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Abstract—Unique word – orthogonal frequency division mul-
tiplexing (UW-OFDM) is a novel transmit signal structure for
OFDM where the usual cyclic prefixes (CPs) are replaced by
deterministic sequences, the so-called UWs. Since unique words
represent known sequences, they can advantageously be used
for synchronization and estimation tasks, but also for improving
the bit error ratio (BER) behavior of an UW-OFDM system.
Recent research results have demonstrated the superior BER
behavior of UW-OFDM over conventional CP-OFDM used for
real-world communication systems, e.g. for the IEEE 802.11a
WLAN standard. In this paper we extend these investigations
by considering different and data rate equivalent UW-OFDM
and CP-OFDM configuration setups. We show simulation results
for various frequency selective environments and additionally
compare UW-OFDM with UW based single carrier/frequency
domain equalization (UW-SC/FDE) systems.

Index Terms—Cyclic Prefix (CP), non-systematic coded Unique
Word OFDM (UW-OFDM), Unique Word based Single Car-
rier/Frequency Domain Equalization (UW-SC/FDE)

I. INTRODUCTION

In [1]-[3] we proposed an OFDM (orthogonal frequency di-

vision multiplexing) signaling scheme, where the usual cyclic

prefixes (CPs) [4] are replaced by deterministic sequences, that

we call unique words (UWs). A related but – when regarded

in detail – also very different scheme is KSP (known symbol

padded)-OFDM [5]. Fig. 1a – 1c compare the CP-, KSP-,

and UW-based OFDM transmit data structures. In CP- as well

as in UW-OFDM the linear convolution of the transmit signal

with the channel impulse response is transformed into a cyclic

convolution. However, different to the CP, the UW is part of

the DFT (discrete Fourier transform)-interval as indicated in

Fig. 1. Furthermore, the CP is a random sequence, whereas

the UW is deterministic. Hence, the UW can optimally be de-

signed for particular needs like synchronization and/or channel

estimation purposes at the receiver side. The broadly known

KSP-OFDM uses a structure similar to UW-OFDM, since the

known symbol (KS) sequence is deterministic as well. The

most important difference between KSP- and UW-OFDM is

the fact, that the UW is part of the DFT interval, whereas

the KS is not. On the one hand this characteristic of the UW

implies the cyclic convolution property addressed above, and
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Fig. 1. Transmit data structure using a CP (a), a KS (b) or a UW (c).

on the other hand, but no less importantly, the insertion of

the UW within the DFT-interval introduces correlations in the

frequency domain, which can advantageously be exploited by

the receiver to improve the BER (bit error ratio) performance.

Whilst in both schemes the deterministic sequences can be

used for synchronization and channel estimation purposes,

KSP-OFDM does not feature these correlations in frequency

domain.

In the concept described in [1]-[3] we suggested to gen-

erate UW-OFDM symbols by appropriately loading so-called

redundant subcarriers. Hence, we obtain an OFDM symbol

which consists of dedicated data and additionally of dedicated

redundant subcarriers. As such, these OFDM symbols can be

considered as a systematic code, thus leading to the idea of

systematic coded UW-OFDM.

In [6] we introduced a new concept which we refer to as

non-systematic coded UW-OFDM. Here, we can no longer

speak of dedicated data and redundant subcarriers, but both,

data and redundancy symbols, are spread over several sub-

carriers. We thus obtain OFDM symbols representing a non-

systematic code. It turns out that the non-systematic case by

far outperforms the systematic coded concept. Consequently,

in this paper we will focus on non-systematic coded UW-

OFDM.

Up till now, all performance comparisons of UW-OFDM

with conventional CP-OFDM have been focusing on adopt-

ing the UW-OFDM system as closely as possible to the

IEEE 802.11a WLAN standard.We used the same sampling

frequency, DFT size, subcarrier spacing and also introduced
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zero subcarriers at the band edges and at DC. As a conse-

quence of this setup, both systems showed almost the same

bandwidth efficiency, however, they differed in terms of the

theoretical achievable data rate. Nevertheless, considering that

bandwidth is an expensive resource when talking about real-

world communication systems, this seems to be a reason-

able and fair comparison. In this paper we compare from a

different point of view and investigate UW-OFDM and CP-

OFDM configurations that show the same theoretical data

rate. As a consequence, the two systems differ in subcarrier

spacing, DFT size and DFT period. Moreover, in this work we

also highlight the similarities between non-systematic coded

UW-OFDM and unique word based single carrier/frequency

domain equalization (UW-SC/FDE) systems.

Notation: Lower-case bold face variables (a,b,...) indicate

vectors, and upper-case bold face variables (A,B,...) indicate

matrices. To distinguish between time and frequency domain

variables, we use a tilde to express frequency domain vectors

and matrices (ã, Ã,...), respectively. We further use R to denote

the set of real numbers, C to denote the set of complex

numbers, I to denote the identity matrix, (·)T to denote

transposition, (·)H to denote conjugate transposition, E[·] to

denote expectation, and tr{·} to denote the trace operator. For

all signals and systems the usual equivalent complex baseband

representation is applied.

II. REVIEW OF NON-SYSTEMATIC CODED UW-OFDM

We briefly review our approach of introducing unique words

in OFDM time domain symbols, for further details see [6]. Let

xu ∈ CNu×1 be a predefined sequence which we call unique

word. This unique word shall form the tail of each OFDM

time domain symbol vector. Hence, an OFDM time domain

symbol vector, as the result of a length-N -IDFT (inverse

DFT), consists of two parts and is of the form
[

xT
d xT

u

]T
∈

C
N×1, whereat only xd ∈ C

(N−Nu)×1 is random and affected

by the data. Following [3], we generate an OFDM symbol

x =
[

xT
d 0T

]T
with a zero UW in a first step, and we

determine the final transmit symbol x′ = x+
[

0T xT
u

]T
by

adding the desired UW in time domain in a second step. As in

conventional OFDM, the QAM data symbols (denoted by the

vector d̃ ∈ CNd×1) and the zero subcarriers (at the band edges

and at DC) are specified in frequency domain as part of the

vector x̃, but here in addition the zero-word is specified in time

domain as part of the vector x = F−1
N x̃. Here, FN denotes

the length-N -DFT matrix with elements [FN ]kl = e−j 2π
N

kl for

k, l = 0, 1, ..., N−1. The system of equations x = F−1
N x̃ with

the introduced features can be fulfilled by defining a code word

c̃ ∈ C(Nd+Nr)×1 with Nr = Nu, and an appropriate generator

matrix G such that c̃ = Gd̃ with G ∈ C(Nd+Nr)×1 fulfilling

F−1
N BGd̃ =

[

xd

0

]

(1)

for every possible data vector d̃, or equivalently

F−1
N BG =

[

∗
0

]

. (2)

Here, B ∈ CN×(Nd+Nr) models the insertion of zero sub-

carriers and becomes identity in case no zero subcarriers are

introduced.

In our original UW-OFDM concept presented in [1], [2], [3],

we chose G such that G = P
[

I TT
]

, leading to dedicated

data and dedicated redundant subcarriers, the latter responsible

for creating the desired zero UW in the time domain. Here,

P ∈ C
(Nd+Nr)×(Nd+Nr) denotes a permutation matrix and

T = −M−1
22 M21 ∈ CNr×Nd creates the redundancy, whereas

Mij are appropriately sized sub-matrices originating from

M = F−1
N BP =

[

M11 M12

M21 M22

]

. Since data and redundancy

symbols are clearly distinguishable, we refer to this approach

as systematic coded UW-OFDM.

Recently, we introduced in [6] the so-called non-systematic

coded UW-OFDM concept, where we now propose a code

generator matrix Ğ that distributes the redundancy and data

symbols over several subcarriers. For that we model the code

generator matrix as

Ğ = AP

[

I

T̆

]

, (3)

with a non-singular real matrix A ∈ R(Nd+Nr)×(Nd+Nr) and

a fixed permutation matrix, e.g. obtained from the systematic

coded UW-OFDM approach. The constraint in (2) can thus be

re-written as

F−1
N BAP

[

I

T̆

]

=

[

∗
0

]

. (4)

With the introduction of

M̆ = F−1
N BAP =

[

M̆11 M̆12

M̆21 M̆22

]

, (5)

the constraint in (4) is simply and automatically fulfilled by

choosing T̆ as

T̆ = −(M̆22)
−1M̆21. (6)

In [6] we aimed at finding a generator matrix Ğ that minimizes

the sum of the error variances on the subcarriers after a linear

minimum mean square error (LMMSE) data estimator [7]. We

model the receive symbol ỹ ∈ C(Nd+Nr)×1 (after subtraction

of the UW related portion H̃BTFN

[

0T xT
u

]T
) as

ỹ = H̃Ğd̃+ ṽ, (7)

whereas the diagonal matrix H̃ ∈ C(Nd+Nr)×(Nd+Nr) con-

tains the sampled channel frequency response on its main

diagonal, ṽ = BTFNn with n ∈ CN×1 represents a zero-

mean Gaussian (time domain) noise vector with the covariance

matrix σ2
nI, and d̃ ∈ C

Nd×1denotes a QAM data symbol

vector with the covariance matrix σ2
dI. It can easily be shown

(for more details we refer again to [6]) that the cost function

to be minimized follows to

JLMMSE =
σ2
d

cNd

tr{ĞHĞ}tr







(

ĞHĞ+
tr{ĞHĞ}

cNd

I

)

−1






.

(8)

Here, we assumed AWGN conditions by choosing H̃ = I

in order to avoid the dependence of the optimum generator

matrix on the specific channel instance, and additionally fixed



3

the ratio c = Es/σ
2
n whereas the mean QAM data symbol

energy Es follows to Es =
σ2

d

N
tr{ĞHĞ}/Nd.

We use the steepest descent algorithm to numerically solve

the optimization problem. For that the gradient of the cost

function JLMMSE with respect to the real matrix A is required.

We approximate the partial derivation ∂JLMMSE/∂[A]ij by

∂JLMMSE

∂[A]ij
=

JLMMSE([A]ij + ǫ)− JLMMSE([A]ij − ǫ)

2ǫ
(9)

with a very small ǫ. We apply two different approaches for

the initialization of the steepest descent algorithm:

In our first approach we choose the initialization A(0) = I

which implies T̆(0) = T and

Ğ(0) = P
[

I TT
]T

= G. (10)

The iterative optimization process consequently starts with the

code generator matrix G of our original systematic coded UW-

OFDM concept, which can definitely be assumed to be a good

initial guess. We denote the resulting optimum code generator

matrix (found after convergence of the algorithm) with Ğ′.

In the second approach we choose each element of A(0) as

a realization of a Gaussian random variable with mean zero

and variance one such that [A(0)]ij ∼ N (0, 1). We denote the

resulting code generator matrix with Ğ′′. Due to the random

initialization, the resulting code generator matrix generally

varies from trial to trial. For our simulations, we will use for

each of the investigated parameter setups (see Table I) one

particular realization of Ğ′′.

It turns out that the initialization of A in the optimization

algorithm highly influences the structure of the resulting code

generator matrix and thus also the resulting performance. We

will detail this in the next section.

III. SIMULATIONS

We have already shown the advantageous properties of

the proposed UW-OFDM concept over a conventional CP-

OFDM system in former papers, cf. [2], [6]. However, when

evaluating two different concepts against each other, there are

always several ways of how to compare both systems. Up

till now, we have focused on practical scenarios and chose

the IEEE 802.11a WLAN standard as a classical CP-OFDM

reference system. As such, we used the same configuration as

in [8] whenever possible, the most important parameters are

summarized in Table I and referred to as CP-OFDM I and UW-

OFDM I. Keeping the DFT size and the sampling frequency

of fs = 20 MHz constant, it turns out that the UW-OFDM

system differs from the IEEE 802.11a system in the OFDM

symbol duration and the number of data subcarriers per OFDM

symbol. The latter is due to the fact that additional subcarriers

are required to introduce the redundancy needed for creating

the desired UW in the time domain. Because of that the CP-

OFDM system provides a 6.67% higher theoretical data rate

(additional overhead like e.g. a preamble for estimation and

synchronization tasks are not considered here) than the UW-

OFDM system. Although UW-OFDM achieves a lower data

rate on one hand, it requires less bandwidth on the other hand,

thus both systems show almost the same bandwidth efficiency.

Hence, this seems to be a reasonable and fair comparison

considering that bandwidth is an expensive resource, especially

w.r.t. real-world communication scenarios.

In this paper we again compare our UW-OFDM concept

with conventional CP-OFDM, however, now we design the

systems such that both offer the same theoretical data rate,

cf. the columns CP-OFDM II and UW-OFDM II in Table I.

Moreover, in this work we focus on the principle capabilities

of both concepts and thus neglect typical features of a practical

OFDM system like e.g. zero subcarriers. As we furthermore

omit pilot subcarriers for the CP-OFDM system, we also

choose the zero word as UW in case of the UW-OFDM system.

For a DFT size of 64, the CP-OFDM allows to transmit

64 data symbols within an OFDM symbol duration of 4µs.

In order to achieve the same data rate for the UW-OFDM

concept, we enlarge the DFT size to 80 and the DFT period

(and thus also the OFDM symbol duration) to 4 µs. Hence,

both systems provide the same theoretical data rate, but now

differ in the DFT size, DFT period and consequently also in

subcarrier spacing. We note that an enlarged DFT size has

basically no impact on the resulting complexity, as in UW-

OFDM the complexity at the transmitter and the receiver side

are dominated by other operations, cf. [1].

We use the same simulation chain as described in [6].

Hence, the transmitter processing starts with (outer) channel

coding, interleaving and QPSK mapping. We utilize the same

outer convolutional encoder as defined in [8], and show results

for (outer) coding rates r = 1/2 and r = 3/4, respectively.

Next, we generate the OFDM symbol by applying Ğ′ or Ğ′′,

respectively, and perform the IFFT. At the receiver side, we

start with an FFT and then apply an LMMSE data estimation.

Finally, demapping, deinterleaving and decoding is performed.

For the soft decision Viterbi decoder the main diagonal of the

LMMSE error covariance matrix is used to specify the varying

nose variances along the subcarriers after data estimation.

Perfect channel knowledge is assumed at the receiver.

The following BER results have been obtained by averaging

over 104 channel realizations whereas each channel impulse

response has been normalized such that the receive power

is independent of the actual channel. The channel impulse

responses have been modelled as tapped delay lines, each

tap with uniformly distributed phase and Rayleigh distributed

magnitude, and with power decaying exponentionally, cf. [9].

Fig. 2 shows the BER behavior of the CP-OFDM and the

UW-OFDM system when transmitting over channels featuring

a channel delay spread of 100 ns. We notice that for both

(outer) coding rates, the two UW-OFDM approaches always

outperform the CP-OFDM system (measured at a BER of

10−6). Whereas the UW-OFDM system utilizing Ğ′′ as code

generator matrix achieves only a marginal gain of 0.1dB in

case of r = 1/2, this gain increases to 1.1dB when Ğ′ is

applied. For an (outer) coding rate of r = 3/4, both systems

outperform the conventional CP-OFDM concept remarklably,

namely by 3dB and 2dB at a BER of 10−6, respectively.

Fig. 3 compares the UW-OFDM concept with the CP-

OFDM system when transmitting over multipath channels

featuring a channel delay spread of 200 ns. We again observe
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TABLE I
MAIN PHY PARAMETERS OF THE INVESTIGATED SYSTEMS.

CP-OFDM I UW-OFDM I CP-OFDM II UW-OFDM II UW-OFDM III

DFT size 64 64 64 80 64

Occupied subcarriers 52 52 64 80 64

Data symbols 48 36 64 64 48

Additional symbols 4 (pilot) 16 (redundant) 0 16 (redundant) 16 (redundant)

DFT period 3.2 µs 3.2 µs 3.2 µs 4 µs 3.2 µs

Guard duration 800 ns (CP) 800 ns (UW) 800 ns (CP) 800 ns (UW) 800 ns (UW)

Total OFDM symbol duration 4 µs 3.2 µs 4 µs 4 µs 3.2 µs

Subcarrier spacing 312.5 kHz 312.5 kHz 312.5 kHz 250 kHz 312.5 kHz

Fig. 2. BER results for UW-OFDM (Ğ′ and Ğ
′′) and CP-OFDM for

multipath channels with a delay spread of 100 ns.

Fig. 3. BER results for UW-OFDM (Ğ′ and Ğ
′′) and CP-OFDM for

multipath channels with a delay spread of 200 ns.

the same tendencies. The UW-OFDM approaches outperform

the CP-OFDM system by 0.2 and 1.3dB in case of r = 1/2
and by 3.3dB and 2.1dB in case of r = 3/4, respectively.

We note that in general UW-OFDM concepts with a code

generator matrix Ğ′ always outperform UW-OFDM systems

applying Ğ′′ in case of low (outer) coding rates, and the

situation is contrary in case of high (outer) coding rates. This

is due to the fact that Ğ′ only spreads a data symbol over a

few local subcarriers and thus works similar to a conventional

OFDM system, while Ğ′′ spreads a data symbol over many

(or even all) subcarriers and thus acts like a classical single

carrier system. Keeping in mind that a single carrier based

system outperforms an OFDM based system for high outer

coding rates, whereas it is vice versa in case of low (outer)

coding rates, these effects become reasonable. In [6] we have

already noted that UW-SC/FDE can be seen as a special case

of non-systematic coded UW-OFDM with a generator matrix

ĞSC = FN

[

I

0

]

. (11)

Fig. 4 compares the BER behavior of UW-OFDM using our

particular chosen Ğ′′ and GSC for the setup UW-OFDM III

in Table I. We immediately notice that both concepts in fact

achieve the same BER performance.

Fig. 4. BER results for UW-OFDM (Ğ′) and UW-SC/FDE (GSC) for
multipath channels with a delay spread of 100 ns.

IV. CONCLUSION

In this paper we compared the BER behavior of the non-

systematic coded UW-OFDM concept against conventional

CP-OFDM. In contrast to previous papers, we have now

designed the UW-OFDM and CP-OFDM system such that they
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achieve the same theoretical data rate. We have demontrated

that again the UW-OFDM approach remarkably outperforms

CP-OFDM. Furthermore, it turns out that an UW-OFDM

system performs like an UW-SC/FDE system when choosing

an appropriate code generator matrix.

REFERENCES

[1] M. Huemer, A. Onic, C. Hofbauer, “Classical and Bayesian Linear Data
Estimators for Unique Word OFDM,” in the IEEE Transactions on Signal

Processing, vol. 59, no. 12, pp. 6073-6085, Dec. 2011.
[2] M. Huemer, C. Hofbauer, J.B. Huber, “The Potential of Unique Words in

OFDM,” in the Proceedings of the 15th International OFDM-Workshop,
Hamburg, Germany, pp. 140-144, September 2010.

[3] A. Onic, M. Huemer, “Direct versus Two-Step Approach for Unique Word
Generation in UW-OFDM,” in the Proceedings of the 15th International

OFDM-Workshop, Hamburg, Germany, pp.145-149, September 2010.

[4] R. van Nee, R. Prasad, OFDM for Wireless Multimedia Communications,
Artech House Publishers, Boston, 2000.

[5] S. Tang, F. Yang, K. Peng, C. Pan, K. Gong, Z. Yang, “Iterative
channel estimation for block transmission with known symbol padding
- a new look at TDS-OFDM,” in the Proceedings of the IEEE Global

Telecommunications Conference (GLOBECOM 2007), pp. 4269-4273,
Nov. 2007.

[6] M. Huemer, C. Hofbauer, J. B. Huber, “Non-Systematic Complex Number
RS Coded OFDM by Unique Word Prefix,” in the IEEE Transactions on

Signal Processing, vol. 60, no. 1, pp. 285-299, Jan 2012.
[7] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory,

Prentice Hall, Rhode Island 1993.
[8] IEEE Std 802.11a-1999, Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications: High-Speed Physical
Layer in the 5 GHz Band, 1999.

[9] J. Fakatselis, Criteria for 2.4 GHz PHY Comparison of Modulation
Methods. Document IEEE 1997; P802.11-97/157r1.


