IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

A Novel MPSoC Interface and Control Architecture
for Multi-Standard RF Transceivers

Siegfried Brandstitter, and Mario Huemer, Senior Member, IEEE

Abstract—The introduction of new mobile communication
standards, enabling the ever growing amount of data transmitted
in mobile communication networks, continuously increases the
complexity of control processing within radio frequency (RF)
transceivers. Since this complexity cannot be handled by tradi-
tional approaches, this article focuses on the partitioning of RF
transceiver systems and on the implementation of application-
specific components to introduce an advanced multiprocessor
system-on-chip (MPSoC) interface and control architecture which
is able to fulfill the requirements of future RF transceiver
integrations. The proposed framework demonstrates a high
degree of scalability, flexibility, and reusability. Consequently,
the time to market for products can be reduced and fast
adaptations to the requirements of the market are feasible.
Moreover, the developed application-specific components achieve
improved or at least equivalent performance results compared
to common architectures while the silicon area can be reduced.
This characteristic has positive effects on the costs as well as on
the power consumption of the RF transceiver.

Index Terms—RF transceiver, hard real-time controlling,
MPSoC, on-chip synchronization, on-chip communication,
application-specific processor design, application-specific NoC
design.

I. INTRODUCTION

HIS article focuses on the design of an advanced

multiprocessor system-on-chip (MPSoC) interface and
control architecture for multi-standard radio frequency (RF)
transceivers. Certain technical aspects of this architecture
have already been published in [1], [2], and [3]. While the
focus of these publications is limited to the technical aspects
themselves, the following elaboration presents a general view
on the topic and describes in detail the interaction of these
technical aspects. Additionally, the work provides a survey of
modern multi-standard RF transceivers which describes the
features and the internal control tasks. This survey allows
to clarify the requirements of future interface and control
architectures.

A. Motivation

For a long time the development of RF transceivers was
associated with pure analog design. Nowadays, this statement
is not true anymore. RF transceivers have become complex

S. Brandstitter is with DMCE GmbH & Co KG, 4040 Linz, Austria,
Email: SiegfriedX.Brandstaetter @intel.com

M. Huemer is with the Institute of Signal Processing, Johannes Kepler
University Linz, 4040 Linz, Austria, Email: Mario.Huemer@ieee.org

This work has been supported by the Austrian COMET-K2 program of the
Linz Center of Mechatronics (LCM), and was funded by the Austrian federal
government and the federal state of Upper Austria.

Manuscript received July XX, 2014; revised XXX.

mixed signal systems-on-chip (SoCs) including analog signal
processing, digital signal processing, and control process-
ing. The digital interface and control architecture of an RF
transceiver, which mainly involves the control processing, is
used to control the internal and external, analog and digital
modules of the device.

Since the beginning of RF transceiver integration, the com-
plexity of controlling these modules increased continuously.
Table I shows this trend on the basis of various facts. Starting
in 2003, the effort for implementing an interface and control
architecture was quite low because almost all devices only
supported a single mobile communication standard. In the
following years companies tried to integrate multiple mo-
bile communication standards and the support of multiple
frequency bands in a single-chip integrated circuit (IC) [4].
Moreover, a lot of tasks, which were originally processed
within the baseband IC, were moved to the RF transceiver. For
the shown device in column two, which supports the Global
System for Mobile Communications (GSM) and Universal
Mobile Telecommunications System (UMTS) standards, the
complexity of controlling increased tremendously compared
to the device in column one. Due to the increasing size of
the digital domain within RF transceivers, the next develop-
ment step introduced smaller technology nodes at the cost of
more complexity in the digital domain to enhance the analog
signal processing. For the shown devices in column three and
four, the complementary metal-oxide-semiconductor (CMOS)
C11RF technology node was replaced by the CMOS C65LP
technology node. In 2011, a new generation of RF transceivers
was able to additionally support the Long Term Evolution
(LTE) standard [5], the successor of the UMTS standard.
Again, a huge increase in complexity can be recognized.

B. Evolution of Concepts and State-of-the-Art

1) Flatten Logic based Architectural Approach: At the
beginning of RF transceiver integration for GSM systems, the
interface and control architectures were kept very simple since
the devices only integrated the analog parts of the receive and
transmit paths. As stated in [1], in such system architectures
the analog-to-digital converter (ADC) and the digital-to-analog
converter (DAC) are placed on the baseband IC or on separate
ICs. Hence, the signal data interface is usually represented by
a multiplexed differential analog I/Q interface which is shared
between the receive and transmit signals. Additionally, a serial
digital interface and two dedicated signals are used to control
the RF transceiver, to enable the system clock generation, and
to provide the system clock to the baseband.

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

TABLE I

COMPLEXITY INCREASE OF RF TRANSCEIVER INTEGRATION.
Year 2003 2007 2009 2011
Supported Standard GSM GSM, UMTS GSM, UMTS GSMI:_IEJEMTS’
Technology Node CMOS C11RF | CMOS C11RF | CMOS C65LP | CMOS C65LP
Human Resources? 0.5 Persons 11 Persons 21 Persons 30 Persons
Total Size of Digital Domain 11 kGate 490 kGate 780 kGate 1000 kGate
Memory Size - 257 kBit 1030 kBit 2196 kBit
Die Size 6 mm? 20 mm? 18 mm? 36 mm?

2 Number of persons involved in developing the interface and control architecture over the project period.

The interface and control architecture of the RF transceiver
itself includes a register set which is connected to the serial
digital control interface. Considering that the configuration
registers within this set are directly programmed by the
baseband, this kind of controlling is called register based
programming model. The configuration registers act as input
for the flatten control logic which generates the control signals
for the analog blocks of the receive and transmit paths. In
most cases, the implementation of the control logic is very
simple consisting of direct links between the configuration
registers and the control signals, hardwired logic, and delay
mechanisms. Since shared resources, such as bus systems, are
not used in this kind of architecture, events can be triggered
exactly by accessing the configuration registers over the serial
digital control interface.

But of course, this simplicity has several drawbacks. Control
signals may be derived from combinations of other control
signals. Therefore, side effects and cross impacts have to be
considered carefully, even for small changes in the system.
These interdependences of control signals also increase the
effort of verification. Furthermore, the partitioning of the
design and implementation work into smaller work packages
appears to be quite difficult.

2) Hierarchical Modular based Architectural Approach:
While the differential analog I/Q data interface became an
industrial standard, digital data interfaces were emerging in
parallel [1]. According to [6], these digital data interfaces
provide development benefits for both systems, the baseband
and the RF transceiver. The performance of the RF transceiver
can be increased by supporting the implementation of analog
and digital filters. Furthermore, the integration of digital
modulators, such as the polar modulator, requires a digital
data interface to gain an optimum performance. The baseband,
on the other hand, can be partitioned to exclude all analog
functions which work at high frequencies, e.g. the ADCs
which sample the I/Q data signals. Due to the fact that digital
functions are more independent from technology nodes than
analog ones, the baseband can be upgraded to new technology
nodes with less effort.

Since the interconnection between the baseband and RF
transceiver ICs should be generic and independent from archi-
tectural decisions, the DigRF v1.12 digital interface [7] was
standardized. This interconnection includes two serial digital
interfaces. One is shared between the receive and transmit
data by multiplexing the interface signals, and the other one is

RF Transceiver — -
RX Digital Signal | R Analog
H #
RX B —

. Main (| FoM =
DigRF FSMs SMs - Q'@ < 2
v1.12 o B o
Digit‘gal =~ g = g

Interface i - 5 e =
L= rsvs O S
[A
TX Digital Signal =)
Processing TX Analog

[ZZ7] ... Registered Interface

Fig. 1. Hierarchical modular based architectural approach for RF transceivers.

used to control the RF transceiver. Two additional signals are
needed to enable the system clock generation and to provide
the system clock to the baseband. Moreover, the interface
provides a strobe signal which can be used by the baseband
to exactly trigger events within the RF transceiver.

In the following hierarchical modular based architectural
approach not only the ADC and the DAC but also the digital
signal processing of the receive and transmit paths is placed on
the RF transceiver IC. Furthermore, the control of the external
analog front-end (FE), including the RF switch, the power am-
plifier (PA), and the low-noise amplifier (LNA), is integrated,
too. As a result, the device is now responsible for the timing
on the air interface. This leads to additional requirements for
the interface and control architecture concerning real-time.
According to the 3rd Generation Partnership Project (3GPP)
specification [8], the maximum tolerance on the timing of
a GSM transmit burst is =1 symbol period. Due to the fact
that this budget must be arranged over the whole signal path,
including the baseband, the interface, and the RF transceiver,
customers typically specify a timing tolerance of +1/4 symbol
periods (£0.92 us) for the RF transceiver.

Since this interface and control architecture not only con-
trols the receive and transmit paths and the external analog
FE but also processes calibration and compensation algorithms
at startup, a flatten logic based architectural approach would
be far too ineffective. Thus, a partitioning into smaller work
packages is required. This “divide and conquer” approach is

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

also reflected in the interface and control architecture which
can be seen in Figure 1. The control tasks are assigned to four
major modules: the main finite-state machines (FSMs) block,
the receiver (RX) and transmitter (TX) FSMs blocks, and the
FE control block. The interconnections between these blocks,
including the digital signal processing and analog modules,
are implemented as registered interfaces. This means that the
higher hierarchical layer writes the control information to the
register sets of the lower hierarchical layer which processes
this information. In order to save silicon area, these register
sets are typically accessed over a bus system which is shared
by several FSMs. In case of multiple masters accessing the
bus system at the same time, this fact can lead to delays and
consequently to timing violations on the air interface.

The main advantage of this interface and control architecture
is the encapsulation of the blocks which reduces the risks
of side effects and cross impacts. Moreover, the hierarchi-
cal approach affords the implementation of generic receive
and transmit paths with the main requirement of fulfilling
the mobile communication standard. Subsequently, the higher
hierarchical layers can be tailored to different customer re-
quirements.

3) High-Level Programming based Architectural Approach:
The introduction of UMTS led to the demand for a new digital
data interface which is capable of handling the arising data
rates [1]. However, the specification of the new interface not
only accounted higher data rates but also the upcoming di-
versity approach in the RX, the multi-standard RF transceiver
integration, and the demand for less interconnections between
the baseband and RF transceiver ICs.

As result of these requirements, the DigRF v3.09 digital
interface [9] was standardized. The two differential digital
paths of this interconnection, one for transmitting and one for
receiving, are capable of handling various prioritized logical
channels for configuration, timing control, and data. Like
for the other interfaces, two additional signals are required
to enable the system clock generation and to provide the
system clock to the baseband. In addition to the register
based programming model, this interface provides a high-
level programming model which is used to optimize the
performance for multi-standard use case scenarios and to
simplify the configuration.

In order to meet the requirements of the UMTS standard, the
tolerances for the timing specification on the air interface are
tightened. According to the 3GPP specification of UMTS [10],
the maximum timing error on the initial transmission shall be
less than or equal to 1.5chip periods. This budget must be
arranged over the whole signal path and therefore, customers
usually specify a timing tolerance of +1/4 chip periods (65 ns)
for the RF transceiver.

The interface and control architecture, which is used to
fulfill the requirements and possibilities of the new stan-
dardized interface, is very similar to the one described in
Section I-B2 with the only difference of an additional mod-
ule named macro decoder. This block represents the higher
hierarchical layer which is introduced to support high-level
programming. The macro decoder decodes the configuration
macros, which are sent over the DigRF v3.09 digital interface

to the RF transceiver, and generates a list of registers including
their values. These precalculated values are written to the
configuration registers of the main FSMs block on a cycle
accurate basis after receiving a time accurate strobe (TAS)
macro. The functionality of the remaining blocks stays the
same, but special attention has to be paid to the adapted timing
tolerance on the air interface when using a shared bus system
to access the registers of lower hierarchical layers.

II. SURVEY OF MODERN MULTI-STANDARD RF
TRANSCEIVERS

A. Future Trends

As stated in Section I-A, plenty of RF transceiver innova-
tions have been introduced in the past decades. Nowadays, the
rapidly growing mobile communication market even calls for
more advanced concepts in order to be prepared for the future.
The following sections address four important scopes of RF
transceiver design and describe their future trends.

1) System Partitioning: When talking about system parti-
tioning, it is important to distinguish between the physical
partitioning and the functional partitioning of mobile com-
munication platforms. Since the beginning of RF transceiver
integration, companies try to reduce the number of external
components needed to implement a mobile communication
platform by arranging them in ICs. This approach reduces
the costs and the required printed circuit board (PCB) area
and enhances the performance of the platform. Considering
their relation to RF functionality, many of the former external
devices are integrated into the RF transceiver IC.

The functional partitioning of mobile communication plat-
forms is mostly associated with the partitioning of tasks
between the baseband and the RF transceiver. In the course of
time, plenty of tasks, which were originally processed within
the baseband, were moved to the RF transceiver. There is a
general tendency to encapsulate all functionalities, which are
related to RF and the air interface, in the RF transceiver. In
this case, the baseband can simply request the transmission
or reception of a data stream for a mobile communication
standard on a predefined frequency band and channel.

2) Connectivity: These days almost all RF transceivers
for mobile communication are able to handle the GSM and
UMTS standards. Upcoming integrations also support the
current releases of the LTE standard. But in general, mobile
devices, such as mobile phones and laptop computers, demand
further connectivity besides mobile communication. They ac-
quire wireless local area network (WLAN) connections, and
receive digital terrestrial television, digital audio broadcasts,
and global positioning system (GPS) satellite information. Fur-
thermore, Bluetooth connections and near field communication
(NFC) are required.

As stated in [11], current techniques make use of separate
platforms with its own RF transceiver and baseband to support
these standards. In order to overcome the resulting disad-
vantages, future techniques require to share and encapsulate
functionalities across platforms. This not only concerns the
RF transceiver and baseband ICs but also the external analog
FEs and the antennas.

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

3) Receive and Transmit Architectures: One of the most
important choices to be made is the architecture of the receive
and transmit paths within the RF transceiver. In the past
decades, plenty of studies and examples have been presented
on heterodyne, homodyne, low intermediate frequency (IF),
wideband IF, and other architectures. All of them have certain
benefits and drawbacks for a specific application [12].

Nowadays, almost all modern RF receivers for mobile multi-
standard and multi-band communication make use of direct-
conversion architectures. These architectures offer the highest
potential for flexibility but also incorporate a number of issues
which are not, or the least, less relevant in heterodyne architec-
tures. In order to overcome these issues, additional algorithms
are required to implement direct-conversion architectures. Fur-
ther concepts, which have been emerging in the recent years,
are the polar modulator and the polar transmitter. These TX
concepts provide a very promising power added efficiency
(PAE) by processing the amplitude and phase information in
two separated paths.

4) Technology Node: These days, almost all RF transceivers
for mobile communication are integrated using CMOS tech-
nology. This effort is motivated by low costs and a significant
capacity for on-chip integration. In order to obtain higher
packing densities, higher circuit speeds, and a lower power
dissipation, the ever increasing size of the digital domain
even gives rise to the usage of smaller technology nodes
for integrating RF transceivers. While this trend shows great
benefits for the digital domain, it implicates significant draw-
backs for the analog design. The analog domain suffers from
less analog voltage headroom, signal-to-noise ratio (SNR),
available power, and dynamic range [13]. These challenges
need to be addressed by technology enhancement, circuit
optimization, and architectural adaption as well as by digitally
assisted analog design.

B. Internal Control Tasks

After presenting the future trends of modern multi-standard
RF transceivers, the following sections characterize the in-
ternal control tasks which are implicated in this evolution.
Due to the different nature of the processed algorithms and
techniques, the internal control tasks demand different real-
time and processing performance requirements from the ar-
chitecture. A useful classification, which considers the time
of execution, specifies three different groups of tasks.

1) Preconfiguration Tasks: The preconfiguration tasks are
triggered by the baseband to prepare the reconfiguration of
the operational mode within the RF transceiver. The pro-
cessing scheme in Figure 2 demonstrates that the device
has to be enabled first. After a short wake-up phase the
baseband sends a configuration macro to the RF transceiver.
The reception of this macro activates the preconfiguration tasks
which decode the configuration macro and precalculate the
required parameters for the modules of the device. Basically,
the preconfiguration tasks only precalculate and store these
parameters but do not apply any changes to the operational
settings of the RF transceiver.

The real-time requirements in terms of timing jitter, which
are demanded from the interface and control architecture to

process the preconfiguration tasks, are not excessively high.
This is due to the fact that these tasks do not access the
registers which are related to the operational settings of the RF
transceiver. On the other hand, the worst-case execution times
(WCETs) of the preconfiguration tasks must fulfill certain
limits. Therefore, the interface and control architecture must
provide an adequate processing performance for these tasks.

2) Reconfiguration Tasks: After the RF transceiver has fin-
ished its preconfiguration, the baseband is allowed to activate
the reconfiguration tasks. As depicted in Figure 2, these tasks
are triggered by the baseband sending a TAS macro. The main
function of the triggered tasks is the reconfiguration of the
operational mode by applying the precalculated and stored
parameters to the internal and external, analog and digital
modules of the RF transceiver. Additionally, the tasks are re-
sponsible for performing certain calibration and compensation
algorithms.

Changing the operational settings of the RF transceiver
directly influences the activities on the air interface. As stated
in Section I-B, the activities of certain mobile communi-
cation standards define very tight tolerances for the timing
specification on the air interface. In order to fulfill these
specifications, the real-time requirements for processing the
reconfiguration tasks are very high. Most of them even require
cycle accurate accesses to the register sets with a very low
startup jitter. Another challenge arises from the fact that
several of the tasks may be processed in parallel. Considering
that the parameters for the reconfiguration of the operational
mode are precalculated and stored, the processing performance
requirements of the tasks are not excessively high. Only the
calibration and compensation algorithms demand a certain
processing performance to enable a fast startup of the modules.

3) Run-Time Tasks: As soon as the interface and control ar-
chitecture has applied the precalculated and stored parameters
to the modules of the RF transceiver, the system is configured
for a certain operational mode. During the operation of this
mode, the architecture has to perform numerous run-time
tasks. In general, these tasks are started and processed peri-
odically by the interface and control architecture itself. In this
context, relevant examples are measurement tasks, tasks for
maintaining the operational mode, and tasks for compensating
unwanted effects which may change over time.

The processing scheme in Figure 2 demonstrates that the
run-time tasks apply changes to the operational settings of the
RF transceiver which directly influence the activities on the air
interface. Therefore, the real-time requirements for processing
the run-time tasks are as high as the real-time requirements
for processing the reconfiguration tasks. Since various run-
time tasks may be processed concurrently, the architecture
must provide additional means for a parallel execution of
tasks. Certain run-time tasks may embed algorithms with a
high computational complexity. Thus, the interface and control
architecture of the RF transceiver has to provide an adequate
performance for processing these tasks.

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

RF Transceiver Enable

Baseband Processing /

RF Transceiver Wake up
Configuration Macro

Preconfiguration Tasks
TAS Macro

RF Transceiver Processing I:' |

/ Reconfiguration Tasks
: / Run-Time Tasks
A /

Change of Operational Settings

Fig. 2. Processing scheme of the internal control tasks.

C. Conceptual Requirements for Interface and Control Archi-
tectures

The continuous enhancements of modern multi-standard RF
transceivers have a great influence on the conceptual require-
ments for future interface and control architectures of these
devices. Furthermore, the time to market for wireless products
is getting shorter and shorter since the enhancements and the
improvements of mobile communication systems progress at
an enormous speed. The interface and control architectures
described in Section I-B have the common disadvantage that
their reusability and flexibility are very restricted. Hence, late
adaptations to the mobile communication standard or failures
frequently result in huge costs for the implementation, the
verification, and potential new tape-outs.

Considering these circumstances, the conceptual require-
ments for future interface and control architectures are ob-
vious:

o Introduce scalability for future RF transceiver integra-
tions,

o Maximize the flexibility and the reusability,

o Speed up the time to market,

e Minimize the power consumption and the silicon area
effort,

o Allow different customer requirements,

« Introduce a universal debug and trace concept, and

o Allow an RF transceiver integration within the baseband
IC.

III. A NOVEL ARCHITECTURAL APPROACH
A. Fartitioning

In order to cope with the increasing complexity of the
control processing, future interface and control architectures
have to provide considerably more processing performance but
also flexibility for late adaptations to the mobile communica-
tion standard as well as for modifications in case of failures.
According to Pollacks Rule [14], using a centralized control-
ling concept with a single processing element involves severe
disadvantages because the performance increase by enhancing
a programmable microarchitecture is roughly proportional to
the square root of the increase in complexity.

In order to overcome this barrier, future interface and con-
trol architectures have to implement a distributed controlling
concept [1]. This means that the internal control tasks are
distributed to several processing elements. In this context,

| L1 1]
AR LI AR AN

Time

the novel architectural approach defines units which not only
include the required analog and digital signal processing
blocks but also elements which are used for control processing.
Since the internal control tasks are encapsulated and processed
within the unit they are associated with, the RF transceiver
can be partitioned into stand-alone units which are capable of
controlling themselves after providing certain parameters.

This approach introduces another essential advantage. The
partitioning allows to power-down all units of the RF
transceiver which are not required for its current operation.
This enables a great potential for saving power, especially
for RF transceiver designs which incorporate a high number
of units. For example, an RF transceiver implementing a
multiple-input multiple-output (MIMO) architecture can sep-
arately power-down its RX and TX units.

Basically, the advanced partition generates a framework for
future interface and control architectures which is able to fulfill
the stated requirements. Figure 3 depicts this framework which
is reduced to the interface unit, the RX unit, and the TX
unit. The interface unit is a particular unit since it represents
the gateway to the device. Thus, the unit not only embeds
elements of the interface between the baseband and the RF
transceiver, but it also incorporates blocks which are required
for the overall control processing of the system. The RX and
TX units, in contrast, incorporate elements which are only
related to their functionality. In general, an RF transceiver
incorporates a larger number of units than displayed in this
framework. Examples are several RX and TX units for MIMO
architectures, several RX units for receive diversity, additional
RX and TX units for connectivity besides mobile communi-
cation, and units for controlling the external analog FE. In
terms of control processing, all these units are similar to the
presented RX and TX units, and are therefore omitted in this
diagram.

In general, a distributed controlling concept involves various
challenges which include the processing of the internal control
tasks, the on-chip synchronization, and the on-chip communi-
cation. The following sections address these challenges and
describe the respective blocks in the developed framework.

B. Processing Elements

Programmable processing elements are the key for gaining
the flexibility required in future interface and control archi-
tectures. This flexibility allows modifications of the control

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

=
Interface Gl obal
Timer - Local
A Timer
Digital H Q
Interface(=RX:iH @ H» Macro
]Iggtssy})f’zlc}g@ Logic K=RD Z Decoder
BTX | | &
§ k| Local
Debug Multi-Core L = Timer
and Traceg) Debugand [bl Uit
Interface Trace System [E Controller
8
e
2
X § oll Local L fé‘ Local % o RX
E%E = g||_Timer Timer QQIEOEBE
<P|S]A) 23] Unit (o4 Unit |£= | A <] <
= [Controller Controller|—

[Z] ... Analog Part

[EEE] ... Dedicated Digital Paxt [__] ... Programmable Digital Part

Fig. 3. Framework of the novel architectural approach reduced to the interface unit, the RX unit, and the TX unit.

processing for late adaptations to the mobile communication
standard, the corrections of failures, or the implementation of
different customer requirements. Considering the real-time and
processing performance requirements, it can be seen that the
three groups of internal control tasks demand two different
requirement sets.

While the real-time requirements for processing the pre-
configuration tasks are not excessively high, most of the
reconfiguration and run-time tasks demand cycle accurate
accesses to the register sets with a very low startup jitter.
Moreover, the processing elements must provide means for
a parallel execution of reconfiguration and run-time tasks.
With respect to the processing performance, the WCETSs of
the preconfiguration tasks are the crucial factor. In order to
fulfill these two sets of requirements, the novel architectural
approach introduces two different processing elements.

1) Unit Controller: The unit controller is dedicated to the
processing of the reconfiguration and run-time tasks. In order
to encapsulate these tasks within the unit they are associated
with, each unit embeds a unit controller which is used to
process the respective tasks. Using this concept, the units are
capable of controlling themselves after providing the essential
parameters.

As depicted in Figure 3, the interface unit also embeds a
debug and trace interface, and a multi-core debug and trace
system to fulfill the conceptional requirement of a universal
debug and trace concept. These concepts are nowadays widely
researched and used in MPSoCs [15]. Thus, the multi-core
debug and trace system is taken as a given and is not further
discussed in this work.

The unit controller, in contrast, has specific requirements for
processing the reconfiguration and run-time tasks. Typically,
these requirements are fulfilled by implementing separate
elements to handle the cycle accurate accesses to the register
sets and the parallelism of the tasks. But using this approach
involves two drawbacks.

e Due to the communication between the elements the

overall execution time and hence the power consumption
is increased.

« In case of processing several parallel and independent in-
ternal control tasks the handling of the available resources
is very complex.

For these reasons, we propose an application-specific core
which enables a cycle accurate execution of parallel tasks on
a single resource [2]. Using this architecture, the computation
of the internal control tasks and the cycle accurate accesses to
the register set need not be separated. More details about this
application-specific core are given in Section V.

2) Macro Decoder: The macro decoder is dedicated to the
processing of the preconfiguration tasks which involve the
decoding of the configuration macros and the precalculation
of the required parameters. Since these tasks are related to the
high-level programming model of the baseband interface, the
processing element is embedded in the interface unit of the
RF transceiver. Figure 3 demonstrates that the macro decoder
is also linked to the multi-core debug and trace system.

Similar to the unit controller, the macro decoder has to be
programmable in order to provide the needed flexibility. But
the preconfiguration tasks demand less real-time capabilities
in terms of timing jitter than the reconfiguration and run-time
tasks do. On the other hand, a high processing performance
is favored to speed up the preconfiguration phase of the RF
transceiver. Considering these requirements, an off-the-shelf
general purpose processor can be used for processing the
preconfiguration tasks. This solution avoids huge costs for
designing, implementing, and verifying a customized architec-
ture. In order to complete the design of the novel architectural
approach, a master student evaluated and verified a well known
open source processor called OpenRISC1200 [16]. The results
of this work can be found in [17].

C. On-Chip Synchronization

Even though the novel architectural approach is based on
stand-alone units which are capable of controlling themselves
after providing certain parameters, several associated recon-
figuration and run-time tasks may be distributed to different
unit controllers. Due to these dependencies and the fact

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

that changes to the operational settings demand high real-
time requirements in terms of timing jitter, a synchronization
mechanism between the tasks is required.

A well known approach, which is often used in real-time
critical applications, is the introduction of a common time base
[18]. As illustrated in Figure 3, the framework makes uses of
global and local timers to introduce this feature. In general,
the interface unit is the first unit to be powered up when
the RF transceiver is enabled. Therefore, the global timer,
which acts as the master by defining the common time base, is
located in this unit. The local timers, which represent the local
references, are directly embedded within the macro decoder
and the unit controllers. Since these processing elements make
use of the local timers, the distributed internal control tasks can
be synchronized to the common time base. Due to the fact that
the clocking concept of the targeted architecture makes use of
a single clock source, a continuous synchronization of the local
timers to the global timer is not required. The synchronization
process must only be triggered whenever a unit is powered
up. In this case, the baseband or the interface unit within
the RF transceiver signals the global timer to broadcast the
common time base using the on-chip communication system.
The local timers of the enabled units make use of the received
common time base to synchronize their local references.
Detailed information about distributing the common time base
using the on-chip communication system are provided in the
following sections.

D. On-Chip Communication

A fundamental challenge of designing a distributed con-
trolling concept is the on-chip communication. As stated in
the previous section, the novel architectural approach targets
an implementation of stand-alone units which are capable
of controlling themselves. Nevertheless, in advance to the
activation of the reconfiguration tasks certain parameters must
be provided to the units and the TAS information has to be
distributed for triggering the reconfiguration tasks. Further-
more, various associated reconfiguration and run-time tasks
may need to exchange certain measurement values and control
parameters between each other. Moreover, the communication
system must provide means to synchronize the local timers to
the global timer.

As shown in Figure 3, the framework implements an
application-specific network-on-chip (NoC) to facilitate the
required on-chip communication. The main motivation for uti-
lizing a NoC structure is the increasing number of units, which
have to be interconnected within the proposed framework,
paired with the different types of required communication
services. Of course, various communication systems, e.g. bus
systems, may provide these features, but previous develop-
ments have shown that these systems are more complex, less
flexible, less structured, and less scalable. As a consequence,
they are more prone to errors in case of modifications. In
general, the classification of the on-chip communication within
the interface and control architecture is a key factor to identify
the requirements and restrictions for the application-specific
NoC. On closer examination it can be seen that the novel

architectural approach requires four different communication
services to implement a fully functional framework. These four
services are presented in Table II.

The TAS distribution service is required to distribute the
TAS information to the unit controllers for triggering the
reconfiguration tasks. Due to the high real-time requirements
in terms of timing jitter demanded by the reconfiguration
tasks, the highest priority is assigned to this service. The
time distribution service, having the second highest priority,
is required to synchronize the local timers to the global
timer. Like the TAS distribution service, the time distribution
service requires a constant packet latency and is only used for
broadcasting by a single source.

Another service, called messaging service, provides broad-
cast and point-to-point communication to the processing el-
ements, the interface logic, and the global timer. This ser-
vice is required by the reconfiguration and run-time tasks
to exchange information during their operation. The cycle
accurate synchronization between these tasks is assured by
a time stamp based communication. In order to separate the
on-chip communication of the preconfiguration tasks, a further
communication service, called random read/write access ser-
vice, is introduced to distribute the precalculated parameters
to the unit controllers after decoding the configuration macro.
Furthermore, the baseband interface is allowed to use this
service for debugging purposes.

When looking at the requirements and restrictions of these
services, it appears that using a common NoC architecture,
which provides quality of service (QoS), is likely the best
approach. But as stated in [3], a common network based
architecture of the NoC does not lead to an optimum result.
Hence, we propose an application-specific approach which
is tailored to the specific requirements and restrictions of
the interface and control architecture. A description of this
application-specific NoC is given in the following section.

IV. APPLICATION-SPECIFIC NETWORK-ON-CHIP
A. Concept

1) Design Decisions: As stated in the previous section, the
requirements and restrictions of the needed communication
services obviously target an implementation of a common
NoC architecture which provides QoS [19]. Most of these
QoS based NoCs support differentiated services and make use
of virtual channels to implement the required priority based
scheduling and allocation policies. But a common NoC archi-
tecture, which provides QoS, shows several disadvantages.

e The implementation of virtual channels multiplies the
number of input and output buffers. Therefore, introduc-
ing QoS has a great impact on the silicon area as well as
on the power consumption of the design.

e A QoS based NoC cannot guarantee a constant packet
latency which is needed to broadcast the TAS and time
information. Hence, additional hardware structures are
required to assure a constant latency from sending to
receiving the packets.

e« Common NoC architectures experience a rather high
packet latency which is typically reduced by operating at

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

TABLE I
SPECIFICATION OF THE COMMUNICATION SERVICES.

Communication Service Priority | Broadcast | Point-to-Point | Number of Sources
TAS Distribution 0 * 1
Time Distribution 1 * 1
Messaging 2 * * NUnitController +3
Random Read/Write Access 3 * 2
higher clock frequencies [20]. But due to the frequency Hishor Level HighTegéeVel Hig},}fil" Level
.. . . 1 T 'V me
restrictions of the interface and control architecture, a Mgesiagﬁlge Distribution Distribution
larger number of wait states has to be expected especially Interface Interface Interface
for random read accesses. oot o (i} (i}
.. Ry Router
In order to overcome these drawbacks, an application- Lower Level FIFO
specific NoC is implemented for the novel architectural ap- De(‘aro;der -
proach. Based on the partitioning of the RF transceiver into FIFO Higher Level Register Register
stand-alone units which include one or several communication De(ﬁder Stage Stage
clients, e.g. a unit controller or a magro decoder, using a fat- | Dreiorivilies |
tree based topology for the NoC is likely the best approach. T
In general, the minimum number of routers can be achieved | Rond Robin Scheduer |
by implementing a MinRoot architecture [21]. i [out} [out}

When looking at the specified communication services in
Table II, it appears that various requirements and restrictions
can lead to a reduction of the complexity within the NoC. The
following are the key factors.

o The TAS and time distribution services only require a
broadcast mechanism.

o The TAS and time distribution services are only used by
a single source each.

o The random read/write access service is only used by two
sources.

Since the TAS and time distribution services are only used
by a single source, a special packet injection point at the root
of the fat-tree based topology is chosen for these services.
By applying this technique called “root injection”, the paths
from the leafs to the root of the system can be eliminated.
This leads to a lower packet latency and a saving of silicon
area. Considering that only a broadcast mechanism is required,
two dedicated distribution systems are used in parallel to the
NoC instead of implementing QoS for these services. Even
though there is an additional logic and routing overhead,
which consumes silicon area, the expected area effort is less
compared to using QoS.

A further enhancement belongs to the random read/write
access service. The bus enhanced network-on-chip (BENoC)
architecture [22] makes use of a bus system which operates
in parallel to a common NoC. The bus structure concurrently
functions as a low latency broadcast and multicast capable
medium which is primarily used for short latency signaling
and multicast services. The analysis shows that a bus enhanced
NoC is the optimum solution for the novel architectural
approach, too. Of course, the bus structure can only be
implemented efficiently because there are only two sources
for the random read/write access service, the macro decoder
and the interface logic. These sources are the only masters on
the shared bus system.

— —

Lower Level Lower Level Lower Level Lower Level
Messaging ----- Messaging S Time
Interface O Interface N Distribution Distribution

Interface Interface

Fig. 5. Router microarchitecture of the bus enhanced MinRoot NoC with root
injection.

Figure 4 demonstrates the final result of the optimization
process: the bus enhanced MinRoot NoC with root injection.
In this example diagram the application-specific NoC connects
13 unit controllers, the macro decoder, the interface logic, and
the global timer.

2) Architecture: The bus system of the application-specific
NoC implements the basic features of the WISHBONE Re-
vision B4 standard [23] which are extended by the optional
features of data selection, pipelining, and locking. Due to the
fact that the design includes two layers, the bus system is
capable of accepting simultaneous slave requests from multiple
masters. In the event of two masters requesting the same
slave, a priority arbitration scheme is applied. Furthermore, the
architecture does not imply any register stages and therefore,
requests are transferred immediately.

As described in the previous section, the network archi-
tecture of the application-specific NoC implements dedicated
physical channels for the TAS distribution service, the time
distribution service, and the messaging service. Figure 5 de-
picts the microarchitecture of a router which is located below
the root of the MinRoot topology. Since the TAS and time
distribution services are only used for broadcasting, the dedi-
cated channels do not require a complex switching technique
or routing algorithm. Only register stages are implemented
between the higher and lower level interfaces to avoid long
combinational paths.

The switching technique and the routing algorithm of the
messaging service, in contrast, require more sophisticated
mechanisms. Basically, this service makes use of wormhole

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

Bus System

C—
-~

N

TAS -
Injection Inrj%gtlieon

> v ¥ A Voot .
SHM] S M| S

Macro | [Interface

EZ ... Router

... Bus System Master Port

[ZEE] ... Unit Controller
... Bus System Slave Port

Decoder Logic

[1 ... MinRoot NoC Port (TAS Distribution, Time Distribution, Messaging)

Fig. 4. Bus enhanced MinRoot NoC with root injection.

switching. In order to accept packets from multiple routers
or communication clients located at the lower level of the
topology, the router microarchitecture implements a round
robin scheduler which forwards the packets to the respective
first-in first-out (FIFO). The actual routing decisions are taken
within the lower and higher level decoders by analyzing the
destination address which is stored in the first flow control
unit (flit), the header flit, of every packet. Broadcast packets
and packets not belonging to the subnet are always routed
to the higher level messaging interface of the router. The
other packets, which belong to the subnet, are forwarded to
the dispatcher with additional information about the requested
lower level messaging interface. In general, this routing algo-
rithm describes a static, distributed, and minimal behavior. The
dispatcher, implementing two layers, is able to forward one
packet from the higher level decoder and one from the lower
level decoder concurrently. Certainly, this is only possible if
the packets have different requested lower level messaging
interfaces. In case of two packets having the same requested
lower level messaging interface, the packet from the higher
level decoder is forwarded first.

B. Benchmarking

1) Environment: As stated in Section IV-Al, the obvious
solution for providing the communication services required
within the proposed framework would be implementing a
QoS based NoC. Hence, the reference NoC, which is used
to benchmark the application-specific NoC, utilizes a native
QoS approach.

In general, the reference implementation features the same
MinRoot architecture like the application-specific NoC. Thus,
the number of routers in the system is the same. But compared
to the optimized NoC the native one neither implements
root injection nor a bus enhancement. In fact, the reference
NoC makes use of priority based scheduling and allocation
policies to enable the prioritized communication of the re-
quired services. Like most NoCs which provide differentiated
services, the design implements these policies by applying
virtual channels.

Basically, the environment for benchmarking both systems
is based on the setup depicted in Figure 4. Additionally, the

following considerations are used to operate the NoCs.

o The bus system of the application-specific NoC features
an address port width of 32 Bit and a data port width of
16 Bit.

e The router interconnections of both NoCs are set to
16 Bit. The only exception is the router interconnection
of the time distribution interface used in the application-
specific NoC which is only one bit wide.

o The size of the lower and higher level FIFOs is set to
2 flit and 61lit, respectively.

o The size of the packets injected to the messaging inter-
face, the TAS distribution interface, and the time distri-
bution interface of the application-specific NoC is 6 flit
(96 Bit), 21lit (32 Bit), and 201flit (20 Bit), accordingly.
The QoS based NoC accepts packets with a size of 6flit
(96 Bit).

o The destination addresses of the injected packets and the
destination addresses of the random read/write accesses
are uniformly distributed. This means that the probability
of addressing a particular communication client is equal
for all of them.

The clock frequency of both systems is set to 104 MHz. This
is also the target clock frequency for synthesizing the NoCs
using the CMOS C65LP technology library which specifies a
65 nm technology especially designed for low power and RF
design.

2) Packet Throughput: Figure 6 demonstrates the system
throughput capabilities of the application-specific NoC and the
QoS based NoC. In these diagrams the horizontal axis depicts
the bit rate, which the simulation environment tries to inject,
and the vertical axis shows the bit rate which is accepted by
the NoC.

The system throughput capabilities of the application-
specific NoC show that the bit rate of the time distribution
service is limited to approximately 100 MBit/s. This is due to
the fact that the time distribution service is distributed over a
single serial wire. The TAS distribution service, the random
read/write access service, and the messaging service provide a
maximum bit rate of approximately 1.7 GBit/s, approximately
1.8 GBit/s, and approximately 2.1 GBit/s, respectively. The
overall system throughput, which equals the sum of through-

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

Bus Enhanced MinRoot NoC with Root Injection

Accepted Bit Rate (GBit/s)

10

2 4 6 8
Injected Bit Rate (GBit/s)

QoS Based NoC

Accepted Bit Rate (GBit/s)

1 2 3 4
Injected Bit Rate (GBit/s)

—<—— TAS Distribution
——— Time Distribution
—H&—— Messaging

—*—— Random Read/Write Access
—6—— Overall

Fig. 6. Throughput capabilities of the bus enhanced MinRoot NoC with root injection and the QoS based NoC.

puts provided by the particular communication services, has a
saturation point of approximately 5.5 GBit/s.

The system throughput capabilities of the QoS based NoC
depict that the overall bit rate has a saturation point of ap-
proximately 2.1 GBit/s which is quite similar to the throughput
of the messaging service provided by the application-specific
NoC. This is caused by the fact that the basic principle of
the QoS based router microarchitecture is very similar to
the part of the application-specific router microarchitecture
which provides the messaging service. Since the application-
specific NoC implements dedicated physical channels and
structures for every communication service, the overall system
throughput is approximately 3.4 GBit/s higher than the overall
system throughput of the QoS based NoC.

3) Packet Latency: Another benchmark figure of an on-chip
communication system is the average latency of transferring
packets. This value is of significant interest for applications
which demand a certain level of real-time performance.

The average packet latencies of the application-specific NoC
and the QoS based NoC, depending on the accepted bit rate,
are illustrated in Figure 7. The diagram of the application-
specific NoC shows that two important requirements, which
are stated in Section III-D, are met by the application-specific
design.

e The TAS and time distribution services generate a con-
stant packet latency of 4 clock cycles and 22 clock cycles,
accordingly. This is due to the fact that the NoC provides
dedicated physical channels and structures for the root
injection of these communication services.

o Since the random read/write access service is provided
by the bus enhancement of the NoC, the average access
latency of this communication service is very low. As-
suming that the slave implements a synchronous interface
and that the master interface is registered, the access
latency shows values between only 1 clock cycle and
2 clock cycles.

The average packet latency of the messaging service, on the
other hand, demonstrates a typical NoC behavior. Increasing
the bit rate leads to a higher average packet latency which
reaches its maximum at the peak throughput capability of

approximately 5.5 GBit/s. This is due to the fact that all router
interconnections of the fat-tree based topology provide an
equal throughput capability. If this throughput capability is
fully utilized, packets are blocked within the routers and the
average packet latency increases.

Unlike the application-specific NoC, the QoS based NoC
demonstrates average packet latencies for all provided com-
munication services depending on the accepted bit rate. This
behavior is caused by sharing the physical channels and
structures among all communication services. It has to be
kept in mind that additional hardware structures are required
to provide a constant latency for the distribution of the TAS
and time information. Considering their high priorities, the
TAS and time distribution services and the messaging service
provide the lowest average packet latency of approximately
12clock cycles and approximately 15clock cycles at the
maximum throughput capability of approximately 2.1 GBit/s.
In general, the random read/write access service has the
lowest priority. Therefore, packets belonging to this service
are blocked within the routers until all packets with higher
priority have been transferred. At the maximum throughput
capability this behavior leads to a rather high average packet
latency of approximately 140 clock cycles.

4) Silicon Area: The silicon area effort of an on-chip
communication system is a further important characteristic.
Due to the fact that the silicon area is tightly coupled to the
power consumption of a system, this figure is of significant
interest for evaluating low power designs.

Table III demonstrates the silicon area figures of the
application-specific NoC and the QoS based NoC measured in
gate equivalents. It can be seen that the effort for implementing
the application-specific NoC is very low. This is caused by
the fact that the specific requirements and restrictions of the
communication services are considered and that dedicated
physical channels and structures are used to implement these
services.

The QoS based NoC, in contrast, shows a gate count which
is more than three times the gate count of the application-
specific NoC. As stated before, the main reason for this
growth are the multiple FIFOs needed to implement the

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

Bus Enhanced MinRoot NoC with Root Injection

A
(e

w
(=)

(Clock Cycle)
)
S

—
=]

=
=]
i3
P

Average Packet Latency

PK

P

Exy

- -
%3

S g—1
1 2 3 4 5
Accepted Bit Rate (GBit/s)

QoS Based NoC

D
(=]

40

(Clock Cycle)

20

Average Packet Latency

0 0.5 1 1.5 2
Accepted Bit Rate (GBit/s)

—<—— TAS Distribution
——— Time Distribution

—+H—— Messaging
—*—— Random Read/Write Access

Fig. 7. Average packet latencies of the bus enhanced MinRoot NoC with root injection and the QoS based NoC.

TABLE III
SILICON AREA COMPARISON OF THE BUS ENHANCED MINROOT NOC WITH ROOT INJECTION AND THE QOS BASED NOC.

Communication Service Bus enhanced MinRoot NoC with | QoS based NoC

Root Injection
TAS Distribution 928 Gate
Time D.1str1but10n 97 Gate 43359 kGate
Messaging 7895 Gate
Random Read/Write Access 4015 Gate

y 12.935kGate [43.359kGate |

virtual channels. The results of the synthesis indicate that
these FIFOs allocate approximately 55 % of the overall silicon
area. Another important factor has to be kept in mind when
comparing the silicon area of both systems: The gate count of
the QoS based NoC does not include the additional hardware
structures which are needed to provide a constant packet
latency for the TAS and time distribution services.

V. APPLICATION-SPECIFIC RISC CORE
A. Concept

1) Instruction Set Architecture: The first attempt of imple-
menting an application-specific core for the novel architecture
approach utilized a very long instruction word (VLIW) archi-
tecture. But an analysis of this design, called soft finite-state
machine core (SoftFSMC), showed that most instructions of
the evaluated benchmark algorithm are not able to use the
provided parallelism resulting in a very low code density.

Considering this disadvantage, the further development fo-
cused on an application-specific reduced instruction set com-
puter (RISC) core called virtual finite-state machine core
(vVESMC). Typically, RISC instruction sets do not include
complex instructions, especially instructions which combine
memory accesses with arithmetic and logical operations [24].
These load-store architectures allow the implementation of
well balanced instruction pipelines which can be clocked at
high frequencies. On the other hand, the code density can be
increased by implementing arithmetic and logical instructions
which support these memory accesses. The following sections
also demonstrate that the effort for achieving cycle accurate
multithreaded processing is quite low when implementing the
accesses to the memories within the instruction pipeline.

Therefore, the instruction set architecture (ISA) of the novel
VvFSMC is based on the ISA of the Texas Instruments MSP430
[25] which includes several memory addressing modes for
every arithmetic and logical instruction. In order to increase
the performance of the core and to ease the complexity of the
instruction pipeline, the following modifications are applied to
the native ISA.

o The destination addressing mode of the two-operand
instruction format is reduced to register addressing. This
is due to the fact that only one word can be fetched from
the data memory per clock cycle.

¢ A move instruction format, which allows to specify a
memory location for both operands, is introduced. Con-
sequently, move operations from one memory location to
another one can be specified by a single instruction.

o Decimal add and subtract instructions are removed since
they are not required for the targeted application.

« Single bit shift instructions are replaced by multi-bit shift
instructions to reduce the execution time and to increase
the code density.

o Multiply instructions are embedded within the instruction
set. Due to the architecture of the instruction pipeline,
the results of these instructions are written to the general
purpose registers R14 and R15.

e A loop instruction, which allows the iteration of the
successive instruction, is inserted. This concept increases
the code density in case of executing the same instruction
repeatedly.

o Considering that the core implements a hardware mul-
tithreaded architecture, mutex instructions are added to
handle multiple accesses to shared areas within the ex-

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

ternal resources.

o Interrupt related instructions are removed because the
threads, which are executed on the vFSMC, are not
interruptible.

Similar to the ISA of the MSP430, the ISA of the vESMC
makes use of a register file which provides 16 registers with a
width of 16 Bit. Furthermore, the ISAs of both cores support
the same addressing modes which include register addressing,
displacement addressing, absolute addressing, register indirect
addressing, postincrement addressing, and immediate address-
ing.

A major difference between both cores refers to the address-
ing of different word sizes. Basically, the ISA of the MSP430
provides byte and word addressing functionalities. The ISA
of the VFSMC extends these functionalities by introducing
a bit field addressing mode which is able to overcome the
drawbacks of accessing bit fields within the data memory, the
register sets, or the register file of the core itself. The difficulty
of accessing bit fields is well known in optimized systems
which keep the bit width of operands and parameters as short
as possible to save memory and register space. While the
MSP430 requires several instructions to perform an operation
on a bit field, the ISA of the vFSMC is able to define a single
atomic instruction which performs an operation on a bit field
in a single instruction cycle.

2) Hardware Multithreading: Hardware multithreading is
commonly used to increase the utilization of a single core
by applying thread-level parallelism (TLP) [24]. The target of
the VFSMC, in contrast, is not to maximize the utilization
of the core but to apply cycle accurate execution to each
thread. Due to the scalar architecture of the core, using fine-
grained temporal multithreading is likely the best approach.
This multithreading technique requires a microarchitecture
which is able to issue an instruction from a different thread at
every clock cycle.

However, the vVFSMC implements a special type of fine-
grained temporal multithreading which executes the threads in
an ascending order even if they are idle. The execution of four
threads, using ordered fine-grained temporal multithreading,
is depicted in Figure 8. The diagram shows that the threads
are processed on a fixed time grid which allows a cycle
accurate execution of every thread without interfering each
other. Compared to the active threads, the idle threads consume
time slots but their state is never modified.

A further advantage of this multithreading technique is
the elimination of all hazards which are caused by internal
dependencies within the instruction pipeline. Of course, this
is only assured if the number of supported threads is equal
or greater than the number of pipeline stages. Considering
that the design of the VFSMC follows this rule, the additional
hardware structures for detecting and resolving hazards are not
required.

Since the VFSMC implements a shared instruction pipeline,
the resulting instruction execution frequency of each thread de-
pends on the number of supported threads. It can be expressed
by

f

fThrcad = % (1)
NThread

where f specifies the clock frequency of the core and N Tpyead
represents the number of supported threads which has to be
equal or greater than the number of pipeline stages.

3) System Architecture: Even though the vFSMC is based
on the ISA of the MSP430, both core architectures differ
widely. Thus, different system architectures are required to
embed the cores. A major difference between the MSP430
and the application-specific RISC core refers to their memory
architecture. While the native design of the MSP430 imple-
ments a Von Neumann architecture, the design of the vVFSMC
makes use of a pure Harvard architecture to enable ordered
fine-grained temporal multithreading. Basically, the ISA of
the core allows a maximum instruction length of 64 Bit. For
this reason, the width of the instruction interface is extended
from 16 Bit to 64 Bit. This extension allows to fetch an entire
instruction per clock cycle and therefore, a constant stream of
instructions can be provided to the instruction pipeline.

The variable instruction length, provided by the ISA of the
vESMC, allows a segmentation of a single instruction in two
consecutive instruction memory words. Consequently, the core
requires a line cache memory which holds the most significant
48 Bit of the previously fetched instruction memory word for
each thread. Considering that the cache interface must be able
to concurrently issue a read access and a write access, this
memory has to provide simultaneous read and write accesses.

In order to ensure a constant stream of instructions through
the instruction pipeline without any stalls, the design of the
vESMC makes use of concurrent read and write accesses
through the data interface. Hence, storages connected to this
interface have to provide simultaneous read and write accesses,
too. Moreover, all resources connected to the vEFSMC have to
accept requests from the core without any wait states to enable
the cycle accurate execution of every thread.

4) Core and Pipeline Architecture: As shown in Figure 9,
the VFSMC implements a three stage instruction pipeline
which includes a fetch stage, a decode and load stage, and
an execute and store stage. Additionally, the core provides a
multiply unit which is an extension to the instruction pipeline.

To enable ordered fine-grained temporal multithreading,
every thread owns a dedicated register file which is embedded
in the global register file. According to the ordered execu-
tion of threads, the fetch stage generates thread identifiers
in an ascending order. These identifiers are passed through
the instruction pipeline and therefore, each stage and the
multiply unit are able to determine the relation of the currently
processed instruction for accessing the correct thread register
file.

Besides generating the thread identifiers, the fetch stage
provides the control information which is required to access
the instruction memory and the line cache memory. Moreover,
the stage is responsible for handling loop operations which are
indicated by the described loop instruction. The requested data
from the instruction memory and the line cache memory is di-
rectly passed to the decode and load stage which assembles the
instruction segments. Subsequently, the instruction is decoded
and, if required, the source operand is loaded from the data
memory or the thread register file.

If necessary, the execute and store stage extracts the speci-

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

Clock Cycle
n+l n+2 n+3 n+4 n+b n+6 n+7 n+8
vFSMC |Thread 1|Thread 2| Thread 3| Thread 4| Thread 1| Thread 2| Thread 3| Thread 4

Execution Idle Active | Active Idle Idle Active | Active Idle
Time Grid [Thread 1 Thread 1

Thread 1 Idle Idle
Time Grid Thread 2 Thread 2

Thread 2 Active Active
Time Grid Thread 3 Thread 3

Thread 3 Active Active
Time Grid Thread 4 Thread 4

Thread 4 Idle Idle

Fig. 8. Execution of four threads on the VFSMC using ordered fine-grained temporal multithreading.

Cache &
Cache Write Control +]
Data ¢ - =
Data Write Control I J 5%
Data =R
Data Read Control E = a
Instruction == Decode Tl 2
Cache il Sa}cgre .
Instruction Read Control < Load [—N .
Fetch Multiply
Cache Read Control < —
v v{ v{ v i
1D D ID ID
Thread Control ¢<={| Thread 1| [Thread2| ------- - Thread V|
Global Register File

Fig. 9. Core and pipeline architecture of the vVFSMC.

fied bit field from the previously loaded source operand. Fur-
thermore, the second source operand, which is only required
for two-operand instructions, is accessed in the thread register
file. After performing the operation the stage makes use of
the destination operand and the possibly specified bit field
to store the result to the data memory or the thread register
file. In addition, it writes the most significant 48 Bit of the
fetched instruction memory word to the line cache memory. In
case of processing a branch instruction, the execute and store
stage generates the target address and the program counter
(PC) register is updated based on the branch condition.

In addition to the global register file, the vVFSMC embeds a
mutex register file. This register file is exclusively accessed
by the execute and store stage to handle the stated mutex
instructions. In order to remove all hazards from the instruction
pipeline of the vESMC which are caused by internal depen-
dencies, the minimum number of supported threads is set to
three. If less threads are utilized, one or two thread register
files can be forced to zero and their respective threads to idle.
The benchmark figure in Section V-B4 illustrates that this
approach avoids the introduction of flip flops and therefore,
the silicon area can be scaled linearly with the number of
supported thread.

B. Benchmarking

1) Environment: In general, three competitive cores are
used to analyze the performance of the vVFSMC. This group
includes the power optimized reduced instruction set computer

core (PORC) [26], the ARM Cortex-MO [27], and the SoftF-
SMC.

The PORC is a power optimized 16-Bit processor which
is compatible with the native ISA of the Texas Instruments
MSP430. In order to allow a fair competition, the core makes
uses of a hardware multiplier which is embedded as a periph-
eral. The ARM Cortex-MO is the smallest ARM processor
available. It implements a high performance 32-Bit central
processing unit (CPU) which provides a small silicon area
and a low power consumption. As already stated above, the
SoftFSMC was the first approach of implementing a core for
cycle accurate multithreaded processing. It embeds a 128-Bit
VLIW architecture and utilizes the same ordered fine-grained
temporal multithreading technique like the vESMC. Since the
core is only analyzed at a behavioral level, silicon area figures
are not available for this core.

Common benchmark algorithms are used to evaluate the
performance of general purpose processors, however, these
standardized algorithms are typically not suitable to demon-
strate the capabilities of an application-specific design. There-
fore, the automatic gain control (AGC) algorithm, which is
a well known and challenging methodology used within RF
transceivers, is used to benchmark the cores. This algorithm
controls the gain of the receive path in order to provide a
stream of data samples with an optimally tuned amplitude.
Basically, choosing the AGC algorithm for the UMTS standard
to analyze the performances of the cores has various reasons.
On the one hand, the WCET of this algorithm has to be
reduced to a minimum to increase the performance of the

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

PORC :
Cortex-MO | :
vFSMC :

SoftFSMC |

0 500 1000 1500 2000
Code Size (Byte)
Fig. 10. Comparison of the code sizes needed to implement the AGC

algorithm.

RF transceiver. On the other hand, the timing for updating
the parameters of the receive path is tightly constrained.
This characteristic emphasizes the real-time capabilities of the
evaluated cores.

The clock frequency of all systems is set to 104 MHz. This
is also the target clock frequency for synthesizing the PORC
and the vVFSMC using the CMOS C65LP technology library.

2) Code Size: A very important benchmark figure of an ISA
is its code density. This characteristic is of significant interest
for embedded microprocessor systems because the size of the
instruction memory directly influences the silicon area, the
power consumption, as well as the costs.

Figure 10 illustrates the code sizes which are required to
implement the AGC algorithm for the PORC, the Cortex-MO0,
the vFSMC, and the SoftFSMC. As already mentioned above,
the SoftFSMC offers a very low code density. This is due to
the fact that the core implements a VLIW architecture which
enables the parallel execution of multiple operations. But for
the selected algorithm most instructions are not able to use
the provided parallelism. The PORC and the Cortex-MO, in
contrast, show a rather good performance.

However, the ISA of the application-specific RISC core is
most efficient and generates a code size of only 527 Byte. This
value is approximately 30 % lower than the code size required
for the PORC and approximately 15 % lower than the code size
needed for the Cortex-MO. The analysis shows that the code
size reduction is mainly caused by the following features of
the ISA: the arithmetic and logical instructions which are able
to directly access memory operands, the bit field addressing
mode, and the multi-bit shift instructions.

3) Execution Time: The processing performance of a core
is one of the most important benchmark figures. This charac-
teristic is evaluated by comparing the execution times of the
AGC algorithm.

In order to evaluate the single-threaded execution times
of the vVFSMC and the SoftFSMC, the number of threads
supported by these hardware multithreaded architectures is set
to the minimum number of three. Furthermore, two thread
register files are forced to zero and their respective threads
to idle. This approach generates comparable single-threaded
designs. The diagram in Figure 11 demonstrates that the
single-threaded execution times of the PORC, the Cortex-MO,
the vFSMC, and the SoftFSMC are quite similar.

However, the vigorous processing performance of the
application-specific RISC core is demonstrated in case of
executing several internal control tasks in parallel. Due to

—<— PORC
= 30| ———— Cortex—Mo |
= —&— vFSMC
g —#%—— SoftFSMC
& 20F i ; i i
=
2
-~
g
g 10r
<5
1 2 3 4 5 6 7 8
Number of Supported Threads
Fig. 11. Comparison of the execution times needed to process the AGC
algorithm.

the fact that the VFSMC and the SoftFSMC implement a
hardware multithreaded architecture, processing these tasks
can be distributed to various dedicated threads. The single-
treaded architectures of the PORC and the Cortex-MO, on
the other hand, have to process the internal control tasks
sequentially. In case of the following analysis, several AGC
algorithms are processed in parallel or sequentially depending
on the architecture of the core. This scenario can be found
in RF transceivers which implement a MIMO architecture or
receive diversity in the RX.

Figure 11 demonstrates that for processing one to three algo-
rithms the execution times of the vVFSMC and the SoftFSMC
show a constant value. The reason for this behavior is the
minimum number of supported threads which is set to three for
both cores. For processing more than three AGC algorithms,
the execution times of the VFSMC and the SoftFSMC increase
by approximately 1.4 pus and approximately 1 pus per additional
algorithm, respectively. The execution times of the PORC and
the Cortex-MO0, in contrast, increase linearly with the number
of sequentially processed algorithms. For processing three
AGC algorithms the gap between the execution times of the
PORC and the vFSMC is already approximately 8.2 pus. The
excellent multithreaded processing performance of the vVESMC
is even more effective in case of processing a higher number
of algorithms. On the one hand, this increase in processing
performance is induced by the special features of the ISA
which are already stated in Section V-B2. On the other hand,
the ordered fine-grained temporal multithreading technique is
able to remove all hazards from the instruction pipeline of the
core which are caused by internal dependencies.

4) Silicon Area: Apart from the code density of the ISA
and the processing performance of the microarchitecture, the
silicon area effort of a core is a further important characteristic.
Since this figure is tightly related to the power consumption
of a system, it is of significant interest for evaluating low
power designs. Moreover, it is used to measure the effort of
hardware resources. In order to provide realistic gate counts
with respect to the static timing analysis, all required memories
are embedded in the synthesis. However, the gate counts
presented in this benchmark only refer to the cores themselves
and do not include the memories. As already mentioned above,

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

40
—<— PORC
) —>*—— Cortex-MO0
g 30| —&— vFSMC
g
2 20
g 2%
S & & & & & &
=10 & e
n
1 2 3 4 5 6 7 8
Number of Supported Threads
Fig. 12. Silicon area comparison of the PORC, the Cortex-MO, and the
vESMC.

silicon area figures for the SoftFSMC are not available because
the core is only analyzed at a behavioral level.

Figure 12 shows the silicon area efforts of the PORC, the
Cortex-MO, and the vVFSMC measured in gate equivalents. Due
to the fact that the PORC and the Cortex-MO do not support
multiple threads by hardware, their gate counts are constant
and do not dependent on the number of supported threads.
The synthesis results of the PORC demonstrate a value of
approximately 12.7kGate including the hardware multiplier
which is embedded as a peripheral. As stated in [27], the gate
count of the Cortex-MO is rated at a value of approximately
12 kGate.

The application-specific RISC core, in contrast, implements
a dedicated register file for every supported thread. As de-
scribed in Section V-A4, the minimum number of supported
threads is set to three. If less threads are utilized, one or two
thread register files can be forced to zero and their respective
threads to idle. Using this approach, the synthesis tool intro-
duces constants instead of flip flops, and the gate count can be
scaled almost linearly even if only one or two threads are used.
In general, the number of supported threads can be chosen
freely in advance to synthesizing the design to meet the exact
requirements of the internal control tasks. Starting at a value of
approximately 11 kGate for supporting a single thread, the gate
count of the vFESMC increases by approximately 3.9 kGate for
each additionally supported thread. This low silicon area effort
is mainly introduced by the clear design of the instruction
pipeline which excludes the hardware structures for detecting
and resolving hazards caused by internal dependencies.

VI. CONCLUSION

This article focuses on the design of interface and control
architectures for RF transceivers which are used to control the
internal and external, analog and digital modules. Considering
that the increasing complexity of these architectures cannot
be handled by traditional concepts, the partitioning of RF
transceiver systems and the implementation of application-
specific components are evaluated. The basic knowledge about
the topic is introduced by illustrating the evolution of interface
and control architectures, and by analyzing the future trends
and the internal control tasks of modern multi-standard RF
transceivers.

The novel architectural approach is based on a distributed
controlling concept which partitions the RF transceiver into
stand-alone units capable of controlling themselves. Due to
the strict real-time requirements, the architecture makes use of
a common time base which is needed to synchronize linked
tasks of different units. The on-chip communication of the
system is enabled by an application-specific NoC which is
tailored to the specific requirements of RF transceivers. In
order to fulfill the requirements of the internal control tasks, an
application-specific RISC core, which provides cycle accurate
multithreaded processing, is introduced.

The examination of the novel architectural approach shows
great benefits. The partitioning of the system provides an
excellent scalability and the concept encapsulates the entire
functionality of each unit which has positive effects on the
reusability. In general, the high degree of scalability, flexibility,
and reusability allows to reduce the time to market for RF
transceivers and enables fast adaptations to the requirements of
the market. Furthermore, the application-specific components
feature a conclusive performance. Compared to common ar-
chitectures, the application-specific designs are able to provide
better or at least equivalent performance results while the
silicon area can be reduced. This characteristic has positive
effects on the costs as well as on the power consumption of
the RF transceiver.

The coherent concept of the novel MPSoC interface and
control architecture still has to prove itself in the product
environment. But the advantages of the architecture already
attract attention, and particular considerations are incorporated
in upcoming RF transceiver integrations.

REFERENCES

[1] S. Brandstitter, B. Neurauter, and M. Huemer, “A novel architectural
approach for control architectures in RF transceivers,” in Proceedings
of the 2010 IEEE International SOC Conference (SOCC), Las Vegas,
Nevada, USA, September 2010, pp. 407-412.

[2] S. Brandstitter and M. Huemer, “VFSMC - A Core for cycle accu-
rate multithreaded Processing in hard real-time Systems-on-Chip,” in
Proceedings of the 2011 IEEE International SOC Conference (SOCC),
Taipei, Taiwan, September 2011, pp. 312-317.

, “An Application-Specific Network-on-Chip for Control Architec-
tures in RF Transceivers,” in Proceedings of the 2012 International
Conference on Embedded Computer Systems (SAMOS), Samos, Greece,
July 2012, pp. 68-75.

[4] D. Wenzel, “System Architectures in Multi-Mode Mobile Terminals,” in
Proceedings of the 2007 European Conference on Wireless Technologies
(ECWT), Munich, Germany, October 2007, pp. 16-19.

[5] Intel Corporation, “Intel at Mobile World Congress
2011, Press Release, February 2011. [Online]. Avail-
able: http://newsroom.intel.com/servlet/JiveServlet/download/1831-42-

3782/MWC_factsheet_2011.pdf

[6] B. Wilkins, “The Benefits of Standard Radio-to-Baseband Digital In-
terfaces,” High Frequency Electronics, vol. 2, no. 4, pp. 3840, July
2003.

[71 MIPI, “DigRF Baseband / RF Digital Interface Specification, Version
1.12,” Standard, February 2004.

[8] 3GPP, “Digital cellular telecommunications system (Phase 2+); Radio
subsystem synchronization (3GPP TS 45.010 version 7.4.0 Release 7),”
Standard, April 2008.

[91 MIPI, “DigRF Dual-Mode 2.5G / 3G Baseband / RF IC Interface

Standard, Version 3.09,” Standard, November 2006.

3GPP, “Universal Mobile Telecommunications System (UMTS); Re-

quirements for support of radio resource management (FDD) (3GPP

TS 25.133 version 8.2.0 Release 8),” Standard, April 2008.

P. Hooijmans, “Architectures for mobile RF convergence and future RF

transparency,” RFDESIGN, pp. 18-24, February 2006.

(10]

(11]

IEEE ACCESS JOURNAL, VOL. XX, NO. X, JULY 2014

[12] A. Springer, L. Maurer, and R. Weigel, “RF System Concepts for
Highly Integrated RFICs for W-CDMA Mobile Radio Terminals,” IEEE
Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp.
254-267, January 2002.

J. Pekarik, D. Greenberg, B. Jagannathan, R. Groves, J. Jones, R. Singh,
A. Chinthakindi, X. Wang, M. Breitwisch, D. Coolbaugh, P. Cottrell,
J. Florkey, G. Freeman, and R. Krishnasamy, “RFCMOS Technology
from 0.25pm to 65nm: The State of the Art,” in Proceedings of the
2004 IEEE Custom Integrated Circuits Conference (CICC), Orlando,
Florida, USA, October 2004, pp. 217-224.

F. Pollack, “New Microarchitecture Challenges in the Coming Genera-
tions of CMOS Processing Technologies (Keynote),” in Proceedings of
the 32nd Annual ACM/IEEE International Symposium on Microarchi-
tecture (MICRO), Haifa, Israel, November 1999.

ARM, “Debug and Trace for Multicore
White Paper, September 2008. [Online].
http://www.arm.com/files/pdf/CoresightWhitepaper.pdf
OpenCores, “OpenRISC 1200 IP Core Specification (Pre-
liminary Draft),” Manual, May 2012. [Online]. Available:
http://openrisc.net/or1200-spec.html

W. Ahmed, S. Brandstitter, and M. Huemer, “Verifying Open Source
CPU Cores using Instruction Set Simulators in OVM Environments,” in
Proceedings of the 2011 Austrochip, Vienna, Austria, September 2011,
pp. 45-50.

N. Suri, M. Hugue, and C. Walter, “Synchronization Issues in Real-Time
Systems,” Proceedings of the IEEE, vol. 82, no. 1, pp. 41-54, January
1994.

M. Horchani, M. Atri, and R. Tourki, “Design of a NoC-router guar-
anteeing QoS based on Virtual Channels reservation,” in Proceedings
of the 2nd International Conference on Signals, Circuits and Systems
(SCS), Nabeul, Tunisia, November 2008.

Arteris, “A comparison of Network-on-Chip and Busses,” Design and
Reuse, May 2005.

M. Ali, J. Jamali, and A. Khademzadeh, “MinRoot and CMesh: Intercon-
nection Architectures for Network-on-Chip Systems,” World Academy of
Science, Engineering and Technology, vol. 54, pp. 354-359, 2009.

R. Manevich, I. Walter, I. Cidon, and A. Kolodny, “Best of Both Worlds:
A Bus Enhanced NoC (BENoC),” in Proceedings of the 3rd ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), San Diego,
California, USA, May 2009, pp. 173-182.

OpenCores, “WISHBONE System-on-Chip (SoC) Interconnection
Architecture for Portable TP Cores (Revision B4),” Standard, June 2010.
[Online]. Available: http://cdn.opencores.org/downloads/wbspec_b4.pdf
J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 4th ed. Morgan Kaufmann Publishers Inc., 2007.

Texas Instruments, “MSP430™Ultra-Low-Power
controllers,” Booklet, 2012. [Online].
http://www.ti.com/lit/sg/slab034v/slab034v.pdf

W. Guscheh, M. Schutti, M. Siegel, and T. Piihringer, “Power Op-
timierung auf Entwurfsebene von einem 16-Bit RISC-Prozessor fiir
mobile Endgerite,” in Proceedings of the 2007 Austrochip, Graz, Austria,
October 2007, pp. 143-148.

ARM, “ARM® Cortex™-M0,” Booklet, 2009. [Online]. Available:
http://www.mcu-related.com/pdf/CortexMO-flyer.pdf

[13]

[14]

[15] SoCs,”

Available:
[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Micro-
Available:

[25]

[26]

[27]

Siegfried Brandstitter was born in Salzburg, Aus-
tria, in 1982. He received the Dipl.-Ing. (FH) de-
gree in hardware/software systems engineering from
the Upper Austria University of Applied Sciences,
Hagenberg, Austria, in 2006. From 2007 to 2013,
he investigated interface and control architectures
for multi-standard RF transceivers in cooperation
with DMCE, a subsidiary company of Intel Mobile
Communications. In 2013 he received the Dr.techn.
(Ph.D.) degree in information and communication
technology from the University of Klagenfurt, Kla-
genfurt, Austria. His current research interests are focused on real-time
controlling, networks-on-chip, and application-specific processors.

Mario Huemer (SM’-2007) was born in Wels,
Austria, in 1970. He received the Dipl.-Ing. degree
in mechatronics and the Dr.techn. (Ph.D.) degree
from the Johannes Kepler University of Linz, Aus-
tria, in 1996 and 1999, respectively. From 1997 to
2000, he was a research assistant at the Institute
for Communications and Information Engineering
at the University of Linz, Austria. From 2000 to
2002, he was with Infineon Technologies Austria,
research and development center for wireless prod-
ucts. From 2002- 2004 he was a lecturer at the
University of Applied Sciences of Upper Austria, and from 2004-2007 he was
Associate Professor for Electronics Engineering at the University of Erlangen-
Nuremberg, Germany. In 2007 Mario Huemer moved to Klagenfurt, Austria, to
establish the Chair of Embedded Systems and Signal Processing at Klagenfurt
University as a full professor. From 2012 to 2013 he served as dean of the
Faculty of Technical Sciences. Since September 2013 he is head of the newly
founded Institute of Signal Processing at the Johannes Kepler University of
Linz, Austria.

His research interests are adaptive and statistical signal processing, sig-
nal processing architectures and implementations, as well as mixed signal
processing and control with applications in communications, radio frequency
and baseband integrated circuits, battery- and power management for mobile
devices, and sensor signal processing. Within these fields he published more
than 160 papers. In 2000 Mario Huemer received the German ITG and the
Austrian GIT award for dissertations, and in 2010 the Austrian Kardinal
Innitzer award in natural sciences. His review work includes national and
European research projects as well as international journals. Since 2009 he
is member of the editorial board of the “International Journal of Electronics
and Communications (AEUE)”.

Mario Huemer is member of the IEEE, the German Society of Information
Technology (ITG), and the Austrian Electrotechnical Association (OVE).

