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Abstract—Unique word - orthogonal frequency division mul-
tiplexing (UW-OFDM) is a novel OFDM concept that uses
deterministic sequences, which we call unique words, as guard
intervals instead of the conventional cyclic prefixes. Since unique
words represent known sequences, they can advantageously be
used for sychronization, channel estimation, but also for improv-
ing the bit error ratio (BER) behavior of a system. These UWs are
created by appropriately loading so-called redundant subcarriers.
In this paper, we investigate methods to improve the BER
behavior of UW-OFDM by increasing the number of redundant
subcarriers (while keeping the length of the UW constant). This
gain in the BER performance comes with an increase of the
redundancy part and thus with a decrease of the data rate. As
such, we present methods to vary the coding rate in UW-OFDM.
We present results for the additive white Gaussian noise (AWGN)
channel as well as for indoor multipath environments to highlight
the advantages of the proposed methods.

I. INTRODUCTION

In mobile communications, multipath propagation is a

crucial phenomenon which we have to cope with. Mobile

radio channels in indoor or cellular environments can exhibit

relatively large time dispersions, i.e. intersymbol interference

(ISI). In orthogonal frequency division multiplexing (OFDM)

systems, ISI can easily be eliminated by introducing a guard

interval between two consecutive OFDM symbols. Further-

more, implementing these guard intervals as cyclic prefixes

(CPs) [1] transforms the linear convolution of the transmit

signal with the channel impulse response into a cyclic con-

volution, allowing for a low complexity equalization in the

frequency domain. The same can also be achieved by using

unique words (UWs) instead of CPs. Nevertheless, there are

some fundamental differences between the CP-based and UW-

based transmission:

• The UW is part of the discrete Fourier transform (DFT)

interval, whereas the CP is not (cf. Fig. 1).

Christian Hofbauer has been funded by the European Regional Develop-
ment Fund and the Carinthian Economic Promotion Fund (KWF) under grant
20214/15935/23108.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works. DOI: 10.1109/ICSPCS.2010.5709697

• The CP is random, whereas the UW is a known deter-

ministic sequence, which can advantageously be used for

synchronization [2] and channel estimation [3] purposes.

• The implementation of a UW in the time domain in-

troduces correlations in the frequency domain. These

correlations can be exploited to improve the bit error ratio

(BER) behavior of the system [4].

CP1 CP1 CP2 CP2 CP3Data Data . . .

TGI TDFT TGI TDFT

UW UW UWData Data . . .

TGI TDFT TDFT

Fig. 1. Transmit data structure using CPs (above) or UWs (below).

First ideas of how to use UWs in OFDM have already

been proposed in [5] where the concept is called DMT-KSP

(discrete multi-tone - known symbol padding). The paper pro-

vides a theoretical concept of how to create an OFDM symbol

featuring a UW at its tail, but the approach fails to compete

with the performance of UW based SC systems, or as named

in the paper, with SC-KSP (single carrier - known symbol

padding) systems. The authors notice that the performance of

DMT-KSP is highly sensitive to the choice of the UW. Our

approach of how to create UW-OFDM symbols described in

[4] differs from the concept in [5] in two ways: Different as

in [5] we optimize the positions of the so-called redundant

subcarriers (details are described below) in frequency domain,

and most importantly, we use a different method to generate

the UWs which we call two-step approach. In fact, we showed

in [6] that the two-step approach significantly outperforms the

approach in [5] (which we call single-step determination of

the UW in [4] and [6]). We note that the two-step approach

produces completely different OFDM symbols than the single-

step approach. The only thing they have in common is the

UW-tail. Furthermore, in contrast to the single-step method,

the choice of the UW has no influence on the data estimation

performance in the two-step approach.

In [7], the term UW-OFDM is not used, but the presented

concept is closely related to what we call UW-OFDM. There,



the approach is considered from a coding theory perspective.

The authors propose to use a zero word within OFDM time do-

main symbols. The concatenated zero samples in time domain

in combination with unused subcarriers forming guard bands

in the frequency domain are interpreted as a time-frequency

Reed-Solomon code with a Hamming distance in time and

frequency domain. The authors notice, that consecutively used

redundancy and consecutive error pattern in the other domain

leads to an ill-conditioned problem which does not allow to

determine the errors even if the error positions are known.

The authors mention that they will concentrate further work

on improving the stability, i.e. lowering the condition number

of the underlying system of equations.

Several other attempts of applying UWs in OFDM systems

can be found in the literature, e.g. in [8], [9], [10] and [11].

Although they are called differently like KSP-OFDM, time-

domain synchronous OFDM (TDS-OFDM) or pseudorandom

postfix OFDM (PRP-OFDM), and may sometimes also differ

in the specific design of the UW, all approaches share one

common property making them completely different from [5]

and also from our approach: In all cases, the guard interval

and thus the UW is not part of the DFT interval. Therefore,

different to our UW-OFDM approach described below, no

correlations along the subcarriers and thus no coding gain is

introduced by these concepts.

We have shown in [4] how to create UWs by appropriately

loading so-called redundant subcarriers. By this, correlations

along the frequency domain vector of an OFDM symbol are

introduced. Investigations in [4] have unveiled that the energy

spent for the redundant subcarriers is critical. In this paper, we

extend the results of [4] by increasing the number of redundant

subcarriers (while keeping the same length for the UW). By

this, the total energy on the redundant subcarriers is reduced

and thus the BER performance improved. However, this gain

in the BER behavior leads to a decrease of the data rate. As

such, the presented ideas can be seen as methods to vary the

coding rate in UW-OFDM. In the following, we will refer to

this coding rate as “inner coding rate”.

The rest of the paper is organized as follows: In section II,

we describe our approach of how to introduce unique words in

OFDM symbols. Furthermore, we present methods to decrease

the energy of the redundant subcarrier symbols by changing

the inner coding rate of the system. Section III introduces a

linear minimum mean square error (LMMSE) receiver that

exploits the correlations introduced by the redundant subcar-

riers. Section IV evaluates the impact of the energy of the

redundant subcarrier symbols on the BER behavior by means

of simulations, and section V concludes our work.

Notation Lower-case bold face variables (a,b,...) indicate

vectors, and upper-case bold face variables (A,B,...) indicate

matrices. To distinguish between time and frequency domain

variables, we use a tilde to express frequency domain vectors

and matrices (ã, Ã,...), respectively. We further use C to

denote the set of complex numbers, I to denote the identity

matrix, (·)T to denote transposition, (·)H to denote conjugate

transposition, (·)† to denote the Pseudo-Inverse, and E(·) to

denote expectation.

II. UNIQUE WORD GENERATION FOR OFDM

In conventional CP-OFDM, the data vector d̃ ∈ CNd×1 is

defined in the frequency domain. Typically, zero subcarriers

are inserted at the band edges and at the DC subcarrier posi-

tion, which can formally be described by a matrix operation

x̃ = Bd̃ with x̃ ∈ CN×1 and B ∈ CN×Nd . B consists of zero-

rows at the positions of the zero subcarriers, and of appropriate

unit row vectors at the positions of data subcarriers. The

vector x̃ denotes the OFDM symbol in frequency domain.

The vector of time domain samples x ∈ CN×1 is calculated

via an IDFT (inverse DFT) operation, which can conveniently

be formulated in matrix notation by x = F−1
N x̃. Here, FN

is the N -point-DFT matrix defined by FN = (fmn) with

fmn = wmn for m = 0, 1, ..., N − 1, n = 0, 1, ..., N − 1,

and with w = e−j2π/N .

We now modify this conventional approach by introducing

a pre-defined sequence xu with xu ∈ C
Nu×1, which we call

unique word, and which shall form the tail of the time domain

vector, which we now denote by x′. Hence, x′ consists of

two parts and is given by x′ =
[
xT

d xT
u

]T
, where xd ∈

C(N−Nu)×1 and xu ∈ CNu×1. The vector xu represents the

UW of length Nu, and thus only xd is random and affected

by the data. We use a two step approach [6] to generate the

so-defined vector x′:

• In a first step, we will generate a zero UW x =[
xT

d 0T
]T

, such that x = F−1
N x̃.

• In a second step, we will determine the transmit symbol

by x′ = x +
[
0T xT

u

]T
.

We now describe the first step in detail: As in conventional

OFDM, the QAM data symbols and the zero subcarriers are

specified in the frequency domain in vector x̃, but here in

addition, the zero word is specified in the time domain as

part of the vector x. As a consequence, the linear system

of equations x = F−1
N x̃ can only be fulfilled by reducing

the number Nd of data subcarriers, and by introducing a

set of redundant subcarriers instead. We let the redundant

subcarriers form the vector r̃ ∈ CNr×1, requiring Nr ≥ Nu.

Additionally, we redefine the dimensions of B such that

B ∈ CN×(Nd+Nr), further introduce a permutation matrix

P ∈ C(Nd+Nr)×(Nd+Nr), and form an OFDM symbol (con-

taining N − Nd − Nr zero subcarriers) in frequency domain

by x̃ = BP
[
d̃T r̃T

]T
. We will detail the reason for

the introduction of the permutation matrix and its specific

construction shortly below. Fig. 2 illustrates this approach in

a graphical way: The input of the IDFT block is composed of

data subcarrier symbols (d̃), zero subcarriers, and redundant

subcarrier symbols (r̃), which are distributed over the entire

non-zero part of vector x̃ as specified by the permutation

matrix P. The output of the IDFT block, which corresponds

to the vector x of time domain samples of an OFDM symbol,

is composed of the random part xd, and the zero UW 0.

The relation between the time and the frequency domain
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Fig. 2. Time- and frequency-domain view of an OFDM symbol in UW-
OFDM.

representation of an OFDM symbol can now be written as

F−1
N BP

[
d̃

r̃

]
=

[
xd

0

]
. (1)

With

M = F−1
N BP =

[
M11 M12

M21 M22

]
, (2)

where Mij are appropriately sized sub-matrices, it follows

that M21d̃+M22r̃ = 0. In the following, we will distinguish

between two different cases, namely Nr = Nu and Nr > Nu.

In case of Nr = Nu, the problem to be solved translates

to a linear system of equations with Nu equations for Nu

unknowns and thus is uniquely solvable. More in detail, M22

becomes a quadratic matrix of dimension Nu × Nu with a

uniquely defined inverse, leading to r̃ = −M−1
22 M21d̃. With

the matrix T = −M−1
22 M21(T ∈ CNr×Nd), the vector of

redundant subcarrier symbols can thus be determined by the

linear mapping

r̃ = Td̃. (3)

It is clear now how to load r̃ in order to create the desired

zero word as UW. However, as we have already mentioned

that the energy present on the redundant subcarriers is critical,

we additionally wish to minimize this energy. In case of

Nr = Nu, the choice of the permutation matrix is the only

degree of freedom to achieve this. The permutation matrix

P determines the positions of the redundant subcarriers r̃

within x̃. Since changing the positions based on the current

data d̃ and therefore during transmission seems impracticable,

we thus would like to find a P such that the energy of r̃

is minimized over all possible data vectors on average, i.e.

minimizing E
(
r̃H r̃

)
. Assuming i.i.d. zero-mean data QAM

symbols with variance σ2
d and taking into account (3), this

leads to the following optimization problem:

P = arg min {tr(TTH)}. (4)

It turns out that the right choice of P is very critical with

respect to the resulting energy on r̃. Experiments show that

an approximately equidistant distribution of the redundant

subcarriers provides low energy, whereas bundles of them

result in extremely high energy values. In section IV, we will

present some optimal distributions for different values of Nr

obtained from heuristic optimization methods.

In case of Nr > Nu, the problem to be solved translates

to an underdetermined linear system of equations and thus

provides infinitely many solutions. Besides the choice of the

permutation matrix P, we have now an additional degree of

freedom to minimize the energy on the redundant subcarriers,

leading to the following optimization criterion:

min ‖r̃‖2 s.t. M21d̃ + M22r̃ = 0. (5)

Here, ‖·‖2 denotes the Euclidean norm defined as ‖r̃‖2 =√
r̃H r̃. Note that in contrast to (4), we aim at finding the

optimum for each individual transmit symbol instead of just

finding the optimum on average. This means that we take

into account the actual data subcarrier symbols d̃ instead of

their statistical properties. Eq. (5) is met with optimality by

the Pseudo-Inverse defined as M
†
22 =

(
MH

22M22

)−1
MH

22

(M
†
22 ∈ CNr×Nu), leading to r̃ = −M

†
22M21d̃. With

T = −M
†
22M21(T ∈ CNr×Nd) we arrive at the linear

mapping as in (3).

For both cases, i.e. independent of Nr = Nu or Nr > Nu,

we can now use the notation s̃ with

s̃ = P

[
d̃

r̃

]
= P

[
I

T

]
d̃ = Gd̃, (6)

(̃s ∈ C(Nd+Nr)×1,G ∈ C(Nd+Nr)×Nd) for the non-zero part

of x̃, such that x̃ = Bs̃. Finally, the transmit symbol x′ is

generated by adding the unique word like described earlier.

The frequency domain representation x̃′
u ∈ CN×1 of the UW

is defined by x̃′
u = FN

[
0T xT

u

]T
. Note that x′ can also be

written as x′ = F−1
N (x̃′

u + x̃) = F−1
N (x̃′

u + Bs̃). The mean

energy Ex′ of the transmit symbol x′ can be shown to be

Ex′ =
1

N
(Ndσ

2
d︸ ︷︷ ︸

E
d̃

+ σ2
dtr

(
TTH

)
︸ ︷︷ ︸

Er̃

) + xH
u xu︸ ︷︷ ︸
Exu

. (7)

E
d̃

N and Er̃

N describe the contributions of the data and the

redundant subcarrier symbols to the total mean symbol energy

before the addition of the UW, respectively, and Exu
describes

the contribution of the UW. We will refer back to this equation

more in detail in section IV.

III. OFDM RECEIVER

Let x′ be the transmit symbol, then after the transmission

over a multipath channel and after the common DFT operation

(preferably implemented as FFT (fast Fourier transform)), the

non-zero part ỹ ∈ C(Nd+Nr)×1 of a received OFDM frequency

domain symbol can be modeled as ỹ = BTFNHF−1
N (x̃′

u +
Bs̃)+BT FNn, where H denotes a cyclic convolution matrix

with H ∈ CN×N , and n ∈ CN×1 represents a noise vector

with the covariance matrix σ2
nI. The multiplication with BT

excludes the zero subcarriers from further operation. The

matrix FNHF−1
N is diagonal and contains the sampled channel

frequency response on its main diagonal. H̃ = BTFNHF−1
N B

with H̃ ∈ C(Nd+Nr)×(Nd+Nr) is a down-sized version of

FNHF−1
N excluding the entries corresponding to the zero sub-

carriers. The received symbol can therefore also be formulated



as

ỹ = H̃(BT x̃′
u + s̃) + BTFNn. (8)

One can show that the LMMSE [12] receiver can be written

as
̂̃
d = W̃H̃−1

(
ỹ − H̃BT x̃′

u

)
, (9)

whereas the Wiener smoothing matrix W̃ is given by

W̃ = GH

(
GGH +

Nσ2
n

σ2
d

(
H̃HH̃

)−1
)−1

. (10)

Note that the error ẽ = d̃−̂̃
d has zero mean, and its covariance

matrix is given by [12] Cẽẽ = σ2
d

(
I − W̃G

)
, which can be

further utilized when channel coding is applied. Furthermore,

we notice from (9) that we first subtract H̃BT x̃′
u from ỹ

before applying equalization. As such, the specific choice of

the UW does not influence the performance of the LMMSE

receiver and can thus be chosen independently from that.

IV. PERFORMANCE

This section will demonstrate how the inner coding rate

and thus the energy present on the redundant subcarriers

influences the performance of the UW-OFDM system in terms

of the BER behavior. We will present results for the additive

white Gaussian noise (AWGN) case and additionally for two

dedicated multipath channel snapshots. Fig. 3 shows the block

diagram of the simulated UW-OFDM system. Starting with

channel coding, interleaving and mapping, the redundant sub-

carriers are loaded like indicated in (3). The OFDM symbol in

the frequency domain is created by appropriately assembling

d̃, r̃ and a set of zero subcarriers. Afterwards, an inverse fast

Fourier transform (IFFT) is applied, and finally the UW is

added in the time domain. At the receiver, we apply a FFT op-

eration followed by a zero forcing (ZF) equalization. Next, the

frequency domain representation of the UW is subtracted and

a Wiener smoothing operation is applied. Finally, demapping,

deinterleaving and decoding are performed. For the decoding

step, we use a soft decision Viterbi approach with the main

diagonal of the matrix Cẽẽ as an additional input specifying

the noise variances along the subcarriers after equalization and

Wiener filtering.

We compare our novel UW-OFDM approach with the clas-

sical CP-OFDM concept. The IEEE 802.11a WLAN standard

[13] serves as reference system. We apply the same parameters

for UW-OFDM as in [13] wherever possible: N = 64,

sampling frequency fs = 20MHz, DFT period TDFT = 3.2µs,
guard duration TGI = 800ns, and twelve zero subcarriers

at the positions {0, 27, 28,...,37}. Instead of Nd = 48 data

subcarriers and Np = 4 pilots, we use Nd data subcarriers

and Nr redundant subcarriers, whereas 28 ≤ Nd ≤ 36 and

16 ≤ Nr ≤ 24, depending on the specific configuration. The

data symbols are drawn from a QPSK alphabet with variance

σ2
d = 1, leading to a total mean energy of the data subcarrier

symbols of
E

d̃

N = Nd

64 . According to the guard duration, the

UW has a length of Nu = 16. In our approach, this UW

shall take over the synchronization tasks which are normally

Nr Index set

16 2,6,10,14,17,21,24,26,38,40,43,47,50,55,58,62
20 1,4,7,10,13,15,18,21,24,26,38,40,43,46,48,51,54,57,59,62
24 2,4,6,9,11,13,16,18,20,22,24,26,38,40,42,44,46,48,

51,54,56,58,60,63

TABLE I
INDICES OF REDUNDANT SUBCARRIERS

IEEE 802.11a UW-OFDM

Nd 48 36 32 28
Nr (Np) 4 16 20 24

B [MHz] 16.60 16.10 16.20 16.22
η 0.723 0.699 0.617 0.540

ηrel 1.000 0.967 0.854 0.746
Er̃ 36.57 24.91 18.41
Eb 0.01058 0.01706 0.01506 0.01483

AWGN loss [dB] 0.0000 2.0754 1.5320 1.2254

TABLE II
PERFORMANCE IEEE 802.11A VS. UW-OFDM

performed with the help of the 4 pilot subcarriers. However,

since in this paper, we only focus on the BER behavior of UW-

OFDM, and since the performance of the proposed receiver

is independent of the UW (see (9)), only the energy Exu
of

the UW but not the specific design is of interest in this case.

Due to reasons of fair comparison, the energy Exu
of the

UW related to the total energy of a transmit symbol is set to
Exu

E
x′

= 4
52 , which exactly corresponds to the total energy of the

4 pilots related to the total energy Ex,CP of a transmit symbol

in the IEEE standard. According to (7), we can thus write

Ex′ =
E

d̃

64 + Er̃

64 + 4
52Ex′ and after some reformulations arrive

at Exu
=

(
Nd

64 + Er̃

64

)
52
48

4
52 . Since we use QPSK mapping (2

bits per symbol), the mean energy per transmit bit is calculated

as Eb = E
x′

2Nd

TOF DM

TDF T
. In conventional CP-OFDM like in the

IEEE 802.11a standard, the total length of an OFDM symbol

TOFDM is given by TGI + TDFT . Note that in our approach,

the guard interval is already part of the DFT period and thus

TOFDM = TDFT .

Table I illustrates the subcarrier sets for various numbers

of redundant subcarriers which have been used for evaluating

the performance of the different UW-OFDM system configu-

rations. These sets have been found by heuristic optimization

methods subject to (4). As already mentioned earlier, the

optimal sets with respect to achieving low energy on the

redundant subcarriers turn out to follow a nearly equidistant

distribution. Table II compares our UW-OFDM approach

with the IEEE 802.11a system. We notice that our UW-

OFDM approach needs about 0.4-0.5MHz less bandwidth B
for transmission than the IEEE 802.11a system. These results

have been obtained by simulations and measurements of the

normalized power spectral density of the transmit bursts at

-10dB down from the maximum of the flat region of the

spectrum. The third row presents the bandwidth efficiency

of the systems measured in megasymbols per seconds per

MHz [(Ms/s)/MHz] and is given by η = (Nd/TOFDM )/B.

The fourth row shows the bandwidth efficiency of the UW-



binary
data
input Channel

Coding

Inter-

leaving

QAM

Mapping Redundant Subcarrier

Symbol Calculation

Assemble

OFDM Symbol
IFFT Add

UW

Channel

binary
data
output Channel

Decoding

Deinter-

leaving

QAM

Demapping

Wiener

Smoothing

Subtract

UW

ZF

Equalization
FFT

Fig. 3. Block diagram for simulation analysis.

OFDM systems related to the IEEE 802.11a approach (ηrel).

We notice that in case of Nr = 16, our UW-OFDM ap-

proach shows almost the same bandwidth efficiency as the

conventional CP-OFDM approach. Increasing now Nr leads of

course to less bandwidth efficiency on one hand, but decreases

the mean energy Er̃

N of the redundant subcarrier symbols and

hence the mean energy per transmit bit Eb on the other hand.

The AWGN loss is calculated as 10log10

(
Eb,UW

Eb,CP

)
, whereas

Eb,CP = 0.01058 determines the mean energy per bit for the

IEEE 802.11a system and Eb,UW that of the specific UW-

OFDM system. It specifies the loss of UW-OFDM compared

to IEEE 802.11a when just a simple zero forcing equalizer

(without additional Wiener smoothing) is applied. As such,

decreasing Eb for UW-OFDM will decrease this loss. Fig.

4 confirms this effect by means of simulations. At a BER of

10−6, the UW-OFDM without smoothing loses around 2.05dB

against the IEEE 802.11a standard in case of Nr = 16, 1.55dB

for Nr = 20 and 1.3dB for Nr = 24, respectively. These

results coincide with that of table II up to negligible simula-

tion inaccuracies. However, the Wiener smoother exploits the

correlations between the subcarriers of an OFDM symbol and

improves the performance of the UW-OFDM system in the

AWGN channel by around 1.5dB for all investigated modes,

leading to a residual performance loss compared to the IEEE

802.11a standard of only 0.55dB for Nr = 16 and 0.05dB

for Nr = 20, respectively. In case of Nr = 24, the UW-

OFDM system even outperforms the IEEE 802.11a system by

0.2dB. We will show in the following that in case of frequency

selective environments (at least for the selected scenarios),

the UW-OFDM system always outperforms the IEEE 802.11a

system regardless of Nr.

The multipath channel has been modeled as a tapped delay

line, each tap with uniformly distributed phase and Rayleigh

distributed magnitude, and with power decaying exponentially.

A detailed description of the model can be found in [3]. Fig.

5 shows two typical channel snapshots with a channel delay

spread of 100ns drawn from this model which we have used to

evaluate the performance. These channel snapshots represent

typical indoor office environments.

Fig. 6 shows the BER behavior of the UW-OFDM systems

in comparison to the IEEE 802.11a system for channel A in
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Fig. 5. We simulated the BER behavior with and without

additional outer code. The outer code features the coding

rates r = 3/4 and r = 1/2. Both systems use the same

convolutional encoder with rate 1/2, constraint length 7 and

the generator polynomial (133,171). The code rate r = 3/4 is

achieved by puncturing as described in [13]. We notice that

the higher the (outer) coding rate, the higher the gain achieved

by the UW-OFDM approach. In case of r = 1, i.e. no outer

code, the performance gain is tremendous. For r = 3/4, UW-

OFDM outperforms IEEE 802.11a by 0.9dB for Nr = 16,

2.05dB for Nr = 20 and even 3.0dB for Nr = 24. In case

of r = 1/2, we still achieve gains of 0.6dB, 1.0dB and 1.0dB



for Nr = 16, 20 and 24, respectively. We clearly notice that

increasing the redundancy part, i.e. increasing Nr, leads to a

gain in the BER on one hand, but also leads to a decrease of the

data rate on the other hand. As such, varying Nr has the effect

of varying the (inner) coding rate of the system. Fig. 7 shows

the results for channel B of Fig. 5. Even though the gains

have reduced, we notice similar tendencies. We gain 0.9dB,

1.25dB and 1.75dB in case of r = 1 for Nr = 16, 20, 24. For

r = 3/4, we gain 0.7dB, 0.8dB and 1.3dB, and in case of

r = 1/2 0.3dB, 0.8dB and 1.1dB, respectively.
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Fig. 6. BER comparison between the novel UW-OFDM approach and the
IEEE 802.11a standard for channel A of Fig. 5.
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Fig. 7. BER comparison between the novel UW-OFDM approach and the
IEEE 802.11a standard for channel B of Fig. 5.

These simulation results have provided some fundamental

insights which can be summarized as follows:

• In the AWGN channel and without Wiener smoothing,

the IEEE 802.11a system always outerperforms the UW-

OFDM approach.

• An increase of the number Nr of redundant subcarriers

and thus a decrease of Er̃ enhances the BER behavior of

an UW-OFDM system. This effect can be interpreted as

changing the inner coding rate of the system.

• The Wiener smoothing filter additionally improves the

BER behavior. Dependent on Nr, the UW-OFDM system

may even outperform the IEEE 802.11a system.

• For the investigated frequency-selective scenarios, the

UW-OFDM approach always outperforms the IEEE

802.11a system. The specific gain in performance de-

pends on the outer coding rate r, but also on the inner

coding rate determined by the number Nr of redundant

subcarriers.

V. CONCLUSION

In this work we demonstrated the relationship between

the energy spent for the redundant subcarrier symbols in the

frequency domain necessary to create the desired unique word

in the time domain, and the BER behavior of such an UW-

OFDM system. We showed that by increasing the number of

redundant subcarrier symbols, which can be interpreted as

changing the inner coding rate of the UW-OFDM system,

and by choosing an appropriate distribution of them in the

spectrum, the total energy of the redundant subcarrier symbols

can be decreased and thus the BER behavior significantly

improved. These results have been confirmed for the AWGN

case as well as for typical frequency-selective indoor scenarios.
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