a fourth term fed by the load of an UW on the actual zero subcarriers which
impacts the non-zero subcarriers and thus the performance. Considering though
that zero subcarriers follow a dedicated purpose like shaping the spectral mask, a
UW shall be chosen to maintain these properties. Hence, in a real-world system
x̃u,z almost vanishes by design such that Λ̃znH̃zx̃u,z → 0, leading again to the
affine receiver model

ỹ
(l)
d ≈ Λ̃

(l)
H̃Gdd

(l) + Λ̃
(l)
H̃Gpp+ Λ̃

(l)
H̃B

T
x̃u + v (6.63)

with negligible approximation error.

In order to perform data detection according to Sec. 2.3, the CFO effects have to
be compensated, followed by a subtraction of the known signal parts to transform
the affine into a linear model. As already stated before, derotating by ϕl (also
known as carrier phase synchronization) normally suffices for an adequate CFO
compensation in current communication systems. Since ϕl is usually not known,
an estimate ϕ̂l with a certain estimation error is utilized instead. The estimation
process is detailed in Sec. 6.5, at the moment ϕ̂l is simply treated as given. The
corrected received signal reads

ỹ
(l)
c = e−jϕ̂lΛ̃

(l)
H̃Gdd

(l) + e−jϕ̂lΛ̃
(l)
H̃Gpp+ e−jϕ̂l Λ̃

(l)
H̃B

T
x̃u + e−jϕ̂lv. (6.64)

As a next step, the known portions in the signal have to be subtracted to obtain
a linear model as in (2.68). Assuming derotation to be already an adequate CFO
compensation means, subtracting the known offset

xoff = H̃Gpp+ H̃B
T
x̃u (6.65)

caused by the UW and the pilots yields

ỹ
(l) = ỹ

(l)
c − H̃Gpp− H̃B

T
x̃u (6.66)

= e−jϕ̂lΛ̃
(l)
H̃Gdd

(l) +
(

e−jϕ̂l Λ̃
(l) − I

)

H̃Gpp (6.67)

+
(

e−jϕ̂lΛ̃
(l) − I

)

H̃B
T
x̃u + e−jϕ̂lB

T
v (6.68)

= e−jϕ̂lΛ̃
(l)
H̃Gdd

(l) + e
(l)
xu + e

(l)
xp + e−jϕ̂lB

T
v, (6.69)

= e−jϕ̂lΛ̃
(l)
H̃Gdd

(l) + e
(l) + e−jϕ̂lB

T
v, (6.70)

with e
(l)
xu and e

(l)
xp determining the subtraction error

e
(l) = e

(l)
xu + e

(l)
xp (6.71)

originating from the UW and the pilots, respectively. A data estimate follows
as

d̂
(l) = ELMMSEỹ

(l), (6.72)
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6. Carrier Frequency Offset

with ELMMSE as defined in (2.81). Fig. 6.9 comprises the constellation diagram
for several instances of d̂(l) in case of H = I, ǫ = 0.1, σ2

v = 0 and w.l.o.g. x̃u = 0.
Additionally, perfect pilot subtraction with e

(l)
xp = 0 is assumed. As expected, the

estimated data symbols form clouds centered around the elements of the trans-
mission symbol alphabet, implying therefore that ϕ̂l obtained according to (6.149)
in Sec. 6.5 constitutes a pretty accurate estimate of ϕl. Completely unexpected
though, assuming perfect estimation and derotating with ϕ̂l = ϕl results in de-
centered symbol clouds, leading to a worse performance as with imperfect esti-
mation (e.g., in terms of the mean squared error w.r.t. the transmitted symbols
d(l)). This surprising behavior motivates more in-depth investigations. As part
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transmission data symbols

Figure 6.9.: Comparison of imperfect (pilot tone based) and perfect phase estima-
tion ϕ̂l based on the constellation diagram of the data symbol vector
estimates d̂(l) for d(l)[k] ∈ 1/

√
2{−1 − j,−1 + j, 1 − j, 1 + j} H̃ = I,

x̃u = 0, e
(l)
xp = 0, ǫ = 0.1, l = 0 . . . L− 1 and σ2

v = 0.

of a thought experiment let x̃u = 0, e
(l)
xp = 0 and σ2

v = 0, then (6.72) reduces
to

d̂
(l)
(exp) = e−jϕ̂lELMMSEΛ̃

(l)
H̃Gdd

(l) (6.73)

= e−jϕ̂lELMMSEe
jϕlΛ̃statH̃Gdd

(l), (6.74)

with

Λ̃
(l) = B

T
Λ̃

′(l)
B = B

T ejϕlΛ̃
′
statB = ejϕlΛ̃stat. (6.75)
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6.2. Receiver Model

A single symbol follows as

d̂
(l)

(exp)
[k] = e−jϕ̂l [ELMMSE]k,∗ e

jϕlΛ̃statH̃



[Gd]∗,k d
(l)[k] +

Nd−1
∑

m=0,m6=k
[Gd]∗,m d

(l)[m]





(6.76)

= e−jϕ̂lejϕl e
T
k Λ̃statH̃gk
︸ ︷︷ ︸

aSI,ke
jϕSI,k

d(l)[k] + e−jϕ̂lejϕle
T
k Λ̃statH̃

Nd−1
∑

m=0,m6=k
gmd

(l)[m]

︸ ︷︷ ︸
∆k

(6.77)

= e−jϕ̂lejϕlaSI,ke
jϕSI,kd(l)[k] + ∆k, (6.78)

with [ELMMSE]k,∗ = eTk and [Gd]∗,k = gk, whereas [·]k,∗ and [·]∗,k denote the kth
row and column of a matrix, respectively. There are now two effects degrading
the performance of an estimate d̂

(l)
(exp)[k]. First, ∆k originates from the other data

symbols as a consequence of intercarrier interference (compare with (6.36) and in-
terdata interference) and has a similar impact as additive noise (with zero mean).
Hence, the data symbol clouds in Fig. 6.9 may be enlarged in diameter, but the
center of the cloud is not affected by ∆k. Second, each transmitted data sym-
bol d(l)[k] itself is corrupted, which can be modelled by a multiplication with a
scalar

aSI,ke
jϕSI,k = e

T
k Λ̃statH̃gk. (6.79)

The actual value of this scalar depends on the CFO ǫ due to Λ̃stat, the estimator,
the channel instance and the generator matrix. The next paragraph will reveal that
the corruption of d(l)[k] is in fact a result of self interference.

The amplitude aSI,k can be safely assumed to be always close to one and therefore
negligible. This seems reasonable even without providing a detailed proof, consid-
ering that eTk normally compensates for H̃gk and Λ̃stat from (6.33) is similar to a
diagonal matrix with entries close to one on the main diagonal. The phase rotation
by ϕSI,k causes the surprising effect visible in Fig. 6.9. In detail, a UW-OFDM
symbol generator (modelled by gk) spreads a data symbol over several subcarriers.
As well known, a CFO will introduce ICI (modelled by Λ̃stat) into any OFDM sys-
tem. In the context of UW-OFDM this means that the portions of a data symbol
d(l)[k] spread over several subcarriers is leaked back due to ICI. In that sense, ICI
in an UW-OFDM system causes self interference to a certain extent. Assuming
now a perfect estimate ϕ̂l = ϕl, the phase offset ϕSI,k in (6.78) remains and causes
the rotation of the constellation diagram illustrated in Fig. 6.9. Since this rotation
is not observable in case of ϕ̂l 6= ϕl, the deviation of the estimate ϕ̂l from the
actual phase ϕl seems to account for this effect. It is important to know at this
point that in this work, ϕ̂l is estimated on the basis of frequency pilot tones p.
The insertion of these pilot tones has already been discussed in chapter 5 and the

147



6. Carrier Frequency Offset

specific estimation algorithm is detailed later in Sec. 6.5, whereas knowledge of
the latter is not required to understand the following explanation. Just studying
the incorporation of pilot tones into the frequency domain by Gpp in (5.6) shows
that the pilot symbols – analogously to the data symbols – are spread over sev-
eral subcarriers. Consequently, similar self interference effects due to intercarrier
interference as in (6.78) can be expected, which will then be part of the estimate
ϕ̂l. Without requiring any further information about the estimation algorithm
presented later in Sec. 6.5, let us just utilize the model from (6.176) on page 163
that an estimate ϕ̂l is given as

ϕ̂l = ϕl + ϕpil +∆l. (6.80)

Here, ϕpil denotes the phase offset due to self interference of the pilot symbols3

and ∆l is a deviation corresponding to additive noise. With (6.80), the estimate
of the kth data symbol in (6.78) can therefore be approximated with a remaining
phase offset

ϕoff,k = ϕSI,k − ϕpil (6.81)

as

d̂
(l)
(exp)[k] = e−jϕ̂lejϕlaSI,ke

jϕSI,kd(l)[k] + ∆k (6.82)

= e−j∆le−jϕlejϕlej(ϕSI,k−ϕpil)d(l)[k] + ∆k (6.83)

≈ e−jϕlejϕlej(ϕSI,k−ϕpil)d(l)[k] (6.84)

= ejϕoff,kd(l)[k]. (6.85)

According to (6.85), each data symbol experiences a different phase offset ϕoff,k,
which therefore requires a data symbol individual compensation. Experiments not
detailed here proved a simplification of the phase offset model

ϕoff =
1

Nd

Nd−1
∑

k=0

ϕoff,k (6.86)

and a corresponding simplified compensation to have almost no degrading impact
on the performance, leading to

d̂
(l)

(exp)
[k] = ejϕoff ,kd(l)[k] (6.87)

≈ ejϕoffd(l)[k]. (6.88)

3Note that self interference is a source for ϕpil in any UW-OFDM system. In case of a non-zero
UW and depending on the estimation model used for ϕl, the UW can be a second source
for the resulting phase rotation ϕpil. To account for this optional source, the very general
subcript (·)pil for ’pilots’ instead of (·)SI for ’self interference’ has been chosen. Details can
be found in Sec. 6.5.
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6.2. Receiver Model

Based on the insights gained from this thought experiment, the estimate of a data
vector is given as

d̂
(l) = e−jϕ̂offELMMSEỹ

(l) (6.89)

= e−jϕ̂offe−jϕ̂lELMMSEΛ̃
(l)
H̃Gdd

(l) + e−jϕ̂offELMMSEe
(l)

+ e−jϕ̂offe−jϕ̂lELMMSEB
T
v. (6.90)

The estimate ϕ̂off required for offset compensation is assumed to be given at this
point, details are provided in (6.190) within Sec. 6.5.

Fig. 6.10 visualizes the Bayesian MSE per data symbol

θd =
1

L

L−1∑

l=0

1

Nd
E

{∥
∥
∥d̂

(l) − d
(l)
∥
∥
∥

2

2

}

(6.91)

as a function of the CFO ǫ. The MSE has been evaluated for 104 multipath chan-
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Figure 6.10.: Carrier frequency offset induced Bayesian MSE θd in UW-OFDM and
CP-OFDM after derotating by ϕ̂l as CFO compensation means. The
estimate d̂(l) has been obtained according to (6.89). Investigated
scenario: G′

d, CAZAC sequence as UW, and multipath environment
with τRMS = 100 ns.

nel instances according to Sec. 2.4 and averaged over L = 200 OFDM symbols.
The presented results are obtained for G′

d as generator matrix and a CAZAC se-
quence as UW xu [65]. Note that the results for different generator matrices like
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6. Carrier Frequency Offset

G′′
d and other UWs are very similar and therefore not explicitly shown. In or-

der to better assess the performance, two main reference curves are illustrated.
The upper bound determines the performance of the reference CP-OFDM system.
At this point it is already fair to say that UW-OFDM outperforms CP-OFDM
in terms of CFO robustness in any way. One main reason is a stronger inter-
carrier/interdata interference in CP-OFDM, a second originates from the missing
redundancy.

The lower bound represents the case of a zero UW, perfect pilot subtraction with
e
(l)
xp = 0 and perfect offset compensation with ϕ̂off = ϕoff. The dashed line with

square symbols depicts the same but without offset compensation. In case of a zero
UW (and only then), the gain due to additional derotation (even if ϕoff is perfectly
known) is thus rather limited. For all setups investigated in this work, the phase
offset ϕoff in case of a zero UW is rather small and correcting it delivers only a
minor performance improvement. Only for some very special channel realizations,
the effort would pay off. However, this statement cannot be generalized and has
to be verified for each new setup. In order to avoid confusions regarding the UW-
OFDM setup used for the bound, please note that the case of a zero UW and
e
(l)
xp = 0 slightly differs from a non-zero UW-OFDM system with e

(l)
xu = 0 and

e
(l)
xp = 0. Both share the ideal assumption of e

(l)
xu = 0, but in the non-zero case,

the UW will influence the estimation of ϕl. Although there is only a minor impact
on the estimation performance (as shown later in Sec. 6.5) and therefore on the
resulting MSE in Fig. 6.10, the dedicated purpose of this bound is to show the zero
UW case.

The performance of an UW-OFDM system with a non-zero UW-OFDM lies be-
tween the bounds, whereas Fig. 6.10 incorporates one curve with and one without
offset compensation. Note that here the applied angle is only an estimate ϕ̂off, but
it almost yields the same performance as the utilization of the true angle ϕoff. The
latter case is not in the figure to keep it as simple as possible. Clearly, the gain
of offset compensation is higher in the non-zero UW than in the zero UW case.
Furthermore, it increases with increasing CFO. Nonetheless, there is still room for
improvement, even with offset compensation:

• The first performance gap between the non-zero UW case and the lower
bound originates from subtracting the wrong UW and pilot portion leading
to the error e(l) = e

(l)
xu + e

(l)
xp .

• The second performance gap between the lower bound and the abscissa is
due to the incomplete CFO cancelation by only derotating with ϕ̂l.

Both gaps will be analyzed in the following and alternatives are pointed out.
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6.3. Impact of Imperfect UW and Pilot Offset Subtraction

In order to minimize e(l) in (6.71) further, let us additionally investigate the sub-
traction of an offset

• xoff,i = e−jϕ̂l ˆ̃Λ(l)H̃
(
BT x̃u +Gpp

)
and

• xoff,c = e−jϕ̂pil ˆ̃ΛstatH̃
(
BT x̃u +Gpp

)

instead of xoff = H̃
(
BT x̃u +Gpp

)
from (6.65). In the first approach with xoff,i,

the term to be subtracted is specifically tailored to each individual OFDM symbol
l. The dependence on l requires an update for every symbol and thus denotes a

certain computational overhead. Note that the estimate
ˆ̃
Λ(l) is calculated based

on a estimated CFO

ǫ̂ = ǫ+∆ǫl (6.92)

with estimation error ∆ǫl , whereas ǫ̂ is derived from ϕ̂l as presented later in Sec. 6.5.
It suffices to treat ǫ̂ as given, the actual estimation algorithm is not of relevance
in the following. This approach takes the applied derotation angle ϕ̂l of each
individual OFDM symbol into account, in this sense utilizing all the knowledge
available and thus expected to deliver the best results.

In the second approach with xoff,c the subtracted term is common for all OFDM
symbols. It is built on the hypothetical assumption of having a noise free estimate
ϕ̂l. Noise free in this context means that ϕl is estimated exactly up to the constant
offset ϕpil, cf. (6.80). It follows that ϕ̂l = ϕl + ϕpil yielding e−j(ϕl+ϕpil)Λ̃(l) =
e−jϕpil Λ̃stat, therefore dissolving the dependence on l and thus reducing complexity.
In other words, the UW and pilot portion do not have to be updated for each
OFDM symbol, when assuming constant CFO and channel conditions. In reality,
a noise free estimate is of course not possible and thus only an estimate ϕ̂pil of ϕpil

is available for calculating xoff,c. Further,
ˆ̃
Λstat is based on ǫ̂ and approximates

BT Λ̃′
statB, cf. (6.34).

Contrary to any intuitive assumption, the second and less complex method with
xoff,c reaches almost the performance bound of an UW-OFDM system with zero
word and perfect pilot subtraction, whereas the first one with constantly updated
subtraction term xoff,i shows devastating performance (Fig. 6.11). Since the latter
uses all the information available, it seemed nearby that it performs better than
the less complex method and closes the remaining little gap to the bound. This
motivates a more in-depth analysis of the resulting error e(l) for both methods.
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Figure 6.11.: Carrier frequency offset induced Bayesian MSE θd in UW-OFDM
and CP-OFDM after derotating by ϕ̂l as CFO compensation means.
Investigation of different UW and pilot subtraction techniques that
incorporate different levels of CFO information. The estimate d̂(l)

has been obtained according to (6.89), with ỹ(l) = ỹ
(l)
c − xoff, ỹ

(l) =

ỹ
(l)
c −xoff,i and ỹ(l) = ỹ

(l)
c −xoff,c. Investigated scenario: G′

d, CAZAC
sequence as UW, and multipath environment with τRMS = 100 ns.

6.3.1. Individual UW and Pilot Offset Compensation

In the first approach with a subtraction of xoff,i, the error vector in (6.71) reads

e
(l) = e−jϕ̂lΛ̃

(l)
H̃
(

B
T
x̃u +Gpp

)

− e−jϕ̂l ˆ̃Λ(l)
H̃
(

B
T
x̃u +Gpp

)

(6.93)

= e−jϕ̂lΛ̃
(l)
xoff − e−jϕ̂l ˆ̃Λ(l)

xoff, (6.94)

with xoff from (6.65). For the sake of simplicity and w.l.o.g., the following deriva-
tions focus only on the kth element e(l)[k] instead of the whole error vector e(l).
With (6.5) and (6.54), e(l)[k] is written as

e(l)[k] = e−jϕ̂l

[

Λ̃
(l)
]

k,∗
xoff − e−jϕ̂l

[
ˆ̃
Λ

(l)
]

k,∗
xoff (6.95)

= e−jϕ̂lejψl

[

Λ̃
]

k,∗
xoff − e−jϕ̂lej

2πǫ̂(Nl+Nu)
N

[
ˆ̃
Λ
]

k,∗
xoff. (6.96)
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For further analysis, let us investigate Λ̃ and
ˆ̃
Λ more in detail. Λ̃ originates from

Λ̃′ ∈ C
N×N defined as

[

Λ̃
′
]

k,m
=

1

N

N−1∑

u=0

ej
2π
N

(m+ǫ−k)u k = 0 . . . N − 1; m = 0 . . . N − 1 (6.97)

=
1

N

N−1∑

u=0

ej
2πǫu
N ej

2π(m−k)u
N (6.98)

by simply deleting rows and columns corresponding to zero subcarriers. Alterna-
tively, this can be expressed as Λ̃ = BT Λ̃′B as already demonstrated in (6.54), the

matrix
ˆ̃
Λ is analogously derived from

ˆ̃
Λ′. The subsequent derivations are based on

Λ̃′ and
ˆ̃
Λ′, the link to Λ̃ and

ˆ̃
Λ is provided at the end. A notation like in (6.98)

enables a compact description of Λ̃ and
ˆ̃
Λ, but further simplifications of the error

e(l)[k] are rather limited. Introducing the vectors aT ∈ C
1×N and m

(k)
m ∈ C

N×1

with

a
T = ej

2πǫuT

N u
T = [0, 1, . . . N − 1] (6.99)

m
(k)
m =

1

N
ej

2π(m−k)u
N (6.100)

delivers
[

Λ̃′
]

k,m
= aTm

(k)
m . Consequently, the kth row of Λ̃′ is obtained as

[

Λ̃
′
]

k,∗
= a

T
M

′(k), (6.101)

where
M

′(k) =
[

m
(k)
0 m

(k)
1 . . .m

(k)
N−1

]

∈ C
N×N . (6.102)

In a very similar fashion, it follows that
[
ˆ̃
Λ

′
]

k,∗
= â

T
M

′(k), (6.103)

with ǫ̂ = ǫ+∆ǫl and

â
T = ej

2πǫ̂uT

N = ej
2π(ǫ+∆ǫl

)uT

N u
T = [0, 1, . . . N − 1]. (6.104)

Λ̃′ and
ˆ̃
Λ′ in (6.101) and (6.103) have now been disaggregated in a constant term

M′(k), which both matrices share together, and a variable and different term aT

and âT , respectively. Before utilizing this notation for the error e(l)[k] described
in (6.96), there is still the relationship Λ̃ = BT Λ̃′B to resolve. Based on (6.101),
Λ̃′ translates to

Λ̃
′ =








aTM′(0)

aTM′(1)

...

aTM′(N−1)







. (6.105)
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Multiplying Λ̃′B yields aTM′(k)B = aTM(k) for all k = 0, 1, . . . N − 1, whereas
M(k) ∈ C

N×(N−Nz ) is a matrix consisting only of columns with indices correspond-
ing to non-zero subcarriers

M
(k) =

[

m
(k)
i0

m
(k)
i1
. . .m

(k)
iN−Nz−1

]

. (6.106)

The subscript ik addresses the kth element of the ordered index set of all non-zero
subcarriers Inz,o defined in (3.41). Finally, Λ̃ is expressed as

Λ̃ = B
T
Λ̃

′
B = B

T








aTM(0)

aTM(1)

...

aTM(N−1)







=








aTM(i0)

aTM(i1)

...

aTM(iN−Nz−1)







, (6.107)

and the kth row of Λ̃ and ˆ̃
Λ reads

[
ˆ̃
Λ
]

k,∗
= â

T
M

(ik) (6.108)

[

Λ̃
]

k,∗
= a

T
M

(ik). (6.109)

Inserting (6.108), (6.109) and the estimate ϕ̂l from (6.80) into (6.96), the error due
to subtracting the wrong UW and pilot term follows as

e(l)[k] = e−jϕ̂l

(

ejψla
T
M

(ik)xoff − ej
2πǫ̂(Nl+Nu)

N â
T
M

(ik)xoff

)

(6.110)

= e−j(ϕl+ϕpil+∆l)
(

ejψla
T − ej

2π(ǫ+∆ǫl
)(Nl+Nu)

N â
T

)

Mkxoff (6.111)

= e−j(ψ+ϕpil+∆l)
(

a
T − ej

2π∆ǫl
(Nl+Nu)

N â
T

)

Mkxoff, (6.112)

the last step as a consequence of ψl − ϕl = −ψ, cf. (6.31). For reasons of com-
pact notation, the nomenclature Mk := M(ik) has been introduced. With the
definition of aT and âT according to (6.99) and (6.104), the error corresponds
to

e(l)[k] =

(

ej
2πǫuT

N − ej
2π∆ǫl

(Nl+Nu)

N ej
2πǫ̂uT

N

)

e−j(ψ+ϕpil+∆l)Mkxoff (6.113)

=

(

ej
2πǫuT

N − ej
2π∆ǫl

(Nl+Nu)

N ej
2π(ǫ+∆ǫl

)uT

N

)

x
′
off (6.114)

=

N−1∑

u=0

(

ej
2πǫu
N − ej

2π∆ǫl
(Nl+Nu)

N ej
2π(ǫ+∆ǫl

)u

N

)

x′
off[u] (6.115)

=

N−1∑

u=0

(

1− ej
2π∆ǫl

(Nl+Nu+u)

N

)

ej
2πǫu
N x′

off[u]. (6.116)
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There are now three terms influencing e(l)[k]. The uth element x′
off[u] of

x
′
off = e−j(ψ+ϕpil+∆l)Mkxoff (6.117)

cannot be deterministically determined due to the random components ∆l (6.80)

and H̃. Each element x′
off[u] experiences a different phase rotation ej

2πǫu
N de-

pendent on the index u. Nonetheless, the rotations do not change the statistical
characteristics of the elements x′

off[u] and can be neglected for this kind of anal-
ysis. Independent of the concrete realization of x′

off[u] though, the expression in
parentheses in (6.116) works as a scaling factor and the error vanishes, as soon as
the expression in the parentheses approaches zero. Following this idea and taking
into account that 1 = ej2πm for m ∈ Z yields

(

1− ej
2π∆ǫl

(Nl+Nu+u)

N

)
!
= 0 (6.118)

2π

N
∆ǫl (Nl +Nu + nu) = 2πm (6.119)

l =

[
1

∆ǫl

m−
(
Nu
N

+
u

N

)]

R

, (6.120)

whereas [·]R denotes rounding to the nearest integer. Obviously, the scaling factor
slightly varies within u and the optimum l is thus ambiguous. Inserting the borders
of n delivers

lu=0 =

[
1

∆ǫl

m−
(
Nu
N

+
0

N

)]

R

=
1

∆ǫl

m (6.121)

lu=N−1 =

[
1

∆ǫl

m−
(
Nu
N

+
N − 1

N

)]

R

(6.122)

=

[
1

∆ǫl

m− 1− Nu + 1

N

]

R

=
1

∆ǫl

m− 1. (6.123)

The results suggest that the minimum error is achieved for either l = 1
ǫ
m or

l = 1
ǫ
m − 1, simulations prove the first case to deliver the minimum. Despite of

this, a big problem is the dependence of the scaling factor and thus of the error
on the OFDM symbol index l. With a period of 1

∆ǫl
the scaling factor varies

between 0 and 2, the latter causing the devastating performance illustrated in
Fig. 6.11.

6.3.2. Common UW and Pilot Offset Compensation

A second alternative approach for CFO compensation is subtracting xoff,c, which
is based on the assumption of a noise free estimate ϕ̂ with ∆l = 0 in (6.80),
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i.e.,

ϕ̂l
!
= ϕl + ϕpil. (6.124)

The remaining additive term of the UW and pilots (assuming a noise free estimate
ϕ̂l) together with (6.75) would then be

e−jϕ̂lΛ̃
(l)
xoff = e−j(ϕl+ϕpil)ejψlΛ̃xoff (6.125)

= e−jϕpile−jψΛ̃xoff = e−jϕpil Λ̃statxoff. (6.126)

Following this approach, the portion to be subtracted is now static, meaning that it
does not change with the OFDM symbol index l anymore. In reality though, a noise
free estimate of ǫ and ϕl is not available, requiring an estimate

e−jϕ̂pil ˆ̃Λstatxoff = e−jϕ̂pile−j
π
N
ǫ̂(N−1) ˆ̃

Λxoff. (6.127)

Consequently, the error after subtraction can be described as

e
(l) = e−jϕ̂lΛ̃

(l)
xoff − e−jϕ̂pil ˆ̃Λstatxoff. (6.128)

The kth element reads

e(l)[k] = e−jϕ̂l

[

Λ̃
(l)
]

k,∗
xoff − e−jϕ̂pil

[
ˆ̃
Λstat

]

k,∗
xoff (6.129)

= e−jϕ̂lejψl

[

Λ̃
]

k,∗
xoff − e−jϕ̂pile−j

2πǫ̂(N−1)
2N

[
ˆ̃
Λ
]

k,∗
xoff. (6.130)

Please bear in mind that the definition of ϕ̂l in (6.124) has just been part of a
thought experiment to obtain Λ̃stat in (6.126), for the following derivation of the
actual error, the definition according to (6.80) with ∆l 6= 0 applies. Carrying out
similar operations as in (6.110)-(6.116), the error follows with x′

off from (6.117)
as

e(l)[k] = e−j(ϕl+ϕpil+∆l)ejψla
T
Mkxoff

− e−jϕ̂pile−j
2π(ǫ+∆ǫl)(N−1)

2N â
T
Mkxoff (6.131)

=

(

e−j(ψ+ϕpil+∆l)aT − e−jϕ̂pile−j
2π(ǫ+∆ǫl)(N−1)

2N â
T

)

Mkxoff (6.132)

=

(

a
T − e−jϕ̂pilej(ϕpil+∆l)e−j

2π∆ǫl(N−1)

2N â
T

)

e−j(ϕpil+∆l)

· e−jψMkxoff (6.133)

=

(

ej
2π
N
ǫuT − e−j(ϕ̂pil−ϕpil)ej∆le−j

2π∆ǫl(N−1)

2N ej
2π
N

(ǫ+∆ǫl)u
T
)

x
′
off (6.134)

=

N−1∑

u=0

(

ej
2π
N
ǫu − e−j(ϕ̂pil−ϕpil)ej∆le−j

2π∆ǫl(N−1)

2N ej
2π
N

(ǫ+∆ǫl)u

)

x′
off[u]

(6.135)
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=
N−1∑

u=0

(

1− e−j(ϕ̂pil−ϕpil)ej∆lej
2π
N

∆ǫl(u−
N−1

2 )
)

ej
2π
N
ǫux′

off[u]. (6.136)

Different to the first alternative CFO compensation approach in Sec. 6.3.1, the scal-
ing factor within the parentheses in (6.136) does not vary with the OFDM symbol
index l anymore, it only depends on the estimation errors ∆l and ∆ǫl . Assuming
moderate estimation errors, the scaling factor always remains close to 0 and never
reaches the upper bound of 2, as it does in the first approach.

In a very surprising way, taking into account all available information does not de-
liver the best results in this case, the MSE of this simplified method is significantly
lower than of the more costly approach from Sec. 6.3.1. Moreover, the simplified
approach almost reaches the performance bound of perfect subtraction (Fig. 6.11).

In summary, calculating
ˆ̃
Λstatxoff to obtain xoff,c results in a little bit more effort

for UW-OFDM to handle CFO properly compared to a CP-OFDM system. How-
ever, the additive term requires an update only when ǫ or H̃ change to a certain
extent, keeping thus the effort manageable.

6.4. Impact of Imperfect CFO Compensation

The CFO induced error caused by subtracting the wrong UW and pilot por-
tion can be kept very small with manageable computational effort (see previous
section). Fig. 6.11 confirms that the performance loss due to incomplete CFO
compensation by derotating with ϕ̂l is much more dominant, motivating more
in-depth investigations. This section aims at reducing the remaining MSE be-
tween the lower bound and the abscissa in Fig. 6.11. A zero UW and perfect
pilot subtraction is assumed for the subsequent considerations to separately carry
out the effects of imperfect CFO compensation, yielding from (6.64) the system
model

ỹ
(l)
c = e−jϕ̂lΛ̃

(l)
H̃Gdd

(l) + e−jϕ̂lv. (6.137)

The received signal has already been corrected by derotating with −ϕ̂l. Conse-
quently, perfect CFO compensation would correspond to multiplying with ejϕ̂lΛ̃(l)−1

and result in a zero MSE (given zero noise). This is of course not a realistic scenario.
Starting with the hypothetical assumption of a noise free estimate ϕ̂l (∆l = 0) has
delivered very good results in the previous section and seems a promising entry
point for this task as well. With ϕ̂l = ϕl + ϕpil, the system model translates
to

ỹ
(l)
c,(exp) = e−j(ϕl+ϕpil)Λ̃

(l)
H̃Gdd

(l) + e−j(ϕl+ϕpil)v (6.138)

= e−jϕpil Λ̃statH̃Gdd
(l) + e−j(ϕl+ϕpil)v. (6.139)

The main idea of this thought experiment is that the CFO effects are the same for
all OFDM symbols, thus simplifying further compensation techniques significantly.
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6. Carrier Frequency Offset

Multiplying with ejϕpil Λ̃−1
stat would cancel out all CFO effects, but both, the con-

stant phase offset and the matrix depend on ǫ, hence only estimates of them are
available. Furthermore, a matrix inversion comes along with an additional compu-
tational overhead. According to (6.34), Λ̃stat shows high similarities to a unitary
matrix, therefore the inversion may be approximated as

Λ̃
−1
stat ≈ Λ̃

H
stat. (6.140)

Based on the results of this thought experiment, the data estimate follows as

d̂
(l) = Eejϕ̂pil ˆ̃Λstatỹ

(l)
c (6.141)

= Eejϕ̂pil ˆ̃ΛH
state

−jϕ̂lΛ̃
(l)
H̃Gdd

(l) +Eejϕ̂pil ˆ̃ΛH
state

−jϕ̂lv (6.142)

= Eejϕ̂pil ˆ̃ΛH
state

−j(ϕl+ϕpil+∆l)Λ̃
(l)
H̃Gdd

(l)

+Eejϕ̂pil ˆ̃ΛH
state

−j(ϕl+ϕpil+∆l)v (6.143)

= ej(ϕ̂pil−ϕpil−∆l)E
ˆ̃
Λ
H
statΛ̃statH̃Gdd

(l) + ej(ϕ̂pil−ϕpil−∆l−ϕl)E
ˆ̃
Λ
H
statv. (6.144)

In contrast to (6.90) with ϕ̂off = ϕ̂SI−ϕ̂pil, the phase offset compensation comprises

only the impact of ϕpil, ϕSI is expected to vanish based on ˆ̃
ΛH

statΛ̃stat ≈ I. Fig. 6.12
unveils a significant reduction of the MSE due to the improved CFO compensation
method. Additionally, a reference curve with perfect conditions, i.e., Λ̃−1

stat and
ϕ̂pil = ϕpil, shows only a minor performance loss due to the applied approximations.
Furthermore, the benefit of offset compensation becomes more dominant, since ϕpil

and ϕSI do not cancel each other as it happens in (6.90) to a certain extent. Even
in absolute terms the gain of offset compensation approximately doubles compared
to the case of an UW-OFDM system which only applies simple derotation by ϕ̂l
as a CFO compensation means (Fig. 6.10, UW-OFDM with a CAZAC sequence
as UW). Also for CP-OFDM, the performance improves significantly due to the
advanced CFO compensation technique. The difference to UW-OFDM is reduced
compared to the phase derotation case in Fig. 6.10, but it still performs worse than
UW-OFDM.

6.5. Estimation of Phase Rotation and Carrier Frequency Offset

Usually, a sufficient countermeasure against CFO is derotating with e−jϕl at the
receiver, which is also known as carrier phase synchronization. According to (6.29),
the lth OFDM symbol experiences a phase rotation of

ϕl =
2π

N
ǫ

(

Nl +Nu +
N − 1

2

)

. (6.145)
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Figure 6.12.: Carrier frequency offset induced Bayesian MSE θd in UW-OFDM and
CP-OFDM. Investigation of advanced CFO compensation techniques
on top of a phase derotation by ϕ̂l. Zero UW and perfect pilot sub-
traction with e

(l)
xp = 0 is assumed for the UW-OFDM case. The

estimate d̂(l) has been obtained according to (6.144). Investigated
scenario: G′

d and multipath environment with τRMS = 100 ns.

The phase is therefore linearly increasing from OFDM symbol to OFDM symbol
with

ϕ∆ = ϕl − ϕl−1 (6.146)

=
2π

N
ǫ

(

Nl +Nu +
N − 1

2

)

− 2π

N
ǫ

(

N(l − 1) +Nu +
N − 1

2

)

(6.147)

=
2π

N
ǫ (Nl −N(l − 1)) =

2π

N
ǫN = 2πǫ. (6.148)

There are various approaches for estimating the phase rotation ϕl in OFDM, e.g.,
based on data symbols [84, 85] known as decision directed schemes or cyclic prefix
based methods [86, 87]. Another common way is the utilization of pilot symbols p
in the frequency domain [82]

ϕ̂l = arg
(

p
H
Wpp̂

(l)
)

. (6.149)

Here, p̂(l) denotes the extracted pilot symbols from the lth received OFDM symbol
andWp = diag (wp) is a diagonal weighting matrix withwp ∈ R

0
+

(Np×1) to rate the
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pilots regarding their estimation quality (e.g., based on the inverse main diagonal
of an error covariance matrix). In order to evaluate the applicability of this concept
to UW-OFDM as well, let us investigate the effects of a CFO on the pilot symbols
more in detail. The general definition of a received OFDM symbol introduced in
(6.63) serves as starting point

ỹ
(l)
d ≈ Λ̃

(l)
H̃Gpp+ Λ̃

(l)
H̃Gdd

(l) + Λ̃
(l)
H̃B

T
x̃u + v. (6.150)

To estimate ϕl (which is part of Λ̃(l) and will be extracted a little bit later for rea-
sons of compact notation) based on the pilot symbols, estimation theory suggests to
transform the affine model into a linear one, cf. Sec. 2.3. Since the data vector d(l)

is unknown, subtracting the corresponding term would be quite difficult. However,
data and pilot symbols are arranged orthogonal in the frequency domain, hence
considering only the pilot subcarriers would solve this issue. The only degrading
effect of the data symbols on the estimate of the pilot symbols arises then from
intercarrier interference, which is normally in an acceptable range. This effect is
experienced by all OFDM systems. Specific to UW-OFDM though is the second
additive term caused by the UW. Contrary to the data symbols, the UW itself
is known to the receiver, but this term is also problematic due to Λ̃(l). In other
words, we aim to estimate ϕl and therefore Λ̃(l) on the one hand, but also need
to know them for the estimation process itself on the other hand. Investigations
not detailed here verify that subtracting an approximation H̃BT x̃u instead leads
to poor estimates of ϕl, hence this is also not an adequate solution. Of course,
iterative algorithms could solve this issue, but would lead to a high computational
complexity. Therefore, an affine model serves as starting point anyway and an es-
timator E′

p = EpH̃
−1 consisting of two stages is introduced. The first stage inverts

the multipath channel, and the second stage Ep =
[
I 0

]
PTp extracts the pilots

from the frequency domain vector, with a permutation matrix Pp introduced in
(5.11). Ep is only a suboptimum estimator from a performance point of view, as
it is not capable of exploiting the portion of the pilots spread on the non-pilot
subcarriers due to Gpp. This for instance would be possible with Ep = G†

p, which
denotes the Moore-Penrose Pseudo-Inverse of the pilot generator matrix. Never-
theless, the suboptimum approach does not require the subtraction of the data
and UW dependent offset term in (6.150) and thus simplifies the estimation task
greatly. Applying E′

p leads to

p̂
(l) = EpH̃

−1
ỹ
(l) (6.151)

= EpH̃
−1

Λ̃
(l)
H̃Gpp+EpH̃

−1
Λ̃

(l)
H̃

−1
Gdd

(l) +EpH̃
−1

Λ̃
(l)
H̃B

T
x̃u

+EpH̃
−1

B
T
v (6.152)

= EpH̃
−1

Λ̃
(l)
H̃
(

Gpp+B
T
x̃u

)

+ d
(l)
ICI + v

′′ (6.153)

= EpΛ̃
(l)
H

(

Gpp+B
T
x̃u

)

+ d
(l)
ICI + v

′′. (6.154)
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As already mentioned, pilot and data symbols are actually orthogonal in frequency
domain, but Λ̃(l) introduces intercarrier interference resulting in

d
(l)
ICI = EpH̃

−1
Λ̃

(l)
H̃Gdd

(l), (6.155)

with d
(l)
ICI ∈ C

(Np×1). The vector v′′ ∈ C
(Np×1) represents additive noise according

to

v
′′ = EpH̃

−1
B
T
v. (6.156)

Since Λ̃(l) has entries off the main diagonal and is only approximately a diagonal
matrix, multiplying with H̃−1 cannot fully equalize the multipath channel H̃, these
effects are incorporated in

Λ̃
(l)
H = H̃

−1
Λ̃

(l)
H̃. (6.157)

For an easier analysis, a single pilot symbol is considered in the following, which
is given as

p̂(l)[k] = [Ep]k,∗ Λ̃
(l)
H

(

Gpp+B
T
x̃u

)

+ d
(l)
ICI[k] + v′′[k] (6.158)

= [Ep]k,∗ Λ̃
(l)
H

(

[Gp]∗,k p[k] +B
T
x̃u

)

+ [Ep]k,∗ Λ̃
(l)
H

Np−1
∑

m=0,m6=k
[Gp]∗,m p[m] + d

(l)
ICI[k] + v′′[k] (6.159)

= e
T
k Λ̃

(l)
H

(

gkp[k] +B
T
x̃u

)

+ e
T
k Λ̃

(l)
H

Np−1
∑

m=0,m6=k
gmp[m] + d

(l)
ICI[k] + v′′[k]

(6.160)

= e
T
k Λ̃

(l)
H

(

gkp[k] +B
T
x̃u

)

+ p
(l)
ICI[k] + d

(l)
ICI[k] + v′′[k]. (6.161)

Consequently, there will be four terms influencing the measured angle. The additive
noise term v′′[k] should not require further explanation. The third term d

(l)
ICI[k]

models the intercarrier interference induced by data symbols. This random term
has similar influence as additive noise and degrades the estimation quality to a
certain extent. The second term

p
(l)
ICI[k] = e

T
k Λ̃

(l)
H

Np−1
∑

m=0,m6=k
gmp[m] (6.162)

comprises the intercarrier interference induced by the other pilot symbols. Since
the pilot symbols are constant, this term is also constant (given a fixed CFO
ǫ), which leads to a constant estimation error. The pilot symbols are usually
uniformly distributed over the available spectrum, which results in a distance of
several subcarriers among them. Hence, the influence of this term is limited and
can be neglected. The first term in (6.161) comprises the actual pilot symbol,
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an additive offset caused by the UW and a part causing the phase rotation to be
estimated.

Merging the last three terms in (6.161) in a new additive noise term v′′′[k] =

p
(l)
ICI[k] + d

(l)
ICI[k] + v′′[k], the estimation of ϕl reads

ϕ̂l = arg
(

p
H
Wpp̂

(l)
)

(6.163)

= arg





Np−1
∑

k=0

p[k]Hwp[k]p̂
(l)[k]



 (6.164)

= arg





Np−1
∑

k=0

e
T
k Λ̃

(l)
H

(

gkwp[k]|p[k]|2 +B
T
x̃uwp[k]p[k]

H
)

+ v′′′[k]wp[k]p[k]
H





(6.165)

= arg

(Np−1
∑

k=0

ejϕle
T
k Λ̃H,stat

(

gkwp[k]|p[k]|2 +B
T
x̃uwp[k]p[k]

H
)

︸ ︷︷ ︸
pilot term

+

Np−1
∑

k=0

v′′′[k]wp[k]p[k]
H

︸ ︷︷ ︸
noise term

)

, (6.166)

with

Λ̃H,stat = H̃
−1

Λ̃statH̃. (6.167)

The angle ϕ̂l depends now on two sources, whereas the first one is denoted as pilot
term and the second one as noise term. As a next step, the effects of both sources
on ϕ̂l shall be separated. Taking into account the average power of the pilot term
to be much larger than of the noise term, the argument in (6.166) will mainly be
determined by the pilot term, i.e., it almost equals an argument only taken from
the pilot term. This translates to the model

ϕ̂l = arg





Np−1
∑

k=0

ejϕle
T
k Λ̃H,stat

(

gkwp[k]|p[k]|2 +B
T
x̃uwp[k]p[k]

H
)



+∆l

(6.168)

= arg



ejϕl

Np−1
∑

k=0

e
T
k Λ̃H,statgkwp[k]|p[k]|2 + e

T
k Λ̃H,statB

T
x̃uwp[k]p[k]

H



+∆l,

(6.169)
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whereas ∆l denotes a minor additive deviation approximated as a function of

∆l ≈ f





Np−1
∑

k=0

v′′′[k]wp[k]p[k]
H



 . (6.170)

In reality, ∆l would of course depend on both, the noise as well as the pilot term
in (6.166). Nonetheless, due to the inequality in power distribution, modelling ϕ̂l
as a linear combination of two angles and reducing the dependence of ∆l to only
the noise term seems to be appropriate. A further specification of the function f(·)
is not of relevance for this analysis and is therefore disregarded. The expression
in (6.169) is still quite complex and requires additional simplification to allow an
intuitive interpretation of the impact factors on ϕ̂l. Let us therefore introduce the
definitions

apil,ke
jϕpil,k = e

T
k Λ̃H,statgkwp[k]|p[k]|2 + e

T
k Λ̃H,statB

T
x̃uwp[k]p[k]

H (6.171)

apile
jϕpil =

Np−1
∑

k=0

apil,ke
jϕpil,k , (6.172)

then the estimated phase rotation ϕ̂l can finally be written as

ϕ̂l = arg



ejϕl

Np−1
∑

k=0

e
T
k Λ̃H,statgkwp[k]|p[k]|2 + e

T
k Λ̃H,statB

T
x̃uwp[k]p[k]

H



+∆l

(6.173)

= arg



ejϕl

Np−1
∑

k=0

apil,ke
jϕpil,k



+∆l (6.174)

= arg
(

ejϕlapile
jϕpil

)

+∆l (6.175)

= ϕl + ϕpil +∆l. (6.176)

Contrary to conventional OFDM, an estimate based on frequency pilot tones in-
corporates an additional phase offset ϕpil. This phase offset is influenced by the
CFO ǫ due to Λ̃stat, the multipath channel H̃, the UW x̃u, the utilized estimator
Ep as well as the generator matrix Gp, and impacts the detection performance of
the data symbols in (6.66)-(6.72). In detail, assuming first that derotating by ϕl
sufficiently cancels the CFO effects and thus Λ̃(l), and second that the estimator
neutralizes the channel and the generator matrix, a phase offset ϕpil remains to be
compensated. This angle denotes an offset as the result of averaging over several
single estimates. To avoid the averaging operation for the moment due to reasons
of easier explanation, the offset from a single estimate ϕpil,k is considered in the
following. At the end, a link back to ϕpil will complete the analysis. Going back
to (6.173), there are two sources causing the phase offset. The UW is the first
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source and a pretty obvious one, as it has not been subtracted at the beginning of
the estimation process in (6.150). The second source is an additional scaling and
rotating of the pilot symbol, which in turn originates from the fact that Gp places
a pilot symbol at the dedicated subcarrier position, but also spreads portions of it
over the remaining subcarriers to fulfill the zero word constraint of UW-OFDM,
cf. (5.2). In combination with Λ̃(l), the portions of a pilot symbol spread over sev-
eral subcarriers are leaked back. This leads in a certain way to a self interference
of the pilot symbols, which has to be accounted for. The same problem has already
been described for the data symbols in Sec. 6.2. Note that this effect is specific for
UW-OFDM and does not occur in conventional OFDM.

6.5.1. Phase Offset Compensation

The first step towards offset compensation in (6.176) is now to obtain an estimate of
ϕpil. There are two problems emerging in this context as a result of the dependence
of ϕpil on ǫ due to Λ̃H,stat. First, a straightforward relationship between ϕpil and
ǫ is not immediately apparent from (6.173). Second, an estimate ϕ̂pil requires
also an estimate ǫ̂, which in turn has somehow be obtained from ϕ̂l based on the
relationship between ϕl and ǫ in (6.145). The following part will establish a simple
model between ϕpil and ǫ in a first step, and resolve the issues resulting from the
mutual dependencies between ϕl, ϕpil and ǫ in a second step. Fig. 6.13 plots the
phase offset ϕpil,k with k = 0 for the pilot generator matrices G′

p and G′′
p from

chapter 5 in case of H̃ = I, Wp = |H̃p|2 = I and x̃u 6= 0. Here, H̃p ∈ C
Np×Np

denotes a diagonal matrix with the channel coefficients corresponding to the pilot
subcarriers on the main diagonal. It turns out that the offset is approximately an
affine function of ǫ for the relevant CFO range for a given setup. As a first step to
account for the offset, the affine model

ϕpil,k = mpil,kǫ+ qk (6.177)

is introduced. Considering the case ǫ = 0 for any realization of H̃, the matrix
Λ̃H,stat in (6.173) collapses to an identity matrix, resulting in eTk Λ̃H,statgk = 1
and eTk Λ̃H,statB

T x̃u = x̃u[ip,k], with ip,k addressing the kth element of the ordered
pilot subcarrier index set Ip,o = (Ip, <) defined as

Ip,o =
{
ip,0, ip,1, . . . ip,Np−1

}
. (6.178)

In this context, a single estimate follows then as

ϕ̂pil,k|ǫ=0 = qk (6.179)

= arg
(

wp[k]|p[k]|2 + x̃u[ip,k]wp[k]p[k]
H
)

+∆l (6.180)

= wp[k] arg
(

|p[k]|2 + x̃u[ip,k]p[k]
H
)

+∆l (6.181)

≈ wp[k] arg
(

|p[k]|2 + x̃u[ip,k]p[k]
H
)

. (6.182)
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Figure 6.13.: UW-OFDM specific phase offset ϕpil,k (with k = 0) when estimating
the phase rotation ϕl caused by a CFO for H̃ = I, x̃u 6= 0, σ2

v = 0
and Wp = I.

Clearly, the constant phase offset qk originates from the presence of a non-zero
UW and vanishes in case of x̃u = 0 and thus x̃u[ip,k] = 0. The actual value
of qk depends on the UW offset at the specific subcarrier and the pilot symbol
itself. The weighting factor wp[k] only plays a role when determining the averaged
estimate ϕ̂pil in (6.172). A simple way of avoiding the constant offset qk in the
estimate would be the definition of new pilots p′ = p+ x̃u,Ip , where x̃u,Ip denotes
a vector with elements out of x̃u at the corresponding pilot subcarrier positions.

The estimation of ϕl follows then according to ϕ̂l = arg
(

p′HWpp̂
(l)
)

. The only

difference is the transform of the affine into a linear model in (6.177), everything
else in the estimation process stays the same.

The variable part mpil,kǫ of the phase offset exists independent of the presence of
a zero or non-zero UW. The slope mpil,k is determined by both sources, the UW
and the rotation and scaling of the pilot symbol

mpil,kǫ = arg
(

e
T
k Λ̃H,statgkwp[k]|p[k]|2

+e
T
k Λ̃H,statB

T
x̃uwp[k]p[k]

H
)

− qk,
(6.183)

which in turn depend on the channel realization H̃, the generator matrix Gp, the
estimator Ep, and the pilot symbols p. Regardless of the specific values of these
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parameters, the affine model for ϕpil,k as a function of ǫ holds in the relevant
range.

The very same model also holds for the averaged estimate

ϕpil = mpilǫ+ q. (6.184)

Note that in general, mpil and q are not obtained from simply averaging over
mpil,k and qk, respectively. However, the relationship between the single and the
averaged estimate is not required for compensating the offset. As already es-
tablished, the model of a single estimate has only been introduced to simplify
explanations.

In a real communication system, the parameters of the affine model for ϕpil are
easily determined. Given a certain setup and assuming knowledge of the channel H̃
or an estimate of it (which does not induce an additional effort as it is required for
other purposes anyway), the parameters can be derived by numerically evaluating
ϕpil at two different points, e.g., for ǫ = 0 and ǫ = 0.1. Inserting then (6.184) into
(6.176) yields

ϕ̂l = ϕl + ϕpil +∆l (6.185)

= ϕl +mpilǫ+ q +∆l. (6.186)

Compensating the offset delivers a new estimate

ˆ̂ϕl = ϕ̂l − ϕ̂pil = ϕ̂l −mpilǫ̂− q. (6.187)

Offset Compensation for Data Estimation As already discussed in Sec. 6.2, the
data symbols d(l)[k] in (6.78) experience also phase rotation effects labeled as
ϕSI to stress the source self interference. Conducting the very same experiments
as for ϕpil shows that except for a zero offset q = 0, the same linearization
model

ϕSI = mSIǫ (6.188)

applies. In this context, the remaining phase offset ϕoff in (6.88) can be modelled
and estimated as

ϕoff = ϕSI − ϕpil = (mSI −mpil) ǫ (6.189)

ϕ̂off = (mSI −mpil) ǫ̂. (6.190)

Offset Compensation for CFO Estimation The presented linearization highlights
the simple relationship of the discussed phase offsets and the CFO ǫ. For compen-
sation though, there is still the estimate ǫ̂ missing, which will be provided next.
Note that the CFO ǫ is a linear function of ϕl as shown in (6.145) and could
therefore easily be derived. Unfortunately, the available estimate ϕ̂l in (6.176)
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additionally incorporates an unknown offset ϕpil, which is not accounted for in
(6.145). Fortunately, the results presented in this section support an approxima-
tion of ϕpil as a linear function of ǫ. Therefore, introducing the prefactor 2π

N
ǫ from

(6.145) to obtain mpil = Npil
2π
N
ǫ with a constant Npil, ǫ̂ can elegantly be calculated

as

ǫ̂l = ǫ +∆ǫl (6.191)

= ϕ̂l
N

2π
(
N−1

2
+ (Nl +Nu) +Npil

) . (6.192)

The error ∆ǫl in ǫ̂l decreases with increasing ϕ̂l due to Nl in the denominator.

However, the proposed estimation algorithm ϕ̂l = arg
(

pHWpp̂
(l)
)

implicitly ap-

plies a modulo operation on ϕ̂l, as it can only deliver values within the range [0, 2π),
whereas the estimator in (6.192) requires the total angle accumulated from the be-
ginning of the burst up to and including OFDM symbol l. This restriction limits the
applicability to angles ϕl not exceeding 2π and thus also the estimation accuracy.
One way to circumvent this restriction is averaging over several estimates ǫ̂l, gained
from the knowledge that the angle increases linearly with ∆l = ϕl − ϕl−1 = 2πǫ
between two OFDM symbols, cf. (6.148). Of course, this requires the CFO to be
constant for the period to be averaged over.

6.5.2. Performance Evaluation

The preceding analysis has unveiled a few differences in pilot based CFO estimation
between UW-OFDM and CP-OFDM. The question remains, whether these differ-
ences have an impact on the estimation quality, which is answered next. So far,
the utilized non-systematically encoded generator matrices have been normalized
to be energy invariant, yielding GHG = αI with α = 1. For the BER simulations
presented in chapter 4, the value of α is actually irrelevant for the performance, as
it is considered in the Eb/N0 calculation. In other words, given a fixed SNR, the
noise increases proportionally with α. For the CFO estimation part, the value of α
actually does matter. In case of zero additive noise as considered in all simulation
results throughout this chapter, d

(l)
ICI defined in (6.155) is the only relevant source of

disturbance. Hence, decreasing α automatically enhances the estimation quality by
decreasing d

(l)
ICI, but this is simply due to normalization issues. In order to enable a

fair comparison with CP-OFDM, let α =
√
N ′
d/Nd, with N

′
d denoting the number

of data subcarriers of the reference CP-OFDM system, to ensure that the data
induced mean power per non-pilot subcarrier is the same for both systems. This is
even slightly advantageous for CP-OFDM, as in UW-OFDM the total mean power
per non-pilot subcarrier is even higher due to the spread of the pilots according to
Gpp. Despite this advantage, the estimation quality in CP-OFDM is significantly
beyond that of UW-OFDM, see Fig. 6.14. The results for the latter are obtained
for a CAZAC sequence as UW, however, they only slightly vary for a zero or any

167



6. Carrier Frequency Offset

0 1 · 10−2 2 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1
0

1

2

3

4

5

6

7
·10−2

carrier frequency offset ǫ

B
M
S
E

E
{

|ϕ
−

ˆ̂ ϕ
|2}

CP-OFDM

UW-OFDM

Figure 6.14.: Comparison of estimation error of the CFO induced symbol rotation
ϕl between UW-OFDM and CP-OFDM in terms of Bayesian MSE.
Investigated scenario: G′

d, CAZAC sequence as UW, Wp = |H̃p|2,
and multipath environment with τRMS = 100 ns.

other non-zero UW. Hence, the UW does not cause the difference in estimation per-
formance. The reason for the difference gets apparent, when evaluating the mean
power of the data induced intercarrier interference

σ2
dICI

=
1

Np

Np−1
∑

k=0

E
{

d
(l)
ICI[k]d

(l)
ICI[k]

H
}

(6.193)

=
1

Np

Np−1
∑

k=0

Ee
T
k Λ̃

(l)
H Gdd

(l)
d
(l)H

G
H
d Λ̃

(l)
H
H(eTk )

H (6.194)

= σ2
d

1

Np

Np−1
∑

k=0

e
T
k Λ̃H,statGdG

H
d Λ̃

H
H,stat(e

T
k )
H , (6.195)

where

Λ̃
(l)
H = ejϕlΛ̃H,stat (6.196)

and d
(l)
ICI[k] denotes the kth element of the vector d

(l)
ICI in (6.155). In order to

meet the notation in (6.195), CP-OFDM is modelled by a generator matrix Gd =

P
[
I 0

]T
, with a permutation matrix determining the correct position of the
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data symbols. The correlations introduced by the UW-OFDM generator matrix
reduce the resulting interferences significantly, yielding σ2

dICI,cp
> σ2

dICI,uw
for an

increasing CFO as shown in Fig. 6.15. The mean power of the pilot induced
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Figure 6.15.: Comparison between UW-OFDM and CP-OFDM of the average
mean power of the ICI experienced by a pilot symbol. The ICI is
separated into the data part and the part induced by the other pilots.
Investigated scenario: G′

d, CAZAC sequence as UW, and multipath
environment with τRMS = 100 ns.

intercarrier interference

σ2
pICI

=
1

Np

Np−1
∑

k=0

E
{

p
(l)
ICI[k]p

(l)
ICI[k]

H
}

(6.197)

with p
(l)
ICI[k] = eTk Λ̃

(l)
H

∑Np−1

m=0,m6=k gmp[m] from (6.162) is a little bit higher for
UW-OFDM, but as expected of no relevance. In the end, UW-OFDM clearly
outperforms CP-OFDM in terms of pilot based estimation of the CFO induced
phase rotation ϕl.
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6.5.3. Estimation Setup

For the results presented in Sec. 6.3 and 6.4, ǫ has been estimated once per burst
based on the estimated phase rotation of the first OFDM symbol ϕ̂0

ǫ̂l = ǫ̂ = ǫ+∆ǫ0 = ϕ̂0
N

2π
(
N−1

2
+Nu +Npil

) . (6.198)

As mentioned, averaging over several estimates would significantly improve the
estimation accuracy, the presented results utilizing ǫ̂ from (6.198) represent thus
a lower performance bound. The phase rotations ϕ̂l are estimated according to
(6.149) with Wp = |H̃p|2. The equalizer is the same as for CP-OFDM and has
been chosen to be Ep =

[
0 I

]
PTp . The results are obtained for the noise free case

to distinctly elaborate the degrading effects of a CFO. Note that the main purpose
of this chapter is not to find the best estimation method for ϕl and ǫ, the aim is to
show the sensibility of UW-OFDM regarding CFO and to compare it against CP-
OFDM. Therefore, a simple pilot based estimation is not only sufficient, the same
estimation method can also be used for both UW-OFDM and CP-OFDM. This
e.g., would not be possible, if the UW would be used in the estimation process).
Consequently, this decision allows to focus all considerations on the CFO resilience
of both systems.

6.6. Bit Error Ratio Simulations

The previous sections have isolated the CFO effect on UW-OFDM to determine
its impact without being superimposed by other effects. This section aims at
investigating the CFO impairments on UW-OFDM in the context of a whole com-
munication system. BER simulations for coded as well as uncoded transmission in
a frequency selective environment serve as a performance means. The results are
obtained in the same way as in Sec. 3.5.3 and 4.3.2 by averaging over a fixed set of
104 different channel instances (see Sec. 2.4.3) drawn from the same channel model
(see Sec. 2.4.2). Simulations have been conducted for various CFO values within
the range 0.0 ≤ ǫ ≤ 0.1. Since all lead to a performance within the corridor spanned
by the boarder values 0.0 and 0.1, the results corresponding to intermediate CFO
values are omitted to enhance clarity in the figures. Further, a reference curve
determining the BER results without CFO is included in the following figures to
provide principle performance bounds. Note that the UW-OFDM system utilized
in this chapter originates from chapter 5 and is not completely identical to the one
used in chapter 4. Hence, the curves without CFO presented in the following are
also not identical with the ones in chapter 4. Since the pilots take over the required
estimation task of the CFO induced phase rotation ϕl, a zero-word as UW is ap-
plied. Except for the beforementioned reference curves, all presented figures always
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incorporate a CFO compensation by multiplying the lth OFDM symbol with e−jϕ̂l ,
which is therefore not explicitly labeled in the legend.

Fig. 6.16 compares the BER performance of UW-OFDM and CP-OFDM for ǫ = 0.0
and ǫ = 0.1 for uncoded transmission. As expectable and similar to the results
without CFO in Fig. 4.9, UW-OFDM significantly outperforms CP-OFDM in the
high Eb/N0 region. Both systems though experience a saturating BER character-
istic in case of ǫ = 0.1. Note that the curves without CFO slightly differ from
ǫ = 0.0, as in the latter case, the CFO estimation algorithm might still detect
ϕ̂l 6= 0 (or eqivalently ǫ̂ 6= 0) and therefore introduce a certain error. However, the
simulations reveal differences only in the low Eb/N0 region, which is better visible
in Fig. 6.17, a zoomed version of Fig. 6.16.
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Figure 6.16.: BER comparison of UW-OFDM and CP-OFDM for uncoded trans-
mission in the presence of a CFO in a multipath environment with
τRMS = 100 ns.

BER results for coded transmission with a coding rate of r = 1/2 are illustrated
in Fig. 6.18. The two most right curves correspond to ǫ = 0.1 and testify a per-
formance difference of 0.8 dB in favor of UW-OFDM. The two most left curves
denote the case without CFO with a difference of 0.9 dB, again advantageous for
UW-OFDM. The tendency of both results were expectable this way. Hence, this
makes the outcome for ǫ = 0.0 represented by the two middle curves even more
surprising. Of course, both UW-OFDM and CP-OFDM would experience a perfor-
mance loss compared to the case without CFO, a conclusion already indicated by
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Figure 6.17.: BER comparison of UW-OFDM and CP-OFDM for uncoded trans-
mission in the presence of a CFO in a multipath environment with
τRMS = 100 ns (zoom).
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Figure 6.18.: BER comparison of UW-OFDM and CP-OFDM for coded transmis-
sion with r = 1/2 in the presence of a CFO in a multipath environ-
ment with τRMS = 100 ns.
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the uncoded BER curves in Fig. 6.17. However, the results in Fig. 6.17 also identify
UW-OFDM as the better system, it is thus not immediately apparent why this has
changed in the coded case. In order to determine the cause, Fig. 6.19 displays the
results for coded transmission with hard decision decoding. This means that the
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Figure 6.19.: BER comparison of UW-OFDM and CP-OFDM for coded transmis-
sion with r = 1/2 and hard decision decoding in the presence of a
CFO in a multipath environment with τRMS = 100 ns.

reliability information available in form of LLRs is not used (details to the LLRs
are given in appendix A). Instead, the Viterbi decoder is simply fed with a sequence
of binary symbols associated with the transmit data symbols that are closest to the
data estimates (e.g., obtained after LMMSE estimation) in terms of the Euclidean
distance. Here, UW-OFDM beats CP-OFDM again in any case, namely by 2.2 dB
and 5.8 dB for ǫ = 0.0 and ǫ = 0.1, respectively.

To sum up all findings so far, UW-OFDM beats CP-OFDM in any case for uncoded
transmission as well as coded transmission with hard decision decoding. Thus, the
reason for the unexpected performance loss of UW-OFDM over CP-OFDM in case
of soft decision decoding has to lie in an inaccurate reliability information that is
handed over to the Viterbi decoder. This inaccuracy results from not incorporating
the CFO effects into the LLR values, but nevertheless, both UW-OFDM and CP-
OFDM suffer from the same lack of information. Hence, it seems that UW-OFDM
is more sensitive on the CFO induced inaccuracy than CP-OFDM. According to the
analysis in Sec. 6.1, a CFO induces three effects on a UW-OFDM subcarrier symbol.
First, the symbol will be attenuated, but this effect can be neglected. Second,
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6. Carrier Frequency Offset

each symbol experiences intercarrier interference, which has mathematically been
modelled by Λ̃stat in this chapter. Third, each UW-OFDM frequency domain
symbol experiences a phase rotation by ϕl. In order to determine the critical
source of error within the LLRs, Fig. 6.20 visualizes the BER performance for soft
decision decoding in case of ϕ̂l = ϕl, leaving the intercarrier interference and the
negligible attenuation as only sources not reflected in the reliability information.
Now, UW-OFDM outperforms CP-OFDM again in any case, even if soft decision
decoding is applied. In conclusion, this leaves the non-incorporation of the error
induced by derotating with ϕ̂l 6= ϕl in the LLRs as responsible source of the
performance degradation of UW-OFDM. In other words, only with an adequate
error model, UW-OFDM maybe able to surpass CP-OFDM in every scenario.
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Figure 6.20.: BER comparison of UW-OFDM and CP-OFDM for coded transmis-
sion with r = 1/2 and perfect derotation with ϕ̂l = ϕl in the presence
of a CFO in a multipath environment with τRMS = 100 ns.

Fig. 6.21 provides BER values for coded transmission with a coding rate of r = 3/4.
Similar to r = 1/2, the results for the case without CFO defeat the case with
ǫ = 0.0. However, a substantial difference is only visible in the lower Eb/N0 region
till approximately 12 dB. After that the error in ϕ̂l is small enough such that it is
not reflected in the BER performance anymore. Contrary to r = 1/2, UW-OFDM
is now superior to CP-OFDM in any case with soft decision decoding and therefore
regardless of the error in the LLRs introduced by inaccurate derotations with ϕ̂l.
The gain of UW-OFDM over CP-OFDM is 1.5 dB for ǫ = 0.0 and increases to
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3.4 dB for ǫ = 0.1. For the high Eb/N0 range, this behavior is easily explained
by the accurate estimates ϕ̂l, leading to LLR values with negligible approximation
error. For the low Eb/N0 range, errors in the LLRs in the same scale as for
r = 1/2 occur. Nonetheless, the principle gain of UW-OFDM over CP-OFDM,
i.e., without a CFO, is significantly larger for r = 3/4 compared to r = 1/2.
Further, this punctured code seems to be less sensitive to errors in the reliability
information. In contrast to the case for r = 1/2, these errors do not translate to a
BER performance degradation of UW-OFDM in a scale such that in certain cases
CP-OFDM shows better results than UW-OFDM.
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Figure 6.21.: BER comparison of UW-OFDM and CP-OFDM for coded transmis-
sion with r = 3/4 in the presence of a CFO in a multipath environ-
ment with τRMS = 100 ns.
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So far, only the simple method of derotating by ϕ̂l has been considered in the
BER simulations. In a next step, the more sophisticated methods from Sec. 6.4
shall be investigated. Since a considerable gain over the derotating approach can
only be expected in the high CFO range, cf. Fig. 6.12, only the case of ǫ = 0.1 is
treated. Furthermore, simulations demonstrated that the biggest gain is achieved
for r = 3/4, hence elaborations are restricted to this case. Two advanced methods
are considered with the following compensation parameters on top of derotating
by ϕ̂l:

• ϕoff and Λ̃−1
stat, or

• ϕ̂off and
ˆ̃
ΛH

stat.

Both concepts have already been analyzed in terms of their MSE in Fig. 6.12,
whereas the first one denotes a principle performance bound, and the second one a
low cost implementation of the first concept. For the latter, ǫ̂ is obtained by aver-
aging over 200 estimates from 200 OFDM symbols. Fig. 6.22 shows for UW-OFDM
and CP-OFDM in each case 4 curves, whereas two serve as reference. One denotes
the performance, if the CFO is compensated only by derotating with ϕ̂l, and one
curve represents the performance in case of ǫ = 0.0. Both have already been part
in Fig. 6.21. Starting with the best method, i.e., additionally compensating with
Λ̃−1

stat and ϕoff improves the BER performance of UW-OFDM by 0.5 dB, reducing
the distance to the optimum without CFO to 0.2 dB. The most impressive gain,
however, is obtained for the CP-OFDM system. Here, the performance improves
by 2.3 dB at a BER of 10−6, leaving a residual gap to the optimum case of 0.3 dB.
These results have already been indicated by the MSE analysis, which showed that
the performance difference between UW-OFDM and CP-OFDM reduces for the
advanced CFO compensation methods.

Unfortunately and not supported by the MSE analysis, the computationally less

complex method with
ˆ̃
ΛH

stat and ϕ̂off cannot keep up with the other advanced com-
pensation method. The gain over simply derotating with ϕ̂l reduces to 0.2 dB
for UW-OFDM and 0.8 dB for CP-OFDM. These results come by some surprise,
since the MSE analysis in Fig. 6.12 identified both approaches as almost equally
good, therefore a similar BER performance might be expected. More in-depth
investigations by evaluating the results for Λ̃H

stat and ϕ̂off revealed that the de-
limiter is not the simplification of the matrix inversion by the Hermitian operator

rather than the estimation accuracy of ǫ̂ to form
ˆ̃
Λstat. More specifically, in the

MSE analysis of Sec. 6.4, the only source of disturbance was given by the data
subcarrier interference, but now an additional additive noise term is present. In
this case, it does not even help that ǫ̂ is the result of averaging over 200 single
estimates.

In conclusion, compensating the CFO effects by advanced methods on top of a
derotation by ϕ̂l only pays off, if a very accurate estimate of ǫ is available. Oth-
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Figure 6.22.: BER comparison of UW-OFDM and CP-OFDM for coded transmis-
sion with r = 3/4 in the presence of a CFO in a multipath environ-
ment with τRMS = 100 ns.

erwise, the expectable gain is rather limited and the computational effort might
prevent an application.
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7. Conclusion

In this work, Unique Word OFDM as an attractive alternative to current OFDM
schemes was considered, promising to surmount the well-known inefficiency inher-
ent to guard intervals by implementing the interval in a fashion that induces a
variety of beneficial properties. Unique Word OFDM denotes a signaling frame-
work rather than a single scheme, offering a vast amount of different realizations.
Main focus of this work has been laid on the different signal designs and their
impact on the performance, with special focus on BER results in AWGN and mul-
tipath channels for coded as well as uncoded transmission. CP-OFDM based on the
IEEE802.11a standard served as reference system in most cases.

Systematically encoded UW-OFDM was presented as the first principle approach
to generate UW-OFDM signals, implemented by applying appropriate generator
matrices. Characteristic to this concept is the introduction of dedicated data and
redundant subcarriers, the latter loaded with a defined linear mapping of the data
to fulfill the specific UW time domain properties. The applicability of the system-
atic approach highly depends on the energy spent for the redundant subcarriers.
Investigations shed light on the influence of setup parameters such as amount of to-
tal subcarriers, number and position of zero subcarriers as well as the proportion to
the data energy. The most crucial factor determining the redundant energy turned
out to be the distribution of the redundant subcarriers among the available band-
width. Optimization algorithms for finding good distributions were investigated
and suitable ones highlighted. Subsequent elaborations proved that designing this
class of UW-OFDM signals based on minimizing the redundant energy is indeed
also optimum w.r.t. the whole transceiver performance. Investigated cost func-
tions in this context were the minimization of the sum of the error variances after
a BLUE or an LMMSE estimator in AWGN at a given SNR. Analytical as well as
numerical investigations confirmed independent of the cost function that a two-step
generation of the UW signal is always superior to a direct generation approach.
It is thus most beneficial to generate a UW-OFDM signal with a zero-word in a
first, and add the desired UW in a second step. In order to reduce energy fur-
ther, additional redundant subcarriers and the concept of systematic noise were
introduced. The resulting BER improvement entailed a decreased bandwidth effi-
ciency in the first and an inevitable BER error floor most of the time in the second
case.

Non-systematically encoded UW-OFDM solves the problem of the excess redun-
dant energy by lifting the role dedication from the subcarriers and introducing
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all-purpose subcarriers instead. A thorough signal analysis established the prop-
erties of optimum generator matrices that overall minimize the sum of the error
variances after a BLUE or an LMMSE estimator in an AWGN channel at a given
SNR. A presented steepest descent algorithm is able to deliver different optimum
generator matrices, with the resulting design as a function of the initialization of
the algorithm. Two exemplary UW-OFDM systems, one rather sharing ties with
conventional OFDM and one with single carrier systems, were studied in detail.
The generator matrix delivering the best BER performance varied depending on
the utilized channel encoder. Further experiments confirmed BER performance
advantages of UW-OFDM over CP-OFDM regardless of the specific setup. Sim-
ulations were also conducted for higher order modulations such as 16-QAM and
multipath channels with a channel delay spread exceeding the guard interval, again
in favor of UW-OFDM. Both systems showed a performance degradation in the
same scale for imperfect channel knowledge.

The insertion of pilot tones into UW-OFDM frequency domain symbols was dis-
cussed and meaningful optimization criteria as well as parameters identified. Split-
ting the frequency domain symbol into independent data and pilot terms enabled
an optimization of the OFDM symbol towards data and system parameter estima-
tion at the same time.

Comprehensive elaborations identified the CFO effects experienced by UW-OFDM
subcarrier symbols to be a combination of those for conventional OFDM and single
carrier systems. The specific appearance of the three CFO induced effects atten-
uation, phase rotation and intercarrier interference depends on the specific UW-
OFDM realization. The CFO induced error due to subtracting the wrong UW
and pilot offset was shown to be corrected almost completely with moderate effort.
Advanced CFO compensation methods on top of a simple OFDM symbol phase
derotation only pay off, if very accurate CFO estimates are available. Since UW-
OFDM is already quite robust against CFO, the bigger potential of these methods
is given for CP-OFDM. As for the case without CFO and supported by MSE
and BER simulations, UW-OFDM generally outperforms CP-OFDM, whereas the
gain increases with increasing CFO. In selected scenarios, UW-OFDM requires a
more accurate reliability information fed to the channel decoder than CP-OFDM
to preserve its strengths.
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A. LLR calculation

Appendix A comprises the calculation of the so-called log-likelihood ratios (LLRs).
The LLRs serve as reliability information of the received and disturbed binary sym-
bols which shall be recovered at the receiver and are fed as soft information into the
decoder. Note that major parts of the derivations are adaptations from [88, 89, 90].
Based on the linear model in (2.68), let us start from

ỹ = H̃G
︸︷︷︸
H

d+ v, (A.1)

whereH ∈ C
(Nd+Nr)×Nd denotes a generalized channel matrix and v ∈ C

(Nd+Nr)×1

an additive white Gaussian noise vector with v ∼ CN (0, σ2
vI). Further, d ∈ ANd×1

consists of Nd data symbols, where each symbol is drawn from a symbol alphabet
A, usually quadrature amplitude modulation (QAM), phase shift keying (PSK) or
amplitude shift keying (ASK) constellations. Depending on the specific constella-
tion, each symbol is formed by a certain number of binary symbols bi represented
by bi ∈ {0, 1}. A linear estimator E is assumed throughout this work, yielding an
estimate

d̂ = Eỹ. (A.2)

For reasons of notational simplicity, let us focus on the kth estimated element

d̂k = e
H
k ỹ, (A.3)

with eHk denoting the kth row of E. For this general estimator, the LLRs of the bits
mapped onto any symbol constellation can be written as

L
(

bik

∣
∣
∣d̂k
)

= ln
Pr
(

bik = 1
∣
∣
∣d̂k
)

Pr
(

bik = 0
∣
∣
∣d̂k
) , (A.4)

where bik is the ith bit of the kth received symbol. Hence, L
(

bik

∣
∣
∣d̂k
)

denotes

the LLR of the ith bit within the kth estimated data symbol. Let S (bik = 1) and
S(bik = 0) be the set of symbol indices corresponding to bik = 1 and bik =
0, respectively. Furthermore, let s(q) be the symbol corresponding to q ∈ S ,
then

Pr
(

bik = 1
∣
∣
∣d̂k
)

=
∑

q∈S(bik=1)

Pr
(

dk = s(q)
∣
∣
∣d̂k
)

, (A.5)

181



A. LLR calculation

Pr
(

bik = 0
∣
∣
∣d̂k
)

=
∑

q∈S(bik=0)

Pr
(

dk = s(q)
∣
∣
∣d̂k
)

. (A.6)

Applying Bayes’ theorem and taking into account equiprobable input symbols, the
probabilities can be changed to probability densities, transforming (A.4) into

L
(

bik

∣
∣
∣d̂k
)

= ln

∑

q∈S(bik=1)

p
(

d̂k

∣
∣
∣s(q)

)

∑

q∈S(bik=0)

p
(

d̂k

∣
∣
∣s(q)

) , (A.7)

where p
(

d̂k

∣
∣
∣s(q)

)

denotes the conditional PDF of the estimate d̂k given that the

actually transmitted symbol was s(q). Assuming now that the data estimate d̂k is

the result of the data symbol dk = s(q) disturbed by AWGN, p
(

d̂k

∣
∣
∣s(q)

)

can be

written in the general form

p
(

d̂k

∣
∣
∣s

(q)
)

=
1

πvar
(

d̂k

∣
∣
∣s(q)

)e
− 1

var(d̂k|s(q)) |d̂k−E{d̂k|s(q)}|2
. (A.8)

Hence, in order to determine L
(

bik

∣
∣
∣d̂k
)

, the conditional variance var
(

d̂k

∣
∣
∣s(q)

)

and the conditional mean E
{

d̂k

∣
∣
∣s(q)

}

are required, which are derived in the fol-

lowing.

To enable the formulation of the LLRs for different estimators, let us take a general-
ized approach from [89] and reformulate the linear model in (A.1) as

ỹ =Hd+ v (A.9)

=hkdk + H̄kd̄k + v, (A.10)

where hk is the kth column of H, H̄k is H without hk and d̄k is d without dk.
Then d̂k defined in (A.3) is given as

d̂k = e
H
k (hkdk + H̄kd̄k + v) (A.11)

= e
H
k hk
︸ ︷︷ ︸
Scaling

dk + e
H
k H̄kd̄k
︸ ︷︷ ︸

IPI

+ e
H
k v
︸︷︷︸
Noise

. (A.12)

An estimate d̂k incorporates now three effects, namely a scaling of the true param-
eter value, an inter-parameter interference (IPI) term and a classical additive noise
term. The specific realization of each effect varies from estimator to estimator,
dedicated values are given for a BLUE and an LMMSE estimator at the end of
this appendix.

The additive noise term in (A.12) has already been specified to be Gaussian, the
IPI term can due to central limit theorem arguments usually also be assumed to be
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Gaussian, especially when considering the rather high values for Nd in this work.

Hence, the primarily assumption of p
(

d̂k

∣
∣
∣s(q)

)

following a Gaussian distribution

is justified.

The conditional mean of d̂k becomes

E ỹ|dk

{

d̂k

∣
∣
∣dk
}

= e
H
k hkdk + e

H
k H̄kE d̄k|dk

{
d̄k
∣
∣dk
}
. (A.13)

Considering the elements of d to be statistically independent and with zero mean,
(A.13) simplifies to

E ỹ|dk

{

d̂k

∣
∣
∣dk
}

= e
H
k hk
︸ ︷︷ ︸
αk

dk, (A.14)

with αk corresponding to a scaling factor. The conditional variance of the general
linear estimator follows to

σ2
k = var

(

d̂k

∣
∣
∣dk
)

= E ỹ|dk

{(

d̂k − E ỹ|dk

{

d̂k

∣
∣
∣dk
})(

d̂k − E ỹ|dk

{

d̂k

∣
∣
∣dk
})H

∣
∣
∣
∣
dk

}

.

(A.15)
Inserting (A.12) and (A.14) into (A.15) yields

σ2
k =E ỹ|dk

{(

e
H
k (H̄kd̄k + v)

)(

e
H
k (H̄kd̄k + v)

)H
∣
∣
∣
∣
dk

}

(A.16)

=e
H
k

(

H̄kCd̄kd̄k
H̄
H
k +Cvv

)

ek (A.17)

=e
H
k Ckek, (A.18)

(A.19)

where Ck =
(
H̄kCd̄kd̄k

H̄H
k +Cvv

)
. With (A.14) and σ2

k, the conditional PDF

p
(

d̂k

∣
∣
∣s(q)

)

is given as

p
(

d̂k

∣
∣
∣s

(q)
)

=
1

πσ2
k

e
− 1

σ2
k
|d̂k−αks

(q)|2
, (A.20)

and the LLR for the ith bit of the kth symbol finally follows as

L
(

bik

∣
∣
∣d̂k
)

= ln

∑

q∈S(bik=1)

1
πσ2

k

e
− 1

σ2
k
|d̂k−αks

(q)|2

∑

q∈S(bik=0)

1
πσ2

k
e
− 1

σ2
k
|d̂k−αks

(q)|2 . (A.21)

Note that (A.21) is a very general definition that applies for various estimators and
an arbitrary symbol alphabet.

The next part evaluates (A.21) for the specific case of QPSK as modulation alpha-
bet, where one symbol is formed out of bit b0 and b1. Further, the impact of a BLUE
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and an LMMSE estimator on the LLRs is shown. Splitting the squared absolute val-

ues
∣
∣
∣d̂k − αks(q)

∣
∣
∣

2

into their real and imaginary part yields

∣
∣
∣d̂k − αks(q)

∣
∣
∣

2

= Re
{

d̂k − αks(q)
}2

+ Im
{

d̂k − αks(q)
}2

(A.22)

=
(

d̂k,R − αks(q)R

)2

+
(

d̂k,I − αks(q)I

)2

, (A.23)

and the LLR definition in (A.21) translates to

L
(

bik

∣
∣
∣d̂k
)

= ln
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q∈S(bik=1)

1
πσ2

k
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R

)2
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(
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(q)
I

)2
) . (A.24)

Assuming a mapping of the bit combinations b0b1 ∈ {11, 10, 01, 00} on the QPSK
constellation points s(q) ∈ ρ{1 + j, 1 − j,−1 + j,−1 − j} with arbitrary scaling
factor ρ, the LLR for the bit b0k is given as

L
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b0k

∣
∣
∣d̂k
)

= ln
e
− 1

σ2
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+ e
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2
]
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= ln
e
− 1

σ2
k
(d̂k,R−αkρ)

2

e
− 1

σ2
k
(d̂k,R+αkρ)

2 (A.27)

= − 1

σ2
k

(

d̂k,R − αkρ
)2

+
1

σ2
k

(

d̂k,R + αkρ
)2

(A.28)

=
4d̂k,Rαkρ

σ2
k

(A.29)

A very similar derivation can be conducted for the LLR of the first bit of the kth
symbol b1k. With the usual scaling factor of ρ = 1√

2
for QPSK to obtain symbols

with unit variance, the LLR in case of QPSK finally simplifies to

L
(

bik

∣
∣
∣d̂k
)

=
4d̂k,Rαk√

2σ2
k

=
2
√
2d̂k,Rαk
σ2
k

, (A.30)
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with

αk = e
H
k hk, (A.31)

σ2
k = e

H
k (H̄kCd̄kd̄k

H̄
H
k +Cvv)ek = e

H
k Ckek. (A.32)

In context of the model in (A.12), αk represents the scaling effect, whereas σ2
k

incorporates the effects of the IPI and the noise term together. As shown in [89],
both variables depend on the specific estimator:

• In case of the BLUE, αk = 1 and the IPI term vanishes, yielding σ2
k =

eHk (Cvv)ek.

• In case of an LMMSE estimator, however,

αk < 1, (A.33)

which reflects the circumstance that an LMMSE estimator is not unbiased
anymore in the classical sense. More specifically, unbiasedness is only reached
in the Bayesian sense when averaging over the data symbols as well. Fig. 4.8
shows the effect resulting from the biasedness for the example of a non-
systematically encoded UW-OFDM system in AWGN. If several estimates
would then be plotted in a constellation diagram, the estimate clouds would
not be centered around the actually transmitted symbols anymore as it is
the case for the BLUE, but the centers would lie a little bit off in the di-
rection of the origin. Finally, not only the value for αk, but also the IPI
term in (A.12) differs compared to the BLUE. In case of the LMMSE esti-
mator, it does not become zero and hence σ2

k does not simplify in the same

manner. Nevertheless, it can be shown that [Cee]ii =
σ2
k
αk

with Cee denoting

the error covariance matrix of the error e = d̂− d, therefore providing some
simplification potential as well.
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B. Derivation of the Global Minimum of JBLUE

Appendix B will analytically prove that ∂JBLUE/∂s = 0, if and only if all singu-
lar values of G are non-zero and identical. Furthermore, it will be shown that
JBLUE,min = σ2

dNd/γ is also the global minimum.

The cost function defined in (4.7) as

JBLUE(A) =
σ2
d

γNd
tr
(

G
H
G
)

tr

((

G
H
G
)−1

)

(B.1)

serves as starting point, with the relationship G = A
[
I TT

]T
from (2.42). Us-

ing the SVD of the generator matrix G = UΣVH from (4.16) and D2 = ΣHΣ

delivers

tr
(

G
H
G
)

= tr
(

VΣ
H
U
H
UΣV

H
)

= tr
(

VD
2
V
H
)

= tr
(
D

2) , (B.2)

(GH
G)−1 = (VΣ

H
U
H
UΣV

H)−1 = (VD
2
V
H)−1

= V(D2)−1
V
H . (B.3)

Inserting (B.2) and (B.3) into (B.1), the cost function is developed to

JBLUE(A) =
σ2
d

γNd
tr
(
D

2
)
tr
(

V(D2)−1
V
H
)

=
σ2
d

γNd
tr
(
D

2) tr
(
(D2)−1)

=
σ2
d

γNd

(
s21 + s22 + · · · s2Nd

)

(

1

s21
+

1

s22
+ · · · 1

s2Nd

)

, (B.4)

which can now be regarded as a function of the singular values of G. The gradient
of JBLUE with respect to s is given by

∂JBLUE

∂s
=

2σ2
d

γNd
·










s1

(

1
s21

+ · · · 1
s2Nd

)

− s−3
1

(
s21 + · · · s2Nd

)

...

sNd

(

1
s21

+ · · · 1
s2
Nd

)

− s−3
Nd

(
s21 + · · · s2Nd

)










. (B.5)
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B. Derivation of the Global Minimum of JBLUE

Setting the gradient to zero leads to the system of equations

s41

(

1

s21
+ · · · 1

s2Nd

)

= s21 + · · · s2Nd

...

s4Nd

(

1

s21
+ · · · 1

s2Nd

)

= s21 + · · · s2Nd
. (B.6)

Based on (B.6), a general expression for the kth equation can be derived as

s4k

Nd∑

m=1

1

s2m
=

Nd∑

m=1

s2m. (B.7)

Subtracting the lth from the kth equation

s4k

Nd∑

m=1

1

s2m
− s4l

Nd∑

m=1

1

s2m
=

Nd∑

m=1

s2m −
Nd∑

m=1

s2m (B.8)

(
s4k − s4l

)
Nd∑

m=1

1

s2m
︸ ︷︷ ︸

>0

= 0 (B.9)

for all k, l ∈ {1, ..., Nd} with k 6= l immediately reveals

s1 = s2 = · · · sNd (B.10)

as the only possible solution to this system of equations.

Consequently, every possible candidate G for a local minimum satisfies GHG = s2I
(cf. (4.17) and its implications). Inserting GHG = s2I into the cost function
(4.7) leads to the same expression as in (4.13) that corresponds to the numerically
found local minima. Hence, every G fulfilling GHG = s2I results in the same
(and minimum) value JBLUE,min = σ2

dNd/γ which therefore constitutes the global
minimum of the cost function.
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C. Derivation of the Global Minimum of JLMMSE

Appendix C proves that ∂JLMMSE/∂s = 0, if and only if all singular values of G are
non-zero and identical. Furthermore, it is also shown that every local minimum of
the cost function JLMMSE is also a global minimum with JLMMSE,min = σ2

dNd/(γ+
1). Starting with the cost function defined in (4.10) as

JLMMSE(A) = σ2
dtr

((
γNd

tr (GHG)
G
H
G+ I

)−1
)

, (C.1)

whereas G = A
[
I TT

]T
according to (2.42), and inserting (B.2) and (B.3) into

(C.1) leads to

JLMMSE = σ2
dtr

((
γNd

tr (D2)
VD

2
V
H + I

)−1
)

. (C.2)

Applying the matrix inversion lemma immediately (Sherma-Morrison-Woodbury
formula [91]) delivers

JLMMSE = σ2
dtr

(

I−V

(

V
H
V +

tr
(
D2
)

γNd
(D2)−1

)−1

V
H

)

= σ2
d

(

Nd − tr

((

I+
tr
(
D2
)

γNd
(D2)−1

)−1))

. (C.3)

The advantage of this notation is that every matrix in (C.3), that needs to be
inverted, shows a diagonal structure. Having in mind that D2 is a diagonal matrix
with the squared singular values of G on its main diagonal such that tr

(
D2
)
=

∑Nd
i=1 s

2
i , and after some rearrangements, the cost function reads as a function of

the singular values

JLMMSE = σ2
dNd − σ2

dγNd

Nd∑

i=1

s2i
γNds2i + tr (D2)

. (C.4)

The gradient of JLMMSE with respect to s is obtained by calculating the partial
derivatives ∂J

∂sk
for k ∈ {1, . . . , Nd}. In the following, a derivation for ∂J

∂s1
is given

and subsequently generalized to sk.
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A generalized expression for the partial derivative consequently follows as

∂J

∂sk
=− 2σ2

dγNdsk

Nd∑
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whereas the last step with f
(
s2k
)
:=
(
γNds

2
k + tr

(
D2
))2

has been introduced for
reasons of compact notation1. Setting the gradient to zero and assuming non-zero
singular values yields for a single partial derivative

0 =
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⇔ 0 =

Nd∑
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(C.12)

Carrying out (C.12) for k ∈ {1 . . . Nd} leads to a system of Nd equations similar
to the BLUE in appendix B. Subtracting the lth from the kth equation deliv-
ers
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2
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f (s2k) f (s
2
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1Note that f
(

s2k
)

will depend on all singular values due to D and not only on sk. However,
for the purpose of compact notation, this is neglected here.
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C. Derivation of the Global Minimum of JLMMSE

Since the denominator is non-zero, (C.18) can be reformulated as

0 =f
(
s2l
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Nd∑

m=1
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Substituting back f
(
s2l
)
and f
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s2k
)
yields
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which is only fulfilled, if and only if sl = sk. Finally, carrying out

0 =
∂J

∂sk
− ∂J

∂sl
for k, l ∈ {1, . . . , Nd} with k 6= l (C.25)

immediately proves
s1 = · · · = sNd = s (C.26)

as the only solution to ∂JLMMSE/∂s = 0. The remaining argumentation coincides
with the one for the BLUE in appendix B. However, the expression for the global
minimum JLMMSE,min = σ2

dNd/(γ+1) obtained by inserting GHG = s2I into (C.1)
differs from JBLUE,min.
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List of Abbreviations

ASK amplitude shift keying

BER bit error ratio

BLUE best linear unbiased estimator

BMSE Bayesian mean square error

CDF cumulative distribution function

CFO carrier frequency offset

CI channel inversion

CIR channel impulse response

CLT central limit theorem

CP cyclic prefix

DFE decision feedback equalization

DFT discrete Fourier transform

FDE frequency domain equalization

ICI inter-carrier interference

IDFT inverse discrete Fourier transform

iid independent and identically distributed

ISI intersymbol interference

LLR log-likelihood ratio

LMMSE linear minimum mean square error

MSE mean square error

MVU minimum variance unbiased

OFDM orthogonal frequency division multiplexing

PAPR peak to average power ratio

PDF probability density function

PMF probability mass function

PMR peak to minimum power ratio

PSD power spectral density

PSK phase shift keying
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QAM quadrature amplitude modulation

RS Reed Solomon

RV random variable

SC single carrier

SIC successive interference cancelation

SNR signal-to-noise ratio

SVD singular value decomposition

UW unique word

ZF zero forcing
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