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Noise Interpolation for Unique Word OFDM
Alexander Onic and Mario Huemer

Abstract—Unique word-orthogonal frequency division multi-
plexing (UW-OFDM) is known to feature an excellent bit error
ratio performance when compared to conventional OFDM using
cyclic prefixes (CP). In recent papers classical and Bayesian linear
data estimators as well as the non-linear sphere decoding (SD)
approach have been investigated in the UW-OFDM context. In
general, the remaining error samples after a linear data estimation
in UW-OFDM are correlated. In this work, noise interpolation
(NI) is proposed, which uses preliminary data decisions together
withWiener interpolation to exploit these correlations. It turns out
that the selection of samples to be used for NI is crucial. With the
sample selection policy suggested in this work, NI clearly outper-
forms LMMSE data estimation, and due to its lower complexity
compared to SD, it can be regarded as an attractive compromise
for UW-OFDM reception.

Index Terms—LMMSE estimation, noise interpolation, noise
prediction, OFDM, sphere decoding, unique word.

I. INTRODUCTION

T HE Unique Word (UW) OFDM signaling scheme intro-
duced in [1] uses a deterministic sequence in the guard

interval instead of the usual cyclic prefix. The introduction of
the unique word within the DFT (discrete Fourier transform) in-
terval is conducted by introducing redundancy in the frequency
domain. This redundancy can be utilized by sophisticated
receivers in order to improve the data estimation performance
compared to straight forward receivers like e.g. a simple linear
zero forcing estimator. Most prominently, linear minimum
mean square error (LMMSE) data estimation [2] and sphere
decoding (SD) [3], [4], especially designed for UW-OFDM,
are able to exploit the redundancy advantageously, and demon-
strate an impressive performance in terms of the bit error ratio
(BER). While the LMMSE estimator is a quite simple receiver
with good performance, the SD is the optimum receiver for an
uncoded UW-OFDM system. Besides the higher complexity of
non-linear estimation approaches, the SD also has the drawback
that reliability information to be used in soft channel decoders
is very difficult to compute. Usually, only an approximation
can be derived reasonably.
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The second order statistics of the remaining error of the data
estimates (remaining “noise”) after an LMMSE estimation
reveal a correlation of the noise samples. This correlation
together with preliminary data decisions can be exploited in
order to obtain more accurate data estimates. For single-carrier
transmission this technique has been studied extensively, but
for causality reasons, it is usually referred to as noise prediction,
see e.g. [5]–[7]. Due to the block processing in UW-OFDM,
all values in one OFDM symbol can be used for the aspired
interpolation of noise samples. However, the sample selection
turns out to be an essential issue. Parallels that can be drawn to
decision feedback equalization are addressed in [8].
The paper is organized as follows: The UW-OFDM system

description will be presented in Section II, and LMMSE
data estimation and sphere decoding are briefly presented in
Section III. Next, the idea of decision directed noise interpo-
lation and a possible implementation of the sample selection
process are introduced in Section IV. In order to quantify
the detection performance of the proposed concept, we will
show simulation results of a unique word OFDM system in a
multipath as well as in the AWGN (additive white Gaussian
noise) environment in Section V, and we compare the results
with the ones after LMMSE estimation and sphere decoding,
respectively. In Section VI we conclude this work.

II. UNIQUE WORD OFDM SYSTEM MODEL

We briefly review the approach of introducing unique words
in OFDM, for further details see [1]. Let be a pre-
defined sequence, which we call unique word. This unique word
shall form the tail of the OFDM time domain symbol vector.
Hence, the time domain symbol vector, as the result of the length
IDFT (inverse DFT), consists of two parts and is of the form

, whereas only
is payload that is affected by the data, and thus random. In
the concept suggested in [9], we generate an OFDM symbol

with a zero UW in a first step and deter-
mine the final UW-OFDM symbol
by adding the desired UW in time domain in a second step.
As in conventional OFDM, the QAM data symbols denoted
by the vector and a number of zero subcar-
riers, usually at the band edges and at DC, are specified in fre-
quency domain as part of the vector . UW-OFDMhas the addi-
tional zero word constraint in time domain as part of the vector

, where is the point DFT matrix with the el-
ements for . The final
UW-OFDM frequency domain symbol is assembled by

(1)

with the help of an appropriate complex valued generator ma-
trix and the matrix which
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introduces the zero subcarriers and consists of zero-rows at the
positions of the zero subcarriers, and of appropriate unit row
vectors at all other positions. Let be the matrix built by the

lowermost rows of . Then, in order
to generate the zero UW in time domain, a valid UW-OFDM
generator matrix has to fulfill

(2)

which says that the columns of a valid have to lie in the null
space of . This generator matrix has to be designed carefully,
two variants will be used in the following.
As derived in detail in [1], [2], [9], after subtraction of a

UW depending portion, the receive symbol
can be modeled as , where the diagonal ma-
trix contains the sampled channel fre-
quency response on its main diagonal, and represents a zero-
mean Gaussian noise vector in frequency domain with the co-
variance matrix . The channel propagation and gen-
erator matrix are treated together as a channel matrix ,
which yields the linear system model

(3)

A. Systematic UW-OFDM Symbol Generation

In our original UW-OFDM concept presented in [1], [2], [9],
we chose

(4)

where is a carefully selected per-
mutation matrix, cf. [10]–[14]. Let
with and , then the constraint
(2) is fulfilled by choosing .We call

the vector of redundant symbols. Then, ac-
cording to (1), the frequency domain version of the UW-OFDM
symbol is given by . The individual data
symbols from can still be observed in , which is why this
approach is called systematic symbol generation.

B. Non-Systematic UW-OFDM Symbol Generation

In [15] we introduced the concept of non-systematically gen-
erated UW-OFDM, where we propose code generator matrices
that distribute the redundancy over all subcarriers. The ap-

proach for the non-systematic symbol generation is given by

(5)

with a real non-singular matrix that re-
places the permutation matrix and spreads the redundancy over
the whole bandwidth. In [15], two generator matrices are con-
structed as a result of numerical optimizations with different ini-
tializations. In this work, the generator matrix obtained with the
initialization is used.

III. REFERENCE RECEIVERS FOR UW-OFDM

The UW-OFDM concept allows for a number of different
linear and non-linear data estimation approaches. As reference
receivers in this work we use the LMMSE estimator as the
best performing linear estimator, as well as sphere decoding,
which constitutes the optimum BER reference for uncoded
transmission.
Following Bayesian estimation theory, the linear system

model (3) and the linear approach yield an LMMSE
data estimation matrix [2]

(6)

The covariance matrix of the remaining error can
be used to determine reliability information for a soft decision
channel decoder and is given by

(7)

Sphere decoding is able to achieve optimum detection results
for uncoded transmission [3], as it constitutes a maximum likeli-
hood sequence estimator. The SD method solves the minimiza-
tion problem

(8)

over all possible data vectors , if is the set of possible
QAM values, in a tractable amount of time. Reliability informa-
tion can be approximated [4], which is ignored in this work due
to complexity reasons.

IV. NOISE INTERPOLATION

After a linear data estimation using the LMMSE in (6), data
estimates are obtained along with statistics of
the remaining error , which will be treated as noise
from here on. In general, the noise covariance matrix in
(7) has several significant entries aside from the main diagonal,
suggesting that the noise samples are correlated. In this section,
we applyWiener filtering by exploiting the correlations inherent
in (the unknown) in order to obtain a good estimate of the
noise vector.

A. Full Range Noise Interpolation

We start with the assumption that only the -th noise value
is unknown. Then could be determined by a Wiener interpo-
lation using all values of , but the -th. According to Wiener
theory (see e.g. [16]), an estimate of the error value is obtained
by

(9)

(10)

where is the noise vector excluding the -th value, and the
-th estimator is determined by excerpts of the matrix:
The vector is the -th row of excluding value number .
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Respectively, excludes row and column number of ,
diminishing it to size .
Clearly, in our system the assumption of knowing all for
does not hold. However, the noise estimates

(11)

where refers to the slicing operation to the nearest valid
data symbol, can be used instead of the true values .
After determination of the estimators for all

and producing full -size esti-
mator vectors by inserting a zero at the -th position

, we can as-
semble the estimator matrix that
allows to write the noise interpolation of all samples as

(12)

where , .
In a last step these noise estimates are subtracted from the linear
data estimates in order to obtain improved ones:

(13)

Furthermore, the noise covariance matrix after noise interpo-
lation providing reliability information for soft decision channel
decoding can be approximated as (cf. [16])

(14)

Let us discuss the concept described so far: An element of
vector equals the true value , if the corresponding slicing
operation yields the correct data symbol. If for all

, noise interpolation would not be nec-
essary at all, as the LMMSE data estimates would all lie in the
correct decision region. On the other hand, a slicing mistake to
the wrong data symbol in (11) for a single index produces a
wrong noise estimate , which has an impact on every
for , constituting an error propagation. Let’s assume

the slicing operation is correct for all , and wrong for all
. The perfect approach would be to set ( ) for
, to derive all for by the Wiener interpolation

process, and to only use with as input for the interpo-
lation process. Then we would avoid error propagation, and all
for would definitely be correct. However, in practice

we do not know and . In the following subsection we try to
come close to this optimum approach by at least performing a
careful selection of the samples to be used as input for the inter-
polation process.

B. Sample Selection

As a preparation step we define to be the set containing the
indexes corresponding to the noise estimates to be used for
the interpolation of the -th noise sample. The noise estimate
is then found by

(15)

(16)

Analog to the previous approach, excerpts of the LMMSE
error covariance matrix are used to determine the estimator:
is the -th row of with only the columns indicated by the
indexes in , and having only the columns and rows of

with indexes from . Also a diminished noise vector
with only the values indicated in is needed. Consequently,
the estimator has a length corresponding to the cardinality
of . Introducing zeros at the positions corresponding to noise
samples that are not used for the interpolation process yields the
length estimation vectors . With these, is built to be
used as in (12) and (14).
Different strategies are possible to define reasonable sets

(for ). A good way would be the use of
a-posteriori probabilities of wrong slicing decisions for all el-
ements of . This method, however, is very costly, as it incor-
porates the actual linear estimates in the probability calcula-
tion. In this work we therefore suggest the a-priori probabilities
as a reasonable compromise. The a-priori symbol error proba-
bility (SEP) for data symbol number in 4-QAM transmission
is given by [5]

(17)

where is the variance of the data symbols, is the variance
of the (complex) remaining error, apparent at the -th position
of the main diagonal of and .
We introduce a threshold for the a-priori symbol error prob-

ability and only select noise samples for NI that do not exceed
this threshold, such that the set of samples to interpolate from
is given by

(18)

The actual threshold has been determined rather empirically
for the UW-OFDM setup described in Section V. To choose
appropriately, extensive BER simulations have been performed
in the multipath environment also detailed in Section V. In
Fig. 1, the BERs are displayed as they are achieved with a
certain SEP threshold at a given . The BER is plotted
in relation to the minimum BER achieved for the current

, such that the blue valley in Fig. 1 determines the
optimum which can be reached by setting appropriately
in dependence of . Fitting a straight line of the form

yields the rather empirically
determined threshold

(19)

which reaches the minimum BER in good approximation. This
threshold, desgined for the UW-OFDM setup at hand, is visible
in red in the plot.

V. SIMULATION RESULTS

In order to quantify its performance, the NI concept is
compared with the conventional LMMSE estimator with and
without channel coding. For encoding we use the industry
standard convolutional code with generator polynomials (133,
171), punctured for the coding rate according to
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Fig. 1. BER relative to the minimum BER achieved depending on the
-ratio with a given threshold (all measures in logarithmic scale).

TABLE I
PARAMETERS OF THE INVESTIGATED UW-OFDM SYSTEM

[17]. For decoding a soft decision Viterbi decoder is applied.
As a reference for the uncoded transmission we also include
results of the SD. For the chosen UW-OFDM system parame-
ters, the determination of reliability information for the SD is
computationally too complex to deliver results in feasible time.
Hence, no coded results are shown for this estimator. The most
important system parameters are specified in Table I. Since we
focus on data estimation in this work rather than approaches
to make use of the UW, we chose the zero UW for the BER
simulations below. The use of a non-zero UW would cause a
right shift of the presented curves, resulting from the increased
transmit energy compared to the zero UW case.
The multipath channel is modeled as a tapped delay line

with an exponentially decaying power profile, as described
in [18]. We stored 10 000 realizations of channel impulse
responses, featuring (on average) a delay spread of 100 ns and
a total length not exceeding the guard interval. Furthermore,
the channel impulse responses have been normalized such that
the receive power is independent of the actual channel. Perfect
channel knowledge is assumed at the receiver.
In Fig. 2, the simulation results of the uncoded transmis-

sion are displayed for the AWGN channel and for an indoor
multipath environment, both for systematic and non-systematic
UW-OFDM. In all performance comparisons the dB-measure-
ments are taken at a BER of . As discovered in [14] and
apparent in Fig. 2 all receivers perform equally for non-system-
atically generated UW-OFDM in the AWGN channel. For sys-
tematic UW-OFDM in the AWGN channel, the proposed NI im-
proves the LMMSE estimator by 1 dB, while the optimum but
complex SD is only 0.7 dB in front of the NI. In themultipath en-
vironment the performance differences are significant. For sys-
tematic UW-OFDM the NI is 1.5 dB ahead of the LMMSE esti-
mator, and 3.3 dB behind the SD performance. For the non-sys-

Fig. 2. Simulated BER for uncoded transmission: LMMSE estimator, SD and
NI receiver in AWGN and multipath environment.

Fig. 3. Simulated BER for coded transmission, : LMMSE estimator
and NI receiver in AWGN and multipath environment.

tematic approach the NI performs even better: It supersedes the
LMMSE estimator by impressive 4.5 dB, leaving 2.6 dB to the
SD.
The results for coded transmission are shown in Fig. 3. In the

AWGN channel, the gain of the NI receiver over the LMMSE
estimator is limited. However, in the frequency selective envi-
ronment, a considerable gain of 0.7 dB is achieved when ap-
plying the favorable non-systematic approach. Further investi-
gations for varying coding rates revealed a shrinking gain of the
NI receiver over the LMMSE estimator with decreasing .

VI. CONCLUSION

The rather complex sphere decoder is known to outperform
the simple LMMSE estimator in UW-OFDM communications.
In this work, an alternative but less complex non-linear data esti-
mator is introduced for UW-OFDM that shows analogies to the
well known noise prediction and noise whitening approaches in
single carrier systems. After an initial LMMSE estimation, the
data estimation performance is improved by exploiting the cor-
relations inherent in the remaining error. This is achieved by ap-
plyingWiener noise interpolation. In this approach the selection
of the samples involved in the interpolation process is crucial. A
simple sample selection criterion has been introduced in an em-
pirical way. From our simulation results we conclude that the
NI concept shows its strengths in frequency selective channels,
and it is especially beneficial in combination with high coding
rates.
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