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Abstract—In this paper, we propose a novel transmit signal
structure for OFDM (orthogonal frequency division multiplex-
ing). Instead of the conventional cyclic prefix (CP), we use a
deterministic sequence, which we call unique word (UW), as
guard interval. We show how unique words, which are already
well investigated for single carrier systems with frequency domain
equalization (SC/FDE), can also be introduced in OFDM symbols.
Since unique words represent known sequences, they can advan-
tageously be used for synchronization and channel estimation
purposes. Furthermore, the proposed approach introduces a
complex number Reed-Solomon (RS-) code structure within the
sequence of subcarriers. This either allows for algebraic RS
decoding or for applying a highly efficient Wiener smoother
succeeding a zero forcing stage at the receiver to further improve
the bit error ratio behavior of the system. These beneficial
properties are achieved while additionally featuring around
the same bandwidth efficiency as conventional CP-OFDM. We
present simulation results in an indoor multipath environment
to highlight the advantageous properties of the proposed scheme.

I. INTRODUCTION

In conventional OFDM signaling, subsequent symbols are

separated by guard intervals, which are usually implemented

as cyclic prefixes (CPs) [1]. By this, the linear convolution of

the signal with the channel impulse response is transformed

into a cyclic convolution, which allows for a low complex

equalization in frequency domain. In this paper, we propose

to use known sequences, which we call unique words (UWs),

instead of cyclic prefixes. The technique of using UWs has

already been investigated in-depth for SC/FDE systems, where

the introduction of unique words in time domain is straight

forward [2], since the data symbols are also defined in time

domain. In this work, we will show how unique words can

be introduced in OFDM time domain symbols, even though

the data QAM (quadrature amplitude modulation) symbols are

defined in frequency domain. Furthermore, we will present two

different receiver concepts adjusted to the novel transmit signal

structure.
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Fig. 1 compares the transmit data structure of CP- and

UW-based transmission in time domain [3]. Both structures

make sure that the linear convolution of an OFDM symbol

with the impulse response of a dispersive (e.g. multipath)

channel appears as a cyclic convolution at the receiver side.

Nevertheless, there are also some fundamental differences

between CP- and UW-based transmission:

CP1 CP1 CP2 CP2 CP3Data Data . . .

TGI TDFT TGI TDFT

UW UW UWData Data . . .

TGI TDFT TDFT

Fig. 1: Transmit data structure using CPs (above) or UWs (below).

• The UW is part of the DFT (discrete Fourier transform)-

interval, whereas the CP is not. Due to that and in contrast

to previous attempts of applying UW to OFDM [4],

our UW-OFDM approach achieves an almost identical

bandwidth efficiency as conventional CP-OFDM.

• The CP is random, whereas the UW is a known deter-

ministic sequence. Hence, the UW can advantageously be

utilized for synchronization [5] and channel estimation

purposes [6].

Both statements hold for OFDM- as well as for SC/FDE-

systems. However, in OFDM - different to SC/FDE - the

introduction of UWs in time domain leads to another funda-

mental and beneficial signal property: A UW in time domain

generates a word of a complex number RS (Reed Solomon)-

code (cf. e. g. [7]) in the OFDM frequency domain symbol

vector. Therefore, the UW could be exploited for algebraic

error correction or (more appropriately) for erasure correction

for highly attenuated subcarriers. However, as it turns out and

as we will show in this paper, algebraic RS decoding leads

to solving a very ill-conditioned system of equations and thus

cannot achieve a reasonable solution, as soon as even only

little noise is present in the system.

Another interpretation of the introduction of UWs in time

domain is that it leads to correlations along the subcarriers.

Therefore, a receiver based on a Bayesian estimation is obvi-

ous, too. We will show that a receiver based on a Bayesian



estimation will in fact significantly improve the BER behavior

by exploiting the covariance matrix of the subcarrier symbols.

The rest of the paper is organized as follows: In section

II, we describe our approach of how to introduce unique

words in OFDM symbols. Section III introduces an algebraic

RS decoding and an LMMSE (linear minimum mean square

error) receiver approach that exploits the a-priory knowledge

introduced at the transmitter side. In section IV, the novel UW-

OFDM concept is compared to the classical CP-OFDM by

means of simulation results for both receiver concepts. For

this, the IEEE 802.11a WLAN (wireless local area networks)

standard serves as reference system.

Notation

Lower-case bold face variables (a,b,...) indicate vectors,

and upper-case bold face variables (A,B,...) indicate matrices.

To distinguish between time and frequency domain variables,

we use a tilde to express frequency domain vectors and

matrices (ã, Ã,...), respectively. We further use C to denote

the set of complex numbers, I to denote the identity matrix,

(·)T to denote transposition, (·)H to denote conjugate trans-

position, (·)† to denote the Pseudo-Inverse, and E[·] to denote

expectation.

II. GENERATION OF UNIQUE WORDS IN OFDM SYMBOLS

In conventional CP-OFDM, the data vector d̃ ∈ CNd×1 is

defined in frequency domain. Typically, zero subcarriers are

inserted at the band edges and at the DC subcarrier position,

which can mathematically be described by a matrix operation

x̃ = Bd̃ with x̃ ∈ C
N×1 and B ∈ C

N×Nd . B consists of zero-

rows at the positions of the zero subcarriers, and of appropriate

unit row vectors at the positions of data subcarriers. The

vector x̃ denotes the OFDM symbol in frequency domain.

The vector of time domain samples x ∈ CN×1 is calculated

via an IDFT (inverse DFT) operation, which can conveniently

be formulated in matrix notation by x = F−1
N x̃. Here, FN

is the N -point-DFT matrix defined by FN = (fmn) with

fmn = wmn for m = 0, 1, ..., N − 1, n = 0, 1, ..., N − 1,

and with w = e−j2π/N .

We now modify this conventional approach by introducing

a pre-defined sequence xu, which we call unique word, and

which shall form the tail of the time domain vector x. Hence, x

consists of two parts and is given by x =
[
xT

d xT
u

]T
, where

xd ∈ C(N−Nu)×1 and xu ∈ CNu×1. The vector xu represents

the UW of length Nu, and thus only xd is random and affected

by the data. In the following, but w.l.o.g., we will generate a

zero UW x =
[
xT

d 0T
]T

such that x = F−1
N x̃ (note that

our approach of introducing the zero word as guard interval

is fundamentally different to zero padded (ZP) OFDM, as the

zero word is now part of the DFT interval). This linear system

of equations can only be fulfilled by reducing the number

Nd of data subcarriers, and by introducing a set of redundant

subcarriers instead. We let the redundant subcarriers form the

vector r̃ ∈ CNu×1, further introduce a permutation matrix P ∈
C(Nd+Nu)×(Nd+Nu), and form an OFDM symbol (containing

N − Nd − Nu zero subcarriers) in frequency domain by

x̃ = BP

[
d̃

r̃

]
. (1)

B again inserts the zero subcarriers, but has now the di-

mensions B ∈ CN×(Nd+Nu). We will detail the reason for

the introduction of the permutation matrix and its specific

construction shortly below.

The relation between the time and the frequency domain

representation of the OFDM symbol can now be written as

F−1
N BP

[
d̃

r̃

]
=

[
xd

0

]
. (2)

With

M = F−1
N BP =

[
M11 M12

M21 M22

]
, (3)

where Mij are appropriate sized sub-matrices, it follows that

M21d̃ + M22r̃ = 0, and hence r̃ = −M−1
22 M21d̃. With

the matrix T = −M−1
22 M21 (T ∈ CNu×Nd), the vector of

redundant subcarriers can thus be determined by the linear

mapping

r̃ = Td̃, (4)

which corresponds to a complex number RS-code construction

along the subcarrier symbols (i.e. Nu subsequent zeros in the

transform domain). Alternatively, (4) can be interpreted as

introducing correlations in the vector x̃ of frequency domain

samples of an OFDM symbol.

We notice that the construction of T, and thus also the

variances of the redundant subcarriers, highly depend on

the positions of the redundant subcarriers within the entire

frequency domain vector x̃. Hence, the permutation matrix P

has to be chosen carefully. Simple trials show that the energy

on the redundant subcarriers varies significantly with P. The

choice P = I e.g. results in extremely high energy values.

We thus select P such that trace
(
TTH

)
becomes minimum

[3]. One can show that this provides minimum energy on the

redundant subcarriers on average (when averaging over all

possible data vectors d̃). In section IV, we will specify the

permutation matrix P for our simulated system setup.

In the following, we use the notation c̃ with

c̃ = P

[
d̃

r̃

]
= P

[
I

T

]
d̃ = Gd̃, (5)

(c̃ ∈ C(Nd+Nu)×1,G ∈ C(Nd+Nu)×Nd) for the non-zero part

of x̃, such that x̃ = Bc̃. From (5), we immediatley notice that

an OFDM symbol based on our novel UW-OFDM approach

can be interpreted as a systematic code in the frequency

domain generated by the code generator matrix G. This is

illustrated in detail in Fig. 2. Based on the input data vector d̃,

the redundant subcarrier symbols r̃ are generated by applying

T, and after a permutation by P, we result at the desired code

word c̃.



d̃0 d̃1 d̃2 · · · d̃Nd−1

T

d̃0 d̃1 d̃2 · · · d̃Nd−1 r̃0 · · · r̃Nu−1

P

c̃0 c̃1 c̃2 · · · c̃Nd+Nu−1

Fig. 2: Code word generator

III. RECEIVER

After the transmission over a multipath channel and after the

common DFT operation, the non-zero part ỹ ∈ C(Nd+Nu)×1

of a received OFDM frequency domain symbol can be mod-

eled as

ỹ = BTFNHF−1
N Bc̃ + BTFNn, (6)

where H denotes a cyclic convolution matrix with H ∈
C

N×N , and n ∈ C
N×1 represents a noise vector with the co-

variance matrix σ2
nI. The multiplication with BT excludes the

zero subcarriers from further operation. The matrix FNHF−1
N

is diagonal and contains the sampled channel frequency re-

sponse on its main diagonal. H̃ = BTFNHF−1
N B with

H̃ ∈ C(Nd+Nu)×(Nd+Nu) is a down-sized version of the latter

excluding the entries corresponding to the zero subcarriers.

The received symbol can therefore also be written as

ỹ = H̃c̃ + BTFNn. (7)

As usual for conventional OFDM, we propose to apply a zero

forcing (ZF) equalization by multiplying with H̃−1 from the

left at first. This results in

ỹ
′

= H̃−1ỹ = c̃ + ṽ (8)

with the noise vector ṽ = H̃−1BTFNn. In the following,

we will present two different receiver strategies, whereas the

first one uses algebraic RS decoding and the latter a Bayesian

approach to decode (8).

A. Algebraic RS Decoding based UW-OFDM Receiver

In case of algebraic RS decoding, we apply the same

principle as at the transmitter side to generate the redundant

subcarriers r̃, but now we aim at recovering highly atten-

uated subcarrier symbols c̃b ∈ C(m×1) from well received

subcarrier symbols c̃g ∈ C
(Nd+Nu−m)×1 (m ≤ Nu). Let

P
′

∈ C
(Nd+Nu)×(Nd+Nu) be a permutation matrix that splits

up c̃ into “good” and “bad” subcarrier symbols such that

c̃
′

=

[
c̃g

c̃b

]
= P

′

c̃, (9)

and let

M
′

= F−1
N BPP

′−1 =

[
M

′

11 M
′

12

M
′

21 M
′

22

]
, (10)

where M
′

ij are appropriate sized sub-matrices. It follows that

M
′

21c̃g + M
′

22c̃b = 0 (note that we applied a zero UW 0),

and hence c̃b = −M
′†
22M

′

21c̃g . With T
′

= −M
′†
22M

′

21, we

obtain

c̃ = P
′−1

[
c̃g

c̃b

]
= P

′−1

[
I

T
′

]
c̃g = G

′

c̃g. (11)

With P
′

=
[
P

′

1
T P

′

2
T
]T

and P
′

1 ∈ C(Nd+Nu−m)×(Nd+Nu),

we finally obtain the estimator

̂̃c = G
′

P
′

1H̃
−1ỹ. (12)

Note that since we have a zero UW of length Nu in the

time domain, we are able to recover up to Nu erased

subcarrier symbols. In case of m = Nu, this system of

equations has a uniquely defined solution (i.e. the Pseudo-

Inverse turns into an Inverse). In case of m < Nu, this

leads to an overdetermined system of equations which

may be preferably solved in a least square sense. Finally,

the data part
̂̃
d =

[
I 0

]
P−1̂̃c can be processed further

as usual. One can show that the error ẽ = c̃ − ̂̃c has

zero mean, and its covariance matrix is given by Cẽẽ =

σ2
d

(
Cc̃c̃ − G

′

P
′

1Cc̃c̃ − Cc̃c̃(G
′

P
′

1)
H + G

′

P
′

1Cc̃c̃(G
′

P
′

1)
H

)
+

G
′

P
′

1Cṽṽ(P
′

1)
H . Cẽẽ can further be used in the case when

additional channel coding is applied. Especially, varying

noise variances along the subcarriers within the data vector

d̃ may be exploited as well known from coded transmission

over time variant channels, cf. e.g. [8].

B. LMMSE UW-OFDM Receiver

In the Bayesian approach, we exploit the fact that the

redundant subcarrier symbols have been calculated out of the

data symbols by (4), and thus are correlated with the data

symbols and among each other. Because of that we propose

to apply an LMMSE Wiener smoother [9] on ỹ
′

, which results

in the noise reduced estimate

̂̃c = W̃H̃−1ỹ (13)

with the Wiener smooting matrix defined as

W̃ = Cc̃c̃ (Cc̃c̃ + Cṽṽ)
−1 , (14)

where Cc̃c̃,Cṽṽ ∈ C(Nd+Nu)×(Nd+Nu) denote the covariance

matrices of c̃ and ṽ, respectively. If we assume uncorrelated

and zero-mean data QAM symbols with variance σ2
d , and

uncorrelated and zero-mean noise with variance σ2
n, these

covariance matrices are given as follows:

Cc̃c̃ = E
[
c̃c̃H

]
= GE

[
d̃d̃H

]
GH = σ2

dGGH , (15)

Cṽṽ = E
[
ṽṽH

]
= Nσ2

nH̃−1(H̃−1)H . (16)

Similar to the algebraic RS decoding approach, the data part

can be extracted by
̂̃
d =

[
I 0

]
P−1̂̃c. The error ẽ = c̃ − ̂̃c

has zero mean, and its covariance matrix is given by Cẽẽ =(
I − W̃

)
Cc̃c̃ [9].



IV. SIMULATION RESULTS

Fig. 3 shows the block diagram of the simulated UW-

OFDM system (equivalent complex baseband description is

used throughout this paper). After outer channel coding, inter-

leaving and QAM-mapping, the redundant subcarrier symbols

are determined using (4). After assembling the OFDM symbol,

which is composed of d̃, r̃, and a set of zero subcarriers,

the IFFT (inverse fast Fourier transform) is performed. For

the sake of simplicity, we omit any kind of specific spectral

masking. At the receiver, the FFT (fast Fourier transform)

operation is followed by a ZF equalization as in classical CP-

OFDM. Then, either the Wiener smoother or our algebraic RS

decoder is applied to the OFDM symbol, depending on the

specific receiver concept. Finally, demapping, deinterleaving

and decoding is performed. For the soft decision Viterbi

decoder, the main diagonal of matrix Cẽẽ is used to specify the

varying noise variances along the subcarriers after equalization

and Wiener filtering or algebraic RS decoding, respectively.

binary
data
input Channel

Coding

Inter-

leaving

QAM

Mapping Redundant Subcarrier

Symbol Calculation

Assemble

OFDM Symbol
IFFT

+WGN

Channel

binary
data

output Channel

Decoding

Deinter-

leaving

QAM

Demapping

Extract

Data Symbols

Wiener

Smoothing

RS

Decoding

ZF

Equalization
FFT

Fig. 3: Block diagram for simulation analysis.

We compare our novel UW-OFDM approach with the clas-

sical CP-OFDM concept. The IEEE 802.11a WLAN standard

[10] serves as reference system. We apply the same parameters

for UW-OFDM as in [10] wherever possible: N = 64,

sampling frequency fs = 20MHz, DFT period TDFT = 3.2µs,

guard duration TGI = 800ns. Instead of 48 data subcarriers

and 4 pilots, we use Nd = 36 data subcarriers and Nu = 16
redundant subcarriers. The zero subcarriers are chosen as in

[10], the indices of the redundant subcarriers are chosen to

be {2, 6, 10, 14, 17, 21, 24, 26, 38, 40, 43, 47, 50, 54, 58,

62}. This choice, which can easily also be described by (1)

with an appropriately constructed matrix P, has been found by

heuristic optimization methods and minimizes the total energy

of the redundant subcarriers on average (when averaging over

all possible data vectors d̃) [3].

Note that in conventional CP-OFDM like in the WLAN

standard, the total length of an OFDM symbol is given by

TGI + TDFT . However, the guard interval is part of the DFT

period in our approach. Therefore, both systems show almost

the same bandwidth efficiency.

The multipath channel has been modeled as a tapped delay

line, each tap with uniformly distributed phase and Rayleigh

distributed magnitude, and with power decaying exponentially.

A detailed description of the model can be found in [6]. Fig.

4 shows one typical channel snapshot featuring an rms delay

spread of 100ns. The frequency response shows two spectral

notches within the system’s bandwidth.

In order to clearly demonstrate the effect of our UW-

OFDM approach, the following discussions are based on
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Fig. 4: Time- and frequency-domain representation of the used multipath
channel snapshot.

results obtained for the displayed channel snapshot. Although

not shown in this paper, similar results have been achieved for

various other channel snapshots as well. In case of algebraic

RS decoding, we assume that all subcarrier symbols have been

well received except for those at the subcarriers with index 15

and 46, respectively. Hence, these two subcarrier symbols will

be recalculated from the well received ones like described in

III-A. Fig. 5 shows the MSE before and after algebraic RS

decoding with and without slicing. In case slicing is applied,

we assume perfect knowledge of the data subcarrier symbols

and “slice” the received symbols to the appropriate complex

constellation points, i.e. we replace the noisy symbols by

the actual transmitted symbols. For the redundant subcarriers,

slicing is assumed to be practically not feasible due to the huge

amount of possible constellation points. We thus stick to the

noisy symbols after the ZF stage. In case no slicing is applied,

we use for all subcarrier symbols the values after the ZF stage.

We notice that our algebraic RS decoding approach is able

to slightly improve the MSE on subcarrier 15. Interestingly,

with perfect slicing the MSE cannot be reduced significantly

anymore. As such, the noise on the redundant subcarriers

dominates the performance of our algebraic RS decoding

receiver. Moreover, our algebraic RS decoding approach will

even increase the MSE in case of subcarrier 46. In summary,

algebraic RS decoding leads to solving a very ill-conditioned

system of equations which cannot be solved adequately any-

more as soon as only little noise (note that Eb/N0 = 20dB for

our simulations) is present. Unfortunately, applying common

regularization techniques like e.g. the Tikhonov regularization

also showed no success in stabilizing this system. Hence, this

receiver concept is not applicable for practical systems.

However, we will show in the following, that UW-OFDM in

combination with an LMMSE receiver performs superior. Fig.

6 compares the mean squared errors (MSE) on the Nd + Nu

(data + redundant) subcarriers before and after the Wiener

smoothing operation. We note that all subcarriers experience

a significant noise reduction by the smoother, but the effect is

impressive on the subcarriers corresponding to spectral notches

in the channel frequency response. The subcarriers with index

15 and 46 correspond to the spectral notches around 5MHz

and -2MHz, respectively, cf. Fig. 4.

In Fig. 7 the BER behavior of the IEEE 802.11a standard
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Fig. 5: Noise reduction/enhancement effect of the algebraic RS decoder in a
frequency selective environment for Eb/N0 = 20dB. Above: zoomed y-axis
around carrier 15; below: zoomed y-axis around carrier 46.
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Fig. 6: Noise reduction effect of the Wiener smoother in a frequency selective
environment for Eb/N0 = 20dB. Above: full scale; below: zoomed y-axis.

and the novel UW-OFDM approach is compared, both in

QPSK-mode for the channel displayed in Fig. 4. The channel

snapshot represents a typical indoor NLOS (non line of sight)

office environment. Here, we show results of simulations with

and without the usage of an additional outer code. The outer

code features the coding rates r = 3/4 and r = 1/2,

respectively. Both systems use the same convolutional coder

with the industry standard rate 1/2, constraint length 7 code

with generator polynomials (133,171). For r = 3/4 puncturing

is used as described in [10]. Note that due to the different

number of data symbols per OFDM symbol, the interleaver

had to be slightly adapted compared to the WLAN standard.

Perfect channel knowlegde is assumed in both approaches. We

notice that UW-OFDM with algebraic RS decoding (without

slicing) always performs worse than IEEE802.11a. It loses

about 0.9dB and 0.5dB in case of r = 1/2 and r = 3/4,

respectively. Moreover, when no further outer code is used,

i.e. r = 1, this receiver even shows a utterly devastating

BER behavior. However, UW-OFDM performs superior when

a receiver based on the Bayesian estimation is applied. In

the case of no further outer code, the gain achieved by the

LMMSE smoother is impressive. This can be explained by the

significant noise reduction on heavily attenuated subcarriers.

For the coding rates r = 3/4 and r = 1/2, the novel UW-

OFDM approach still achieves a gain of 1dB and 0.8dB at a

bit error ratio of 10−6, respectively.
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Fig. 7: BER comparison between the novel UW-OFDM approach and the
IEEE 802.11a standard for the channel snapshot displayed above.

V. CONCLUSION

In this work we introduced a novel OFDM signaling con-

cept, where the guard intervals are built by unique words

instead of cyclic prefixes. The proposed approach introduces

a complex number Reed-Solomon code structure within the

sequence of subcarriers. As an important conclusion we

can state, that besides the possibility to use the UW for

synchronization and channel estimation purposes (of course

for that, a UW different from the zero word needs to be

chosen), the novel approach additionally allows to apply a

highly efficient LMMSE Wiener smoother, which significantly

reduces the noise on the subcarriers, especially on highly

attenuated subcarriers. Simulation results illustrate that the

novel approach outperforms classical CP-OFDM in a typical

frequency selective indoor scenario. Furthermore, our novel

approach of introducing UWs provides these benefits over

conventional CP-OFDM while still keeping almost the same

bandwidth efficiency.
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