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Abstract—Unique word – orthogonal frequency division mul-
tiplexing (UW-OFDM) is a novel OFDM signaling concept,
where the guard interval is built of a deterministic sequence
– the so-called unique word – instead of the conventional
random cyclic prefix. In contrast to previous attempts with
deterministic sequences in the guard interval the addressed UW-
OFDM signaling approach introduces correlations between the
subcarrier symbols, which can be exploited by the receiver
in order to improve the bit error ratio performance. In this
paper we develop several linear data estimators specifically
designed for UW-OFDM, some based on classical and some
based on Bayesian estimation theory. Furthermore, we derive
complexity optimized versions of these estimators, and we study
their individual complex multiplication count in detail. Finally,
we evaluate the estimators’ performance for the additive white
Gaussian noise channel as well as for selected indoor multipath
channel scenarios.

I. INTRODUCTION

In [1], [2] we introduced an OFDM signaling scheme, where

the usual cyclic prefixes (CP) [3] are replaced by deterministic

sequences, that we call unique words (UW). A related but –

when regarded in detail – also very different scheme is known

symbol padded (KSP)-OFDM [4]–[6]. Fig. 1a–1c compare the

CP-, KSP-, and UW-based OFDM transmit data structures.

In CP- as well as in UW-OFDM the linear convolution

of the transmit signal with the channel impulse response is

transformed into a cyclic convolution. Note that apart from

the very first UW in the symbol stream (see Fig. 1c) each

UW plays a double role: The (i+1)th UW represents the tail

of the ith OFDM symbol, while it additionally represents the

‘cyclic prefix’ for the (i+1)th OFDM symbol. However, there

are some fundamental differences between the CP-based and

the UW-based approach:

• Different to the CP, the UW is part of the discrete Fourier

transform (DFT)-interval as indicated in Fig. 1. Due to

that reason the bandwidth efficiencies of UW-OFDM and

conventional CP-OFDM are almost identical.
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CP1 Data CP1 CP2 Data CP2 CP3 · · ·

TGI TDFT TDFT

(a) Data structure using CPs

KS Data KS Data KS · · ·

(b) Data structure using KSP

UW Data UW Data UW · · ·

TGI TDFT TDFT

(c) Data structure using UWs

Fig. 1: OFDM transmit data structures.

• The CP is a random sequence, whereas the UW is

deterministic. Thus, the UW can optimally be designed

for particular needs like synchronization and/or channel

estimation purposes at the receiver side.

The broadly known KSP-OFDM uses a structure similar

to UW-OFDM, since the known symbol (KS) sequence is

deterministic as well. The most important difference between

KSP- and UW-OFDM is the fact, that the UW is part of

the DFT interval, whereas the KS is not. On the one hand

this characteristic of the UW implies the cyclic convolution

property addressed above, and on the other hand, but least

that important, the insertion of the UW within the DFT in-

terval requires to introduce some correlations in the frequency

domain, which can advantageously be exploited by the receiver

to improve the bit error ratio (BER) performance. Whilst

in both schemes the deterministic sequences can be used

for synchronization and channel estimation purposes, KSP-

OFDM does not feature these correlations. We notice that

KSP-OFDM coincides with zero padded (ZP)-OFDM [7] if

the KS sequence is set to zero.

For single carrier/frequency domain equalization (SC/FDE)

systems [8]–[22], the benefits of UW based transmission have

already sufficiently been studied [15]–[18], [20]–[21]. The

introduction of UWs in SC/FDE systems is straightforward,

since the data symbols as well as the UW symbols are defined

in time domain. In UW-OFDM the data symbols are defined

in frequency domain, whereas the UW symbols are defined

in time domain, which leads to some difficulties. In [23] we
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compared the similarities and differences of the UW approach

for OFDM and SC/FDE.

In our concept described in [1] we suggested to generate

UW-OFDM symbols by appropriately loading so-called redun-

dant subcarriers. The minimization of the energy contribution

of the redundant subcarriers turned out to be a challenge.

We solved the problem by generating a zero UW in a first

step, and by adding the desired UW in a separate second step.

We showed that this approach generates OFDM symbols with

much less redundant energy [2] than a single step or direct UW

generation approach as e.g. described in [16]. Additionally, we

optimized the positions of the redundant subcarriers to further

reduce their energy contribution. We notice, that the concept in

[16] generates completely different OFDM symbols compared

to our approach in [1], and it has to deal with extremely

high symbol energies and with the fact, that the performance

depends on the particular shape of the UW. This is clearly

in contrast to our approach, where the BER performance is

independent of the particular shape of the UW due to the two-

step generation approach. The BER behavior only depends on

the freely selectable UW energy.

The generation of the zero UW introduces a systematic

complex valued block code structure within the sequence

of subcarriers. From this point of view, the gain due to

the exploitation of correlations in frequency domain can be

regarded as a coding gain. Although it seems obvious at first

glance to use an algebraic decoding approach, this decoding

method fails due to the ill-conditioned nature of the linear

system of equations to be solved [24], [25]. Instead, we

showed that together with a linear minimum mean square

error (LMMSE) data estimator (‘decoder’), the concept shows

a remarkable BER performance, particularly in frequency

selective channels, where it clearly outperforms CP-OFDM

[1]. The performance can even be increased by allowing

some systematic noise in the guard interval [26]. Several

other attempts of applying UWs in OFDM systems can be

found in the literature, e.g. in [27]–[28]. However, in all these

approaches the guard interval and thus the UW is not part of

the DFT interval. Therefore, in contrast to our UW-OFDM

concept described below, no coding is introduced by these

approaches.

The aim of this paper is to give a comprehensive view

on optimum and suboptimum linear data estimation principles

particularly designed and optimized for UW-OFDM. We clas-

sify the estimators into classical unbiased estimators and linear

Bayesian estimators, respectively. We particularly investigate

the theory of the estimators, and we give a comparison in

terms of BER performance and in terms of a detailed study of

the computational complexities. Furthermore, we emphasize

the differences of the derived estimators to their counterparts

in competing block oriented approaches like CP-OFDM and

SC/FDE. The paper is organized as follows: In Sec. II we

briefly review the procedure of the unique word generation

and the overall system model which has already been adressed

in [1], [2], [23], and [26]. Next we derive data estimators

for UW-OFDM using classical estimation theory approaches

in Sec. III leading to zero forcing (ZF) equalizer concepts.

In particular we investigate the best linear unbiased estimator

(BLUE) which represents a well known concept with a huge

number of applications in engineering. In this work it is

applied to UW-OFDM for the first time, and it turns out that its

construction significantly differs from its counterparts in CP-

OFDM and SC/FDE. Different to the BLUE for CP-OFDM

and CP-SC/FDE, the determination of the BLUE requires the

inversion of a full instead of a diagonal matrix. However, we

derive a functionally equivalent but highly complexity reduced

version of the BLUE within Sec. III. In contrast to CP-OFDM

where the BLUE represents the unambiguous zero forcing

(ZF) solution, an infinite number of ZF solutions exists for

UW-OFDM. We introduce two suboptimum low complexity

ZF data estimators, that is the obvious channel inversion (CI)

estimator and a quite intuitive estimator that we call time

domain windowing (TDW) equalizer. Then, in Sec. IV linear

Bayesian MMSE estimators are regarded. The basic version

can already be found in [1]. Similar as for the BLUE we

derive a complexity reduced batch solution, and in addition we

introduce a highly complexity optimized sequential version of

the LMMSE estimator. It turns out that the latter features the

lowest complexity of all regarded LMMSE estimator versions.

In Sec. V we determine and compare the computational

complexity of all presented data estimators. Finally, in Sec. VI

we highlight the BER performance of the introduced methods

in the AWGN channel and in frequency selective indoor

multipath environments. We conclude our work in Sec. VII.

Notation: Lower-case bold face variables (a,b,. . . ) indicate

vectors, and upper-case bold face variables (A,B,. . . ) indicate

matrices. To distinguish between time and frequency domain

variables, we use a tilde to express frequency domain vectors

and matrices (ã, Ã,. . . ), respectively. We further use R to

denote the set of real numbers, C to denote the set of complex

numbers, I to denote the identity matrix, (·)T to denote

transposition, (·)H to denote conjugate transposition, E[·] to
denote expectation, and tr(·) to denote the trace operator. For

all signals and systems the usual equivalent complex baseband

representation is applied.

II. REVIEW OF UW-OFDM: UNIQUE WORD GENERATION

AND SYSTEM MODEL

We briefly review our approach of introducing unique words

in OFDM time domain symbols, for further details see [1], [2].

A block diagram of the transceiver chain is given in Fig. 2.

Let xu ∈ CNu×1 be a predefined sequence which we call

unique word. This unique word shall form the tail of each

OFDM time domain symbol vector of total length N . Hence,

an OFDM time domain symbol vector, as the result of a length-

N -IDFT (inverse DFT), consists of two parts and is of the form[
xT
d xT

u

]T
, whereas only xd ∈ C(N−Nu)×1 is random and

affected by the data. In the concept suggested in [1], [2] we

generate an OFDM symbol x =
[
xT
d 0T

]T
with a zero UW

in a first step, and we determine the final transmit symbol x′ =

x +
[
0T xT

u

]T
by adding the desired UW in time domain

in a second step. As in conventional OFDM, the quadrature

amplitude modulation (QAM) data symbols (denoted by the
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Fig. 2: Block diagram of the UW-OFDM transceiver system.

vector d̃ ∈ CNd×1) and the Nz zero subcarriers (at the band

edges and at DC) are specified in frequency domain as part of

the vector x̃, but here in addition the zero-word is specified

in time domain as part of the vector x = F−1
N x̃. Here, FN

denotes the length-N -DFT matrix with elements [FN ]kl =
e−j 2π

N
kl for k, l = 0, 1, ..., N−1. The system of equations x =

F−1
N x̃ with the introduced features can be fulfilled by spending

a set of redundant subcarriers. We let the redundant subcarrier

symbols form the vector r̃ ∈ CNr×1 withNr = Nu, we further

introduce a permutation matrix P ∈ C(Nd+Nr)×(Nd+Nr), and

form an OFDM symbol (containing Nz = N −Nd−Nr zero

subcarriers) in frequency domain by

x̃ = BP

[
d̃

r̃

]
. (1)

B ∈ CN×(Nd+Nr) inserts the zero subcarrier symbols, and

consists of zero-rows at the positions of the zero subcarriers,

and of appropriate unit row vectors at the positions of data

and redundant subcarriers. We will detail the reason for the

introduction of the permutation matrix P and its specific

construction shortly below. The time – frequency relation

F−1
N x̃ = x can now be written as F−1

N BP
[
d̃T r̃T

]T
=[

xT
d 0T

]T
. With

M = F−1
N BP =

[
M11 M12

M21 M22

]
, (2)

where Mkl are appropriate sized sub-matrices, it follows that

M21d̃ +M22r̃ = 0, and hence r̃ = −M−1
22 M21d̃. With the

matrix

T = −M−1
22 M21 ∈ C

Nr×Nd , (3)

the vector of redundant subcarrier symbols can thus be deter-

mined by the linear mapping

r̃ = Td̃, (4)

cf. Fig. 2. The construction of T and thus also the energy

of the redundant subcarrier symbols highly depend on the

choice of P. The mean symbol energy Ex
′ = E[x′Hx′] can

be calculated to

Ex
′ =

1

N

(
Ndσ

2
d︸ ︷︷ ︸

E
d̃

+ σ2
dtr(TTH)︸ ︷︷ ︸

Er̃

)
+ xH

u xu︸ ︷︷ ︸
Exu

, (5)

cf. [2].
E

d̃

N
and Er̃

N
describe the contributions of the data and

the redundant subcarrier symbols to the total mean symbol

energy before the addition of the UW, respectively, and Exu

describes the contribution of the UW. In [1] we suggested to

choose P by a minimization of the symbol energy Ex
′ which

leads to the optimization problem

P = argmin
{
tr(TTH )

}
, (6)

where T is derived from (3) and (2), respectively. In Sec.

VI we give an example of the optimum redundant subcarrier

distribution for a specific parameter setup.

With (4) the vector c̃s =
[
d̃T r̃T

]T
of data and redundant

subcarrier symbols can be written in the form

c̃s =

[
d̃

r̃

]
=

[
I

T

]
d̃ = Gsd̃. (7)

In (7) the matrix

Gs =

[
I

T

]
∈ C

(Nd+Nr)×Nd (8)

can be interpreted as the code generator matrix for a systematic

complex valued block code, that generates the code words c̃s.

Note, that the subscript ’s’ in the code words c̃s and in the

code generator matrix Gs denotes sorted. In contrast to [1]

and [2] we do not incorporate the permutation matrix P into

the code generator matrix in this work. As we will see later on

this is essential for deriving low complexity receiver concepts.

With (7) and with the frequency domain version of the UW

x̃u = FN

[
0T xT

u

]T
the transmit symbol can now also be

written as

x′ = F−1
N (BPGsd̃+ x̃u). (9)

After transmission over a dispersive (e.g. multipath) channel

a received OFDM time domain symbol can be modeled as

yr = Hcx
′ + n (10)

= HcF
−1
N (BPGsd̃+ x̃u) + n, (11)

where n ∈ C
N×1 represents a zero-mean Gaussian (time

domain) noise vector with the covariance matrix σ2
nI, and

Hc ∈ CN×N denotes a cyclic convolution matrix originating

from the zero-padded vector of channel impulse response

coefficients hc ∈ CN×1. After applying a DFT to obtain

ỹr = FNyr, we exclude the zero subcarriers from further

operation, which leads to the down-sized vector ỹd = BT ỹr

with ỹd ∈ C(Nd+Nr)×1:

ỹd = BTFNHcF
−1
N (BPGsd̃+ x̃u) +BTFNn. (12)
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The matrix H̃c = FNHcF
−1
N is diagonal and contains the

sampled channel frequency response on its main diagonal.

H̃d = BTFNHcF
−1
N B with H̃d ∈ C(Nd+Nr)×(Nd+Nr)

is a down-sized version of the latter excluding the entries

corresponding to the zero subcarriers. The received symbol

can now be written in the form of the affine model

ỹd = H̃dPGsd̃+ H̃dB
T x̃u +BTFNn. (13)

Note that (assuming that the channel matrix H̃d or at least

an estimate of it is available) H̃dB
T x̃u represents the known

portion contained in the received vector ỹd originating from

the UW. As a first preparatory step we therefore subtract the

UW influence to obtain the corrected symbol in the form of

the linear model

ỹc = ỹd − H̃dB
T x̃u (14)

= H̃dPGsd̃+ w̃, (15)

with the noise vector w̃ = BTFNn. For the low complexity

versions of the BLUE and the LMMSE estimator to be derived

in the subsequent sections it additionally turns out to be quite

advantageous to re-sort the receive vector by applying PT

to separate the data subcarrier symbols and the redundant

subcarrier symbols. The re-sorted receive vector ỹ follows to

ỹ = PT ỹc (16)

= PT H̃dPGsd̃+PTBTFNn. (17)

With the re-sorted (and still diagonal) channel matrix H̃s =
PT H̃dP and the noise vector ṽ = PTBTFNn we finally

arrive at the linear model

ỹ = H̃sGsd̃+ ṽ. (18)

III. CLASSICAL DATA ESTIMATORS – ZERO FORCING

SOLUTIONS

In this section we consider classical unbiased data estima-

tors of the form
̂̃
d = Eỹ, (19)

where E ∈ C
Nd×(Nd+Nr) describes the equalizer. Note that

in classical estimation the data vector is assumed to be

deterministic but unknown. In order for the estimator to be

unbiased we require

E[
̂̃
d] = E[Eỹ] = EH̃sGsd̃ = d̃. (20)

Consequently, the unbiased constraint takes on the form

EH̃sGs = I, (21)

which is equivalent to the ZF criterion for linear equalizers.

The solution to (21) is ambiguous. To show this we consider

a singular value decomposition of H̃sGs ∈ C(Nd+Nr)×Nd as

H̃sGs = U

[
Σ

0

]
VH , (22)

with unitary matrices U ∈ C
(Nd+Nr)×(Nd+Nr) and V ∈

CNd×Nd , and with the diagonal matrix Σ ∈ RNd×Nd having

as its main diagonal the singular values of H̃sGs. With (22)

the unbiased constraint (or ZF criterion) (21) becomes

EU

[
Σ

0

]
VH = I. (23)

It is easy to see that (23) and therefore also (21) is fulfilled

by every equalizer of the form

E = V
[
Σ−1 A

]
UH (24)

with arbitrary A ∈ CNd×Nr . We notice that the fact that

the ZF solution is ambiguous distinguishes UW-OFDM from

competing block oriented single input single output (SISO)

approaches like e.g. CP-OFDM and CP-SC/FDE. For CP-

OFDM the channel inversion receiver E = H̃−1
d represents

the unambiguous ZF solution which also corresponds to the

optimum data estimator, cf. [3]. For CP-SC/FDE the ZF

solution is also unambiguous, it is given by the inverse of

the diagonal symbol spaced channel matrix which contains

the influence of the transmit pulse shaping filter, the dispersive

(e.g. multipath) channel, and the receiver filter (e.g. a matched

filter), cf. [19].

Since the solution to the unbiased constraint is not unam-

biguous it makes sense to look for the optimum solution which

is commonly known as the best linear unbiased estimator.

A. Best Linear Unbiased Estimator (BLUE)

By applying the Gauss-Markov theorem [29] to (18), and

with the noise covariance matrix Cṽṽ = E
[
ṽṽH

]
= Nσ2

nI,

the BLUE and consequently the optimum ZF equalizer follows

to

EBLUE = (GH
s H̃H

s H̃sGs)
−1GH

s H̃H
s . (25)

EBLUE as given in (25) represents the pseudoinverse of H̃sGs.

Since the noise in (18) is assumed to be Gaussian, (25)

is also the minimum variance unbiased (MVU) estimator.

The covariance matrix of
̂̃
d = EBLUEỹ, or equivalently the

covariance matrix of the error ẽ = d̃−
̂̃
d is given by

Cẽẽ = Nσ2
n(G

H
s H̃H

s H̃sGs)
−1. (26)

With the singular value decomposition as in (22), and after

some rearrangements using standard matrix algebra, (25) can

immediately be re-written as

EBLUE = V
[
Σ−1 0

]
UH . (27)

By comparing this result with (24) it can be concluded that

EBLUE corresponds to the solution in (24) for the particular

case A = 0. EBLUE is in general a full matrix, which is in

contrast to CP-OFDM and CP-SC/FDE, where the BLUE is

given by a diagonal matrix.

B. Complexity Optimized Version of the BLUE

One drawback of the BLUE represented as in (25) is the

fact, that an Nd ×Nd matrix has to be inverted to determine

the equalizer. In this section we derive a significantly com-

plexity reduced version of the BLUE by exploiting the simple
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structures of Gs and H̃s, respectively. For this purpose we

decompose H̃s as

H̃s =

[
H̃s,1 0

0 H̃s,2

]
, (28)

with the diagonal matrices H̃s,1 ∈ CNd×Nd and H̃s,2 ∈
C

Nr×Nr . With (8) it follows that

H̃sGs =

[
H̃s,1 0

0 H̃s,2

] [
I

T

]
=

[
H̃s,1

H̃s,2T

]
, (29)

and the expression (GH
s H̃H

s H̃sGs)
−1 appearing in (25) and

(26) can be written as

(GH
s H̃H

s H̃sGs)
−1 = (H̃H

s,1H̃s,1+THH̃H
s,2H̃s,2T)−1. (30)

We introduce the real diagonal matrices

D1 = H̃H
s,1H̃s,1 ∈ C

Nd×Nd , (31)

D2 = H̃H
s,2H̃s,2 ∈ C

Nr×Nr , (32)

and apply the matrix inversion lemma, cf. [29], to the right

hand side of (30) to obtain

(GH
s H̃H

s H̃sGs)
−1 =

D−1
1 −D−1

1 TH(TD−1
1 TH +D−1

2 )−1TD−1
1 . (33)

The inversions of the real diagonal matrices D1 and D2 are

trivial, and the additional matrix (TD−1
1 TH + D−1

2 ) to be

inverted is Hermitian and only has the dimensionNr×Nr. Fur-

thermore, the expression TD−1
1 (and its Hermitian transpose)

occurs repeatedly in (33) which allows for further complexity

reduction.

In section V we will study the complexity of the different

representations of the BLUE. We note that the derivation of

the complexity reduced version of the BLUE has mainly been

made possible by the re-sorting (multiplication with PT ) of

the data and redundant subcarrier symbols in (17).

C. Sub-Optimum ZF Receiver Structures

Any unbiased linear data estimator, or equivalently, any

linear zero forcing equalizer has to fulfill (21). As already

shown above the ZF solution is ambiguous for the UW-OFDM

transmission model described in (18). Another quite intuitive

and straightforward ZF solution is given by

ECI =
[
I 0

]
H̃−1

s . (34)

This equalizer inverts the channel H̃s first, and the data

symbols are extracted subsequently. Clearly this procedure

fulfills (21). In the following we will refer to this equalizer as

the channel inversion (CI) receiver. Using the decomposition

of H̃s as in (28), (34) can be simplified to

ECI = (H̃s,1)
−1

[
I 0

]
. (35)

The channel inversion receiver represents a low complex

solution since H̃s,1 has a diagonal structure, but it does not

take advantage of the correlations introduced by Gs at the

transmitter side. The covariance matrix of
̂̃
d = ECIỹ, or

equivalently the covariance matrix of the error ẽ = d̃ −
̂̃
d

can easily shown to be

Cẽẽ = Nσ2
n(H̃

H
s,1H̃s,1)

−1. (36)

Next we address another quite intuitive equalizer that ex-

ploits the a-priori knowledge, that the guard interval samples

of an UW-OFDM symbol must be zero after the channel

inversion in the noiseless case. In the presence of noise we

therefore simply force the guard interval samples to zero which

is achieved by an equalizer of the form

ETDW =
[
I 0

]
PTBTFNWF−1

N BPH̃−1
s , (37)

where

W =

[
I 0

0 0

]
. (38)

The time domain windowing (TDW) equalizer starts with an

inversion of the channel, next the permutation is applied and

the zero subcarrier symbols are added again in order to be able

to transform back to time domain with a length-N -IDFT. Here

a windowing (described by W) takes place, where the guard

interval samples are forced to zero. Next a transformation

back to frequency domain is performed, the zero subcarriers

are excluded again, a re-sorting is done, and finally the data

symbols are extracted. It can easily be shown, that ETDW

also fulfills (21). Note that the TDW equalizer also represents

a quite low complex solution since none of the individual

operations requires a full matrix multiplication, in fact most of

the steps apart from DFT and IDFT are trivial. The covariance

matrix of
̂̃
d = ETDWỹ, or equivalently the covariance matrix

of the error ẽ = d̃−
̂̃
d is given by

Cẽẽ = Nσ2
nETDWEH

TDW. (39)

IV. LINEAR BAYESIAN DATA ESTIMATORS – LMMSE

SOLUTIONS

We now turn to the widely used linear minimum mean

square error data estimator which is derived with the help

of the Bayesian approach. In the Bayesian approach the data

vector is assumed to be the realization of a random vector

instead of a deterministic and unknown vector as in the

classical estimation theory applied above. In the following

we derive the LMMSE batch solution, next we formulate a

complexity optimized version of the LMMSE batch solution,

and finally we derive a highly complexity optimized version

of the sequential LMMSE estimator.

A. LMMSE Batch Solution

By applying the Bayesian Gauss-Markov theorem [29] to

(18), where we now assume d̃ to be the realization of a

random vector, and by using Cd̃d̃ = σ2
dI and Cṽṽ = Nσ2

nI

the LMMSE equalizer follows to

ELMMSE = WH̃−1
s , (40)
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where W represents a Wiener smoothing matrix1 given by

W = GH
s

(
GsG

H
s +

Nσ2
n

σ2
d

(H̃H
s H̃s)

−1

)−1

. (41)

(40) allows the following interpretation of the LMMSE esti-

mator’s mode of operation: The LMMSE equalizer acts as a

composition of a simple channel inversion stage (multiplica-

tion with H̃−1
s as in (34)) and a Wiener smoothing operation

(multiplication with W). The Wiener smoothing operation

exploits the correlations between subcarrier symbols which

have been introduced by (4) at the transmitter, and acts as a

noise reduction operation on the subcarriers. For the equalizer

in (40), an (Nd+Nr)×(Nd+Nr) matrix has to be inverted. By

applying the matrix inversion lemma, it can easily be shown

that the equalizer can equivalently be determined by

ELMMSE = (GH
s H̃H

s H̃sGs +
Nσ2

n

σ2
d

I)−1GH
s H̃H

s . (42)

(42) shows strong similarities to the BLUE in (25). For σ2
n = 0

the expressions for the LMMSE equalizer and the BLUE

coincide. Note that by using (42) instead of (40) for the

LMMSE equalizer determination the matrix to be inverted only

has the dimension Nd × Nd. The error ẽ = d̃ −
̂̃
d has zero

mean, and its covariance matrix is given by

Cẽẽ = Nσ2
n(G

H
s H̃H

s H̃sGs +
Nσ2

n

σ2
d

I)−1. (43)

B. Complexity Optimized LMMSE Batch Equalizer

For the LMMSE equalizer a complexity reduced version

can be derived similar as for the BLUE in Sec. III-B. By

introducing the real diagonal matrices

D1 = H̃H
s,1H̃s,1 +

Nσ2
n

σ2
d

I, (44)

D2 = H̃H
s,2H̃s,2, (45)

the expression (GH
s H̃H

s H̃sGs +
Nσ2

n

σ2

d

I)−1 appearing in (42)

and in (43) can be written as

(GH
s H̃H

s H̃sGs +
Nσ2

n

σ2
d

I)−1 =

D−1
1 −D−1

1 TH(TD−1
1 TH +D−1

2 )−1TD−1
1 . (46)

The derivation widely coincides with the one in Sec. III-B.

C. Complexity Optimized Sequential LMMSE Receiver

In this section we derive a highly complexity optimized

sequential LMMSE receiver. We address the equalizer deter-

mination procedure as well as the data estimation process.

The sequential LMMSE estimator completely avoids matrix

inversions. Again the preparatory steps described in section

II - especially the re-sorting in (17) - are extremely beneficial

for the derivation of the complexity optimized solution. In this

section we use the system model

ỹ = H̃sc̃s + ṽ, (47)

1Even though we use the same notation the Wiener smoothing matrix has
nothing to do with the matrix in (38).

and estimate c̃s which includes both the data and the redundant

subcarrier symbols. It turns out that using the system model

in (47) instead of the one in (18) drastically simplifies the

sequential LMMSE procedure since H̃s is diagonal, in contrast

to H̃sGs. We let ̂̃cs[n] be the LMMSE estimate based on the

first n+1 elements {ỹ[0], ỹ[1], . . . , ỹ[n]} of the vector ỹ, and

M̆[n] be the corresponding minimum MSE matrix

M̆[n] = E[(c̃s − ̂̃cs[n])(c̃s − ̂̃cs[n])H ]. (48)

Furthermore, h̃s[n] denotes the column vector that corresponds

to the Hermitian transpose of the nth row of H̃s[n]. The

sequential LMMSE estimator for the Bayesian linear model

as in (47) becomes (cf. [29]):

Initialization:

̂̃cs[−1] = E[c̃s] = 0 (49)

M̆[−1] = Cc̃sc̃s

= E
[
(c̃s − ̂̃cs[−1])(c̃s − ̂̃cs[−1])H

]

= σ2
dGsG

H
s = σ2

d

[
I TH

T TTH

]
. (50)

For n = 0, 1, . . . , (Nd +Nr − 1) do

Gain Vector Update:

k[n] =
M̆[n− 1]h̃s[n]

σ2
v + h̃H

s [n]M̆[n− 1]h̃s[n]
(51)

Minimum MSE Matrix Update:

M̆[n] = (I− k[n]h̃H
s [n])M̆[n− 1] (52)

Estimate Update:

̂̃cs[n] = ̂̃cs[n− 1] + k[n](ỹ[n]− h̃H
s [n]̂̃cs[n− 1]) (53)

(51) and (52) can be regarded as the equalizer determination

procedure that can completely be performed immediately after

channel estimation. Note that only the final MSE matrix

M̆[Nd +Nr − 1] but all gain vectors (k[0],k[1], . . . ,k[Nd +
Nr − 1]) are required to be stored until the next channel

estimation update. (53) describes the sequential data estimation

procedure for one UW-OFDM symbol, that has to be applied

to every received OFDM symbol. After (Nd +Nr) iterations
the vector

̂̃
d =

[
I 0

] ̂̃cs, (54)

that contains the first Nd entries of ̂̃cs, exactly corresponds to

the data estimate obtained when applying the batch LMMSE

equalizers (40) or (42). Further, the upper left Nd ×Nd sub-

matrix of M̆[Nd +Nr − 1]

Cẽẽ =
[
I 0

]
M̆[Nd +Nr − 1]

[
I

0

]
(55)

exactly corresponds to the error covariance matrix in (43).
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In the following we significantly simplify the sequential

LMMSE procedure. We first exploit the fact that the system

matrix H̃s is diagonal. Let [H̃s]nn be the nth main diagonal

element of H̃s, [M̆]nn be the nth main diagonal element

of M̆, m̆n be the nth column of M̆, and ̂̃cs,n be the nth

element of ̂̃cs. Then since H̃s is diagonal the iteration steps

can be simplified to:

Gain Vector Update:

k[n] =
[H̃s]

∗

nnm̆n[n− 1]

σ2
v + |[H̃s]nn|2[M̆]nn[n− 1]

(56)

Minimum MSE Matrix Update:

M̆[n] = M̆[n− 1]− [H̃s]nnk[n]m
H
n [n− 1] (57)

Estimate Update:

̂̃cs[n] = ̂̃cs[n− 1] + k[n](ỹ[n]− [H̃s]nn · ̂̃cs,n[n− 1]) (58)

We notice that in the MSE matrix update equation a full matrix

multiplication simplifies to a (column× row) multiplication, in

the gain vector update equation a matrix-vector multiplication

simplifies to a vector-scalar multiplication, and in the estimate

update equation a vector inner product simplifies to a scalar

product.

The equations for the first Nd iteration steps can further

significantly be simplified by exploiting the fact that the data

symbols are mutually uncorrelated, i.e. the upper left Nd ×
Nd submatrix of M̆[−1] is diagonal (and real), cf. (50). We

partition the gain vector and the MSE matrix as

k =

[
kd

kr

]
; M̆ =

[
M̆d M̆H

dr

M̆dr M̆r

]
, (59)

where the indices ’d’ and ’r’ indicate, that the corresponding

vector and matrix entries correspond to data and redundant

subcarrier symbols, respectively. Furthermore, we split all

update equations in separate equations for the data and the

redundant subcarrier symbols. The following consequences of

M̆d[−1] = σ2
dI can be exploited:

• For all n = 0, 1, . . . , (Nd − 1) the gain vector kd[n]
is non-zero only at its nth entry, and can therefore be

replaced by the scalar gain factor kd[n]. Consequently,

only one data symbol
̂̃
dn will be updated at the nth

iteration step, so the estimate update equation for the

data entries simplifies to a scalar equation. Since the data

estimates are initialized with zeros (
̂̃
dn[−1] = 0), the data

estimate update equation becomes particularly simple.

• For all n = 0, 1, . . . , (Nd − 1) the matrix M̆d[n] is

diagonal and real, and at the nth iteration step (again

for n = 0, 1, . . . , (Nd−1)) it only needs to be updated at

its nth main diagonal element [M̆d]nn[n]. Consequently,
the MSE matrix update equation for M̆d[n] also reduces

to a scalar equation.

• Due to similar arguments the matrix update for M̆dr[n]
simplifies to an update of its nth column vector m̆dr,n[n]
for n = 0, 1, . . . , (Nd − 1).

The iteration equations for n = 0, 1, . . . , (Nd − 1) finally

simplify as follows:

Gain Vector Update:

kd[n] =
[H̃s]

∗

nn

σ2
v

σ2

d

+ |[H̃s]nn|2
(60)

kr[n] =
[H̃s]

∗

nnm̆dr,n[n− 1]

σ2
v + σ2

d|[H̃s]nn|2
(61)

Minimum MSE Matrix Update:

[M̆d]nn[n] =
σ2
v

σ2
v

σ2

d

+ |[H̃s]nn|2
(62)

m̆dr,n[n] = m̆dr,n[n− 1]− σ2
d[H̃s]nnkr[n] (63)

M̆r[n] = M̆r[n− 1]− [H̃s]nnkr[n]m
H
dr,n[n− 1] (64)

Estimate Update:

d̂n = kd[n]ỹ[n] (65)

̂̃r[n] = ̂̃r[n− 1] + kr[n]ỹ[n] (66)

For the first Nd iteration steps the highly complexity re-

duced equations (60) to (64) can be used for the equalizer

determination, only for the last Nr iteration steps the more

complex (but also quite simplified) equations (56) and (57)

have to be evaluated. Similarly the first Nd iteration steps of

the data estimation procedure for an UW-OFDM symbol can

be performed using the highly complexity reduced equations

(65) and (66), while for the last Nr steps (58) has to be used.

The complexity analysis will be given in section V.

The derived procedure also allows for a quite intuitive

interpretation of the mode of operation of the sequential

LMMSE estimator: For n = 0, 1, . . . , (Nd − 1) only one

data symbol is updated in each iteration step. Consequently,

during the firstNd iterations we only count one single complex

multiplication per data subcarrier symbol as in classical CP-

OFDM. Merely the redundant symbols (which require a vector

update) are truly updated from step to step. Only for the

last Nr iteration steps also the data subcarrier symbols are

updated from iteration to iteration by utilizing the correlation

information contained in the redundant subcarrier symbols.

Note that these simplifications would not have been possible

without the re-sorting step in (17). Without the re-sorting

step the gain vector would already be filled completely in a

very early iteration step, namely immediately after the first

redundant subcarrier symbol appears within ỹ. Furthermore,

if we had used the system model (18) instead of (47), then

we would have to perform full (Nd ×Nd) · (Nd×Nd) matrix

multiplication operations for the last Nr iteration steps of the

MSE matrix update.
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V. COMPLEXITY ANALYSIS

In this section we will analyze the computational com-

plexity of the derived equalizers on the one hand, and of

the corresponding data estimation procedures on the other

hand. These investigations will clearly show the benefits of the

complexity reduced versions. In practice, the equalizers need

to be determined each time the channel estimate is updated.

A. Prerequisites

We are aware that it is difficult or even impossible to declare

an equitable measure of complexity, since the complexity of

an implementation strongly depends on the choice of the

hardware and software architecture and of many implemen-

tation details. Some operations can even be implemented in

many different ways, which might have advantages on certain

architectures as well. To simplify things we basically count

the number of complex multiplication equivalents (CME) for

each individual equalizer and for the corresponding data esti-

mation procedure. We completely ignore additions. Complex

division are counted as 1 CME. Since the number of required

divisions is negligible, this simplification does not effect the

final complexity considerably. Real multiplications and real

divisions are counted as 1
4 CME.

For many of the derived equalizer implementations we have

to deal with matrix products of the formA−1B with a positive

definite Hermitian matrix A ∈ Cm×m and with B ∈ Cm×nb .

We notice that calculatingX = A−1B is equivalent to solving

the systems of simultaneous linear equations

AX = B. (67)

For our complexity calculations we assume that (67) is solved

with the help of a Cholesky decomposition of A given by

A = LLH , where L is a lower triangular matrix having

positive values on its main diagonal.AX = B can be rewritten

as L(LHX) = B. To obtain X one can solve LY = B for

Y with the help of a forward substitution, and subsequently

solve LHX = Y for X with the help of a backward sub-

stitution. The Cholesky decomposition requires 1
6m

3 complex

multiplications/divisions and m square roots [30], [31]. We

neglect the square roots and end up with 1
6m

3 CME. A single

forward or backward substitution requires 1
2m

2 + 1
2m CME.

To solve (67) with the help of a Cholesky decomposition we

can finally assume a total count of 1
6m

3+m2nb+mnb CME.

Whenever possible, we take any simplifications into ac-

count, that a special matrix structure (e.g. a diagonal, a real

or a Hermitian matrix) could offer. Exemplarily, if the result

of a matrix product is Hermitian, e.g. as in X = AHA, then

only the main diagonal and the lower triangular part needs to

be computed.

B. Complexity of the Investigated Equalizers and Data Esti-

mation Procedures

Before performing the data estimation with the help of

one of the investigated equalizers an OFDM symbol has to

be transformed to frequency domain with a length-N -FFT

(fast Fourier transform) which requires 1
2N log2(N) CME.

Furthermore, as one of the preparatory steps the influence

of the UW has to be subtracted as described in (14). Since

we do not count additions/subtractions in our complexity

considerations this step does not increase the CME count for

the data estimation procedure.

In the following we consider the complexity of the equaliz-

ers investigated above. We start our complexity investigations

with the most simple equalizer ECI as given in (35). To

determine ECI only Nd CME (namely complex divisions to

invert H̃s,1) are required. The data estimation procedure for

an OFDM symbol in frequency domain requires Nd CME

(namely complex multiplications).

To estimate the data part of an OFDM symbol with the help

of ETDW one could first determine its matrix representation

as in (37), and then estimate the data vector by performing

the full matrix-vector product
̂̃
d = ETDWỹ which requires

Nd(Nd + Nr) operations. However, most of the individual

operations required to perform the data estimation are trivial.

The procedure starts with the multiplication H̃−1
s ỹ (Nd +Nr

CME), next the permutation is applied and the zero subcarrier

symbols are added (zero CME) in order to be able to trans-

form back to time domain with a length-N -IFFT (N2 log2(N)
CME). In time domain a windowing takes place, where the

guard interval samples are forced to zero (zero CME). Next

a transformation back to frequency domain is performed

(N2 log2(N) CME), the zero subcarriers are excluded again,

a re-sorting is done, and finally the data symbols are extracted

(zero CME). So in total the data estimation procedure per

OFDM symbol requires N log2(N)+Nd+Nr CME. For the

equalizer determination only H̃s needs to be inverted which

requires Nd +Nr CME (namely complex divisions).

Next we investigate the complexity of the different BLUE

and LMMSE estimator batch representations. For all imple-

mentations the data vector estimation for one OFDM symbol

requires a full matrix vector product
̂̃
d = Eỹ with Nd(Nd +

Nr) CME. The complexity of the equalizer determination

differs significantly for the different implementations. We start

with the representation of the BLUE as in (25) and with the

LMMSE estimator as in (42). These two expressions merely

differ in the regularization term which only adds a single

arithmetic operation. We neglect this single operation and treat

(25) and (42) as equally complex. Using (29) it is easy to

see that the matrix multiplication X1 = H̃sGs only requires

NdNr CME. For the product X2 = XH
1 X1 we can use the

findings from (30), namely X2 = H̃H
s,1H̃s,1+THH̃H

s,2H̃s,2T.

By additionally exploiting the fact that X2 is Hermitian, one

can easily find that the matrix product X2 = XH
1 X1 requires

1
2N

2
dNr + NdNr + Nd + Nr CME. Finally the operation

(X2)
−1XH

1 requires 7
6N

3
d + N2

dNr + N2
d + NdNr CME by

using the Cholesky decomposition together with the forward

and backward substitutions as mentioned above. The overall

CME count for the BLUE in (25) and the LMMSE estimator

in (42) therefore adds up to

7
6N

3
d + 3

2N
2
dNr + 3NdNr + N2

d + Nd + Nr CME. (68)

With similar considerations one can show that the LMMSE
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equalizer as expressed in (40) requires

7
6N

3
d + 5

2N
2
dNr + 2NdN

2
r + 1

6N
3
r

+N2
d + 3

2NdNr +
5
2Nd +

5
2Nr CME. (69)

For the complexity optimized batch representations of the

BLUE and the LMMSE estimator one has to determine the

expressions in (33) and (46), respectively, followed by a matrix

multiplication with GH
s H̃H

s . The simple inverses D−1
1 and

D−1
2 require 5

4Nd+
5
4Nr CME, to determine D−1

1 TH another
1
2NdNr, and for T[D−1

1 TH ] additional 1
2NdN

2
r + 1

2NdNr

CME are required. The operation (·)−1TD−1
1 demands 1

6N
3
r+

NdN
2
r + NdNr CME, and the multiplication with D−1

1 TH

adds N2
dNr CME. The determination of GH

s H̃H
s and the final

multiplication add NdNr+N2
dNr+N2

d CME, cf. (29), which

totals to

1
6N

3
r + 2N2

dNr +
3
2NdN

2
r

+N2
d + 3NdNr +

5
4Nd +

5
4Nr CME. (70)

Finally, we investigate the complexity of the sequential

LMMSE estimator regarded in section IV-C. We start with the

data vector estimation of one OFDM symbol. For the first Nd

iteration steps the estimate updates are performed using (65)

and (66) which in total requires NdNr +Nd CME (complex

multiplications). For the last Nr iteration steps (58) has to

be evaluated which in total requires NdNr +N2
r +Nr CME

(complex multiplications). Consequently the equalization of

one OFDM symbol requires

2NdNr +N2
r +Nd +Nr CME. (71)

For the equalizer determination we have to count the oper-

ations required for the gain factor updates and for the MSE

matrix updates. For the first Nd iteration steps the gain factor

updates are performed using (60) and (61) which in total

requires NdNr + Nd complex multiplications and 2Nd real

divisions (which we count as 1
2Nd CME). For the last Nr

iteration steps (56) has to be evaluated which in total requires

NdNr +N2
r +Nr complex multiplications, Nr real multipli-

cations ( 14Nr CME) and 2Nr real divisions ( 12Nr CME). The

MSE matrix updates for the first Nd iterations are performed

using (62) to (64) which in total requires NdN
2
r + NdNr

complex multiplications and Nd real divisions ( 14Nd CME).

For the last Nr iteration steps (57) has to be evaluated which

in total requires N2
dNr+2NdN

2
r +N3

r +NdNr+N2
r complex

multiplications. We finally arrive at

N2
dNr + 3NdN

2
r +N3

r

+ 4NdNr + 2N2
r + 7

4Nd +
7
4Nr CME. (72)

C. Numerical Example

In the simulation section we will show results for a par-

ticular parameter setup. The most important parameters can

be found in Tab. II. For the complexity considerations only

Nd, Nr and N are important. The particular choices in Sec.

VI are Nd = 36, Nr = 16, N = 64. Tab. I compares the

complexity of the different equalizer representations and data

estimation procedures, respectively, for that particular param-

eter setup. Note that for the data vector estimation per OFDM

symbol we count the contribution of the FFT (N2 log2(N)
CME) which is required in all cases, and the additional effort

contributed by the particular equalization procedure.

TABLE I: Computational complexity of the introduced equal-

izers and data estimators.

CME for equalizer CME for data est.
Equalization method determination per OFDM symbol

ECI (35) 36 228

ETDW (37) 52 628

ELMMSE (40) 127677 2064

EBLUE,ELMMSE (25),(42) 88612 2064

EBLUE,ELMMSE (33),(46) 59068 2064

Sequential LMMSE 55387 1652

We observe, that the simple equalizers ECI and ETDW show

a significantly lower complexity for the equalizer determina-

tion as well as for the data estimation per OFDM symbol.

Concerning the BLUE and the LMMSE estimator we can

state that the complexity optimized batch solutions reduce

the equalizer determination complexity by around 33% com-

pared to the straightforward implementations in (25) and (42),

respectively. The complexity optimized sequential LMMSE

estimator which completely avoids matrix inversions further

reduces the equalizer determination complexity by another 6%,

and interestingly enough also the data estimation complexity

can be reduced by 20%.

VI. SIMULATION RESULTS

In this section we evaluate the introduced receiver concepts

in terms of their BER performance. We notice that all derived

variants of an estimator (e.g. of the LMMSE estimator)

perform equivalently. Different performance of distinct ver-

sions of an estimator would only be expected if fixed point

implementations were regarded which is not the focus of our

investigations.

A. Simulation Setup

We show simulation results with and without outer channel

coding. For the case when an outer channel code is used,

the block diagram in Fig. 2 is extended by an outer channel

encoder and an interleaver at the transmitter side, and by a

deinterleaver and decoder at the receiver side. We used the

same outer convolutional encoder with the industry standard

rate 1/2, constraint length 7 code with generator polynomials

(133, 171) as defined in [32]. A soft decision Viterbi algorithm

is applied for decoding. The main diagonal of the appropriate

matrixCẽẽ is used to specify the varying noise variances along

the data symbols after data estimation. We assumed perfect

channel knowledge in the simulations to be presented below.

In [1] we compared our UW-OFDM approach with the

CP-OFDM based IEEE 802.11a WLAN standard [32] and

showed that UW-OFDM outperforms CP-OFDM in frequency

selective indoor environments. In this work we use the same

parameter setup as in [1] which has been adapted to the
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TABLE II: Main PHY parameters of the investigated UW-

OFDM system.

Modulation scheme QPSK

Coding rates (outer code) uncoded, 1/2

FFT length 64

Occupied subcarriers 52

Data subcarriers 36

Redundant subcarriers 16

DFT period 3.2 µs

Guard duration 800 ns

Total OFDM symbol duration 3.2 µs

Subcarrier spacing 312.5 kHz

802.11a standard wherever possible. The most important pa-

rameters are specified in Table II. The sampling frequency

has been chosen to be fs = 20 MHz. As in [32] the indices

of the zero subcarriers within an OFDM symbol x̃ are set to

{0, 27, 28,...,37}. The indices of the redundant subcarriers are
chosen to be {2, 6, 10, 14, 17, 21, 24, 26, 38, 40, 43, 47,
50, 54, 58, 62}. This set (which can also be expressed by an

appropriate permutation matrixP) minimizes the cost function

in (6), and therefore also the mean energy of the redundant

subcarriers. Since we focus on data estimation procedures in

this work rather than on synchronization or channel estimation

approaches we chose the zero UW for the BER simulations

below. Note that in conventional CP-OFDM like in the WLAN

standard, the total length of an OFDM symbol is given by

TDFT + TGI . However, the guard interval is part of the DFT

period in the UW-OFDM approach which leads to significantly

shorter total symbol durations. Hence, the compared systems

show almost identical bandwidth efficiencies.

B. Simulation Results in the AWGN Channel

Clearly, OFDM is designed for data transmission in fre-

quency selective environments. Nevertheless, we start our

comparison with simulation results in the AWGN channel,

since these results provide first interesting insights. In Fig. 3

the BER performance of the different data estimators is

compared under AWGN conditions. As in all following BER

figures we present curves for the case no outer code is used

(we label it ‘uncoded’ in the figures), and for an outer coding

rate r = 1
2 .

We start the discussion with the uncoded case: As ex-

pected the CI estimator shows the worst performance, since it

completely ignores the information present on the redundant

subcarriers. Surprisingly, the very simple and intuitive TDW

data estimator performs almost as well as the BLUE and

the LMMSE in the AWGN environment. At a BER of 10−6

these three estimators which all make use of the a-priori

knowledge introduced by the zero UW outperform the CI

estimator by around 1.5dB. The trend is similar for r = 1
2 .

However, it is completely in contrast to single carrier systems

(e.g. SC/FDE) that the LMMSE estimator and the BLUE

show a different performance in an AWGN environment. This

comes from the fact that in single carrier systems the received

QAM symbols are uncorrelated in an AWGN environment,
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Fig. 3: Simulated BER performance of the investigated data

estimators in the AWGN channel.

whereas in UW-OFDM systems correlations are inherently

present due to (4). However, the performance gain of the

LMMSE estimator is quite small, and the BLUE approaches

the LMMSE estimator performance for high Eb/N0, as the

term
Nσ2

n

σ2

d

in (42) converges to zero.

C. Simulation Results in Frequency Selective Indoor Environ-

ments

For the simulation of indoor multipath channels we applied

the model described in [33], which has also been used dur-

ing the IEEE 802.11a standardization process. The channel

impulse responses are modeled as tapped delay lines, each

tap with uniformly distributed phase and Rayleigh distributed

magnitude, and with power decaying exponentially. The model

allows the choice of the channel delay spread. For a more

detailed description we refer to [33]. For illustration purposes

we use two different channel snapshots in this section, each

channel featuring a delay spread of 100 ns, and a total duration

not exceeding the guard interval. The frequency responses are

shown in Fig. 4. Channel A does not show any deep fading

holes, whereas channel B features two spectral notches within

the system bandwidth, one at a data subcarrier position, the

other one at a redundant subcarrier position.

Let us first interpret the results for channel A, cf. Fig. 5.

We observe similar trends as in the AWGN case, but now the

LMMSE estimator and the BLUE clearly outperform the TDW

estimator. For uncoded transmission the TDW outperforms the

CI estimator by 1.9dB (again at a BER of 10−6), the BLUE

and the LMMSE estimator gain 2.6dB and 2.7dB, respectively.

For r = 1
2 the corresponding gains shrink to 1.0dB, 1.35dB

and 1.65dB, respectively.

Finally Fig. 6 shows the simulation results for channel B

with its deep spectral notches. Very noticeable in the uncoded

transmission is the bad performance of the CI and the TDW
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Fig. 4: Frequency responses of indoor multipath channel

snapshots.
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Fig. 5: Simulated BER performance of the investigated data

estimators for channel A.

estimators. Here the performance gain of the BLUE and the

LMMSE estimator is significant. The performance of the CI

estimator is dominated by the weak BER behavior of data

subcarrier symbols corresponding to deep spectral notches in

the channel frequency response, while the LMMSE estimator

(and similarly the BLUE) considerably decrease the noise

on that subcarriers. (They decrease the noise variance on all

subcarriers, but the effect is significant on subcarriers corre-

sponding to deep spectral notches, cf. [1]). The BLUE and the

LMMSE estimator perform almost equivalently, which is again

in contrast to SC/FDE systems, where the performance gain of

the LMMSE estimator over the BLUE in channels with deep

fading holes is usually much larger, particularly at low Eb/N0

values, cf. [14]. In coded transmission the performance loss

of the CI estimator compared to the best performing LMMSE

estimator decreases to 1.7dB. The significant improvement
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Fig. 6: Simulated BER performance of the investigated data

estimators for channel B.

of the CI estimator in the coded case was expected as this

corresponds to the usual coding gain as it is also observed

in CP-OFDM. Somewhat unexpected, and in contrast to the

uncoded results and those in an AWGN channel and in channel

A, the TDW equalizer performs almost 0.7dB worse compared

to the CI equalizer at a BER of 10−6. To understand this effect

we will now have a closer look on the way the TDW estimator

works. In fact, although it is hardly noticeable in Fig. 6, in the

uncoded case the TDW only outperforms the CI estimator in

the high Eb/N0 range, but performs worse in the low Eb/N0

range (0–15dB). However, this is the interesting Eb/N0 range

for coded transmission. We will now have a look on the noise

variances (after equalization) and later on the BERs on the

individual data subcarriers.

Fig. 7a and 7b show the normalized noise variances after

equalization at a fixed Eb/N0 (Eb/N0 = 4 dB) for both data

estimators. We observe that on the data subcarrier with index

11 the noise variance is tremendously reduced by the TDW

compared to the CI estimator. This data subcarrier corresponds

to the deep spectral notch around 5 MHz in the channel’s

frequency response. However, we also notice that the noise

variances on data subcarriers around data symbol No. 11 are

a little bit higher for the TDW compared to the CI estimator.

On average (when averaged over all data subcarriers) the TDW

equalizer clearly reduces the noise power compared to the CI

equalizer, but besides a significant noise reduction on highly

attenuated subcarriers, the TDW equalizer ‘distributes’ some

noise onto neighboring subcarriers. Fig. 7b additionally shows

the difference between the resulting BERs of the TDW and

the CI estimators on a subcarrier basis. We observe, that the

tremendous noise reduction by the TDW equalizer on the

11th data subcarrier indeed leads to a lower subcarrier BER

compared to the CI equalizer, but the improvement is minor.

In return, the higher noise variances on the adjacent data

subcarriers lead to increased corresponding subcarrier BERs
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for the TDW estimator. In total the increase of these subcarrier

BERs lead to a worse overall BER performance of the TDW

compared to the CI estimator for these Eb/N0 values. The

overall noise reduction by the TDW estimator is not translated

to an overall BER gain for that particular channel for these

Eb/N0 values.

VII. CONCLUSION

In this work we investigated several linear data estimators

specifically designed for UW-OFDM. We introduced data

estimators following the principles of classical estimation

theory which lead to ZF equalizers. Two simple and intuitive

ZF equalizers and the optimum ZF equalizer corresponding

to the BLUE have been discussed. Following the Bayesian

estimation principle the LMMSE estimator has been presented,

and its batch and sequential versions have been regarded. We

derived highly complexity reduced versions of the individual

estimators and investigated their complexity in detail in terms

of equivalent complex multilication counts. The CME count

of the complexity optimized BLUE and LMMSE estimator

versions could considerably be reduced compared to their

straightforward counterparts, but still they show a significantly

higher CME count compared to the simple ZF solutions.

With the help of simulations we demonstrated the bit error

behavior of the proposed estimators in the AWGN channel

and in frequency selective indoor environments. Especially in

frequency selective channels featuring deep fading holes the

BLUE and in particular the LMMSE estimator significantly

outperform the simple ZF estimators.
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