
1

Non-Systematic Complex Number RS Coded

OFDM by Unique Word Prefix
Mario Huemer, Senior Member, IEEE, Christian Hofbauer, Student Member, IEEE

and Johannes Huber, Fellow, IEEE

Abstract—In this paper we expand our recently introduced
concept of UW-OFDM (unique word orthogonal frequency di-
vision multiplexing). In UW-OFDM the cyclic prefixes (CPs)
are replaced by deterministic sequences, the so-called unique
words (UWs). The UWs are generated by appropriately loading
a set of redundant subcarriers. By that a systematic complex
number Reed Solomon (RS) code construction is introduced
in a quite natural way, because an RS code may be defined
as the set of vectors, for which a block of successive zeros
occurs in the other domain w.r.t. a discrete Fourier transform.
(For a fixed block different to zero, i.e., a UW, a coset code
of an RS code is generated.) A remaining problem in the
original systematic coded UW-OFDM concept is the fact that
the redundant subcarrier symbols disproportionately contribute
to the mean OFDM symbol energy. In this paper we introduce
the concept of non-systematic coded UW-OFDM, where the
redundancy is no longer allocated to dedicated subcarriers, but
distributed over all subcarriers. We derive optimum complex
valued code generator matrices matched to the BLUE (best
linear unbiased estimator) and to the LMMSE (linear minimum
mean square error) data estimator, respectively. With the help of
simulations we highlight the advantageous spectral properties
and the superior BER (bit error ratio) performance of non-
systematic coded UW-OFDM compared to systematic coded
UW-OFDM as well as to CP-OFDM in AWGN (additive white
Gaussian noise) and in frequency selective environments.

Index Terms—Cyclic prefix (CP), Estimation, Minimum mean
square error (MMSE), OFDM, Unique word OFDM (UW-
OFDM), Reed Solomon coded OFDM.

I. INTRODUCTION

IN [1], [2] we introduced an OFDM (orthogonal frequency

division multiplexing) signaling scheme, where the usual

cyclic prefixes (CPs) [3] are replaced by deterministic se-

quences, that we call unique words (UWs). A related but –

when regarded in detail – also very different scheme is KSP

(known symbol padded)-OFDM [4], [5]. Fig. 1a – 1c compare

the CP-, KSP-, and UW-based OFDM transmit data structures.
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In CP- as well as in UW-OFDM the linear convolution of

Fig. 1. Transmit data structure using a CP (a), a KS (b) or a UW (c).

the transmit signal with the channel impulse response is

transformed into a cyclic convolution such that the discrete

Fourier transform (DFT) can diagonalize the channel in the

frequency domain. However, different to the CP, the UW is

part of the DFT-interval as indicated in Fig. 1. Furthermore,

the CP is a random sequence, whereas the UW is deterministic.

Hence, the UW can optimally be designed for particular

needs like synchronization and/or channel estimation purposes

at the receiver side. The broadly known KSP-OFDM uses

a structure similar to UW-OFDM, since the known symbol

(KS) sequence is deterministic as well. The most important

difference between KSP- and UW-OFDM is the fact, that

the UW is part of the DFT interval, whereas the KS is not.

The generation of the UW within the DFT-interval introduces

correlations among the subcarriers, which can advantageously

be exploited by the receiver to improve the BER (bit error

ratio) performance. Whilst in both schemes the deterministic

sequences can be used for synchronization and channel es-

timation purposes, these correlations are not present in KSP-

OFDM. We notice that KSP-OFDM coincides with ZP-OFDM

(zero padded OFDM) [6], if the KS sequence is set to zero.

Since UW-OFDM time domain symbols contain a block

of fixed samples, i.e., the UW, the set of all corresponding

vectors in discrete frequency domain forms a coset to a Reed

Solomon code (RS code). Usually RS codes of length n are

defined for a finite field FQ using an element w ∈ FQ of

order n, n · l = Q − 1, with n, l, Q ∈ N to define a discrete

Fourier transform F
n
Q → F

n
Q in FQ. The set of codewords is

specified by the fact, that the (inverse) DFT of all codewords
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contains a block of dmin − 1 successive zeros, where dmin

is the minimum Hamming distance of the RS code. If this

block of dmin − 1 successive symbols differs from zero, but

is also fixed for all codewords, a coset code to an RS code

is generated in the other domain w.r.t. this Fourier transform

with the same minimum distance dmin, c.f. [7].

All these definitions apply for the field of complex numbers

and a usual DFT of length n as well. Thus, in UW-OFDM the

set of frequency domain data vectors defines a coset code to

an RS code in a quite natural way. In contrast to the usual

approach using RS codes over a finite field, e.g. F28 , for an

outer code in a concatenated code scheme, in UW-OFDM we

have an inner RS code over the field of complex numbers if

any further channel coding scheme is applied, i.e., the OFDM

guard space is here additionally exploited for redundancy of

an inner channel coding scheme in a natural way. In [8] we

showed that algebraic decoding of the introduced complex

number RS code leads to solving an ill-conditioned system

of equations which is extremely sensitive to noise. It turns

out that the application of data estimation approaches like the

BLUE (best linear unbiased estimator) or the LMMSE (linear

minimum mean square error) estimator, cf. [9], is much more

appropriate than algebraic decoding.

For SC/FDE (single carrier/frequency domain equalization)

systems [10]–[24], the benefits of UW based transmission have

already sufficiently been studied [17]–[20], [22]–[23]. The

introduction of UWs in SC/FDE systems is straightforward,

since the data symbols as well as the UW symbols are defined

in time domain. In UW-OFDM the data symbols are defined

in frequency domain, whereas the UW symbols are defined

in time domain, which leads to some difficulties. In [25] we

discussed the similarities and differences of the UW approach

for OFDM and SC/FDE.

In our concept described in [1], [9] we suggested to

generate UW-OFDM symbols by appropriately loading so-

called redundant subcarriers. The minimization of the energy

contribution of the redundant subcarriers turned out to be a

challenge. We solved the problem by generating a zero UW

in a first step, and by adding the desired UW in a separate

second step. We showed that this approach generates OFDM

symbols with much less redundant energy [2] than a single

step or direct UW generation approach as e.g., described in

[18]. Additionally, we optimized the positions of the redundant

subcarriers to further reduce their energy contribution. Several

other attempts of applying UWs in OFDM systems can be

found in the literature, e.g. in [26]-[27]. In all those approaches

the guard interval and thus the UW is not part of the DFT-

interval. Therefore, and in contrast to our UW-OFDM concept

no coding is introduced by these schemes.

Our systematic complex number RS coded UW-OFDM

concept presented in [1] and shortly reviewed in Sec. II of

the present paper still suffers from a disproportionately high

energy contribution of the redundant subcarriers. In [28] we

tackled this problem by increasing the number of redundant

subcarriers while keeping the length of the UW constant. On

the one hand this approach in fact leads to a reduction of

the redundant energy contribution and to an improved BER

performance, but on the other hand the bandwidth efficiency

decreases compared to the original concept. In [29] we in-

troduced another approach that also focuses on the redundant

energy contribution. Here we achieved the reduction of the re-

dundant energy by allowing some systematic noise within the

guard interval. This method clearly outperforms the original

UW-OFDM approach, however, a remaining penalty is the fact

that the UW is disturbed to some extent. In the present paper

we introduce a different and much more favorable approach to

overcome the shortcomings of the original UW-OFDM con-

cept. We no longer primarily focus on the redundant energy re-

duction. Instead, we suggest to distribute the redundant energy

over all subcarriers, and we define cost functions that take the

overall transceiver performance (including the data estimation)

into account. The corresponding UW-OFDM symbol genera-

tion procedure introduces a non-systematic complex number

RS code construction (cf. Sec. III) which can be described by

appropriate code generator matrices. For the data estimation

we apply two different approaches, namely the BLUE and

the LMMSE estimator. Sec. IV is dedicated to the solutions

of the arising optimization problems. At first we solve the

optimization problems numerically, thereafter we analytically

derive a number of highly interesting general properties of

optimum code generator matrices and the implications for the

overall system approach. Moreover, we discuss the properties

of two particular numerically found code generator matrices.

In Sec. V we show that non-systematic coded UW-OFDM

can be converted into a UW-SC/FDE system by choosing a

specific constructed optimum code generator matrix. Finally,

simulation results are presented in Sec. VI. We compare the

novel UW-OFDM approach against our original systematic

coded UW-OFDM concept and against a classical CP-OFDM

system, as a reference system we use the IEEE 802.11a

WLAN (wireless local area network) standard. The spectral

advantages are discussed, and BER simulation results are

presented for the AWGN channel as well as for frequency

selective indoor scenarios. For the latter case we additionally

investigate the impact of channel estimation errors on the BER

performance. The results highlight the advantageous properties

of the proposed scheme.

Notation: Lower-case bold face variables (a,b,...) indicate

vectors, and upper-case bold face variables (A,B,...) indicate

matrices. To distinguish between time and frequency domain

variables, we use a tilde to express frequency domain vectors

and matrices (ã, Ã,...), respectively. We further use R to denote

the set of real numbers, C to denote the set of complex

numbers, I to denote the identity matrix, (·)T to denote

transposition, (·)∗ to denote complex conjugation, (·)H to

denote conjugate transposition, E[·] to denote expectation,

and tr{·} to denote the trace operator. For all signals and

systems the usual equivalent complex baseband representation

is applied.
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II. REVIEW OF SYSTEMATIC CODED UW-OFDM

A. Unique Word Generation

We briefly review our original approach of introducing

unique words in OFDM time domain symbols, for further

details see [1], [2]. Let xu ∈ CNu×1 be a predefined sequence

which we call unique word. This unique word shall form the

tail of each OFDM time domain symbol vector. Hence, an

OFDM time domain symbol vector, as the result of a length-

N -IDFT (inverse DFT), consists of two parts and is of the

form
[
xT

d xT
u

]T
∈ CN×1, whereat only xd ∈ C(N−Nu)×1 is

random and affected by the data. In the concept suggested in

[1], [2] we generate an OFDM symbol x =
[
xT

d 0T
]T

with

a zero UW in a first step, and we determine the final transmit

symbol x′ = x +
[
0T xT

u

]T
by adding the desired UW in

time domain in a second step. As in conventional OFDM,

the QAM data symbols (denoted by the vector d̃ ∈ CNd×1)

and the zero subcarriers (at the band edges and at DC) are

specified as part of the frequency domain vector x̃, but here

in addition the zero word is specified in time domain as part of

the vector x = F−1
N x̃. FN denotes the length-N -DFT matrix

with elements [FN ]kl = e−j 2π

N
kl for k, l = 0, 1, ..., N − 1.

The system of equations x = F−1
N x̃ with the introduced

features can, e.g., be fulfilled by spending a set of redundant

subcarriers. We let the redundant subcarrier symbols form the

vector r̃ ∈ CNr×1 with Nr = Nu, we further introduce a

permutation matrix P ∈ C
(Nd+Nr)×(Nd+Nr), and form an

OFDM symbol (containing N − Nd − Nr zero subcarriers)

in frequency domain by

x̃ = BP

[
d̃

r̃

]
. (1)

B ∈ CN×(Nd+Nr) inserts the usual zero subcarriers. It

consists of zero-rows at the positions of the zero subcarriers,

and of appropriate unit row vectors at the positions of data

subcarriers. We will detail the reason for the introduction of

the permutation matrix P and its specific construction shortly

below. The time - frequency relation of the OFDM symbol

(before adding the desired UW) can now be written as

F−1
N BP

[
d̃

r̃

]
=

[
xd

0

]
. (2)

With

M = F−1
N BP =

[
M11 M12

M21 M22

]
, (3)

where Mij are appropriate sized sub-matrices, it follows that

M21d̃ + M22r̃ = 0, and hence r̃ = −M−1
22 M21d̃. With the

matrix

T = −M−1
22 M21 ∈ C

Nr×Nd , (4)

the vector of redundant subcarrier symbols can thus be deter-

mined by the linear mapping

r̃ = Td̃. (5)

Equation (5) introduces correlations in the vector x̃ of fre-

quency domain samples of an OFDM symbol. The construc-

tion of T, and thus also the energy of the redundant subcarrier

symbols, depends on the choice of P. The mean symbol

energy Ex′ = E[(x′)Hx′] can be calculated to

Ex′ =
1

N
(Ndσ

2
d︸ ︷︷ ︸

E
d̃

+ σ2
dtr(TTH)︸ ︷︷ ︸

Er̃

) + xH
u xu︸ ︷︷ ︸
Exu

, (6)

cf. [2]. E
d̃
/N and Er̃/N describe the contributions of the data

and the redundant subcarrier symbols to the total mean symbol

energy before the addition of the desired UW, respectively,

and Exu
describes the contribution of the UW. It turns out

that the energy contribution Er̃/N of the redundant subcarrier

symbols almost explodes without the use of an appropriate

permutation matrix, or equivalently for P = I. In [1] we

therefore suggested to choose P by minimizing the symbol

energy Ex′ or equivalently by minimizing the energy-based

cost function

JE =
σ2

d

N
tr
{
TTH

}
. (7)

Note that T is derived from (3) and (4).

Example 1: For the parameter choice N = 64, Nu = 16,

and an index set of the zero subcarriers given by {0, 27,

28,...,37} (these parameters are taken from the IEEE 802.11a

WLAN standard [30], see also Table I), we have Nr = 16
and Nd = 36. The optimum index set for the redundant

subcarriers as a result of minimizing the cost function in (7)

is {2, 6, 10, 14, 17, 21, 24, 26, 38, 40, 43, 47, 50, 54, 58,

62}; cf. [1]. This choice can easily also be described by (1)

with appropriately constructed matrices B and P. We assume

uncorrelated and zero mean QAM data symbols with the

covariance matrix Cd̃d̃ = σ2
dI. Fig. 2 shows the mean power

Fig. 2. Mean power of individual subcarrier symbols for Example 1.

values of all individual subcarrier symbols for the chosen

parameter setup for the case the UW is the zero word xu = 0

and for σ2
d = 1. The optimized mean power values of the

redundant subcarrier symbols are the elements of the vector

σ2
ddiag

(
TTH

)
evaluated for the optimum permutation matrix

P.

B. Interpretation as a Systematic Complex Valued Reed-

Solomon Code

With

G = P

[
I

T

]
∈ C

(Nd+Nr)×Nd (8)
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Fig. 3. Codeword generator for the systematic code described by G.

we can interpret

c̃ = P

[
d̃

r̃

]
= P

[
I

T

]
d̃ = Gd̃ (9)

(c̃ ∈ C(Nd+Nr)×1) as a codeword of a systematic complex

number Reed Solomon code construction with the code gen-

erator matrix G. As already mentioned above an RS code

with minimum Hamming distance dmin may be defined as

the set of codewords, which all show a block of dmin − 1
consecutive zeros in their spectral transform w.r.t. a Fourier

transform defined in the (elsewhere usually finite) field from

which the code symbols are taken; c.f. [7]. Here, simply

time and frequency domains are interchanged and the field

is the set of complex numbers. Fig. 3 graphically illustrates

the generation of a codeword c̃ = [c̃0, c̃1, ..., c̃Nd+Nr−1]
T .

Using (9), and with the frequency domain version of the UW

x̃u = FN

[
0T xT

u

]T
the transmit symbol can now also be

written as

x′ = F−1
N (BGd̃ + x̃u). (10)

C. System Model and Preparatory Steps

After the transmission over a dispersive (e.g., multipath)

channel a received OFDM time domain symbol can be mod-

eled as

yr = Hcx
′ + n (11)

= HcF
−1
N (BGd̃ + x̃u) + n, (12)

cf. (10), where n ∈ C
N×1 represents a zero-mean Gaussian

(time domain) noise vector with the covariance matrix σ2
nI,

and Hc ∈ CN×N denotes a cyclic convolution matrix originat-

ing from the zero-padded vector of channel impulse response

coefficients hc ∈ CN×1. After applying a DFT to obtain

ỹr = FNyr, we exclude the zero subcarriers from further

operation, which leads to the down-sized vector ỹd = BT ỹr

with ỹd ∈ C(Nd+Nr)×1:

ỹd = BTFNHcF
−1
N (BGd̃ + x̃u) + BT FNn. (13)

The matrix H̃c = FNHcF
−1
N is diagonal and contains the

sampled channel frequency response on its main diagonal.

H̃ = BTFNHcF
−1
N B with H̃ ∈ C(Nd+Nr)×(Nd+Nr) is a

down-sized version of the latter excluding the entries corre-

sponding to the zero subcarriers. The received symbol can now

be written in the form of the affine model

ỹd = H̃Gd̃ + H̃BT x̃u + BT FNn. (14)

Note that (assuming that the channel matrix H̃ or at least

an estimate of the same is available) H̃BT x̃u represents the

known portion contained in the received vector ỹd originating

from the UW. As a preparatory step to the data estimation pro-

cedure the UW influence is subtracted to obtain the corrected

symbol ỹ = ỹd − H̃BT x̃u in the form of the linear model

ỹ = H̃Gd̃ + ṽ, (15)

with the noise vector ṽ = BTFNn. The vector ỹ serves as

the input for the data estimation (or equalization) procedure.

In the following we will consider linear data estimators of the

form
̂̃
d = Eỹ, (16)

where E ∈ CNd×(Nd+Nr) describes the equalizer.

D. Optimum Linear Data Estimators

One way to look for an optimum data estimator is to

assume the data vector to be deterministic but unknown, and

to search for unbiased estimators. In order for the estimator

to be unbiased we require

E[
̂̃
d] = E[Eỹ] = EE[H̃Gd̃ + ṽ] = EH̃Gd̃ = d̃. (17)

Consequently, the unbiased constraint takes on the form

EH̃G = I. (18)

Equ. (18) is equivalent to the ZF (zero forcing) criterion for

linear equalizers. The optimum solution which is commonly

known as the best linear unbiased estimator, and which is

equivalent to the optimum linear ZF equalizer, is found by

applying the Gauss-Markov theorem, cf. [31], to the linear

model in (15). The solution is given by

EBLUE = (GHH̃HC−1
ṽṽ H̃G)−1GHH̃HC−1

ṽṽ . (19)

We note that since the noise in (15) is assumed to be Gaussian,

(19) is also the MVU (minimum variance unbiased) estimator.

With the noise covariance matrix Cṽṽ = E
[
ṽṽH

]
= Nσ2

nI

we obtain

EBLUE = (GHH̃HH̃G)−1GHH̃H . (20)

The covariance matrix of
̂̃
d = EBLUEỹ, or equivalently, the

covariance matrix of the error ẽ = d̃−
̂̃
d immediately follows

to

Cẽẽ = Nσ2
n(GHH̃HH̃G)−1. (21)

The most common linear data estimator is the LMMSE esti-

mator which belongs to the class of the Bayesian estimators.

In the Baysian approach the data vector is assumed to be the

realization of a random vector instead of being deterministic

but unknown as assumed above. By applying the Bayesian

Gauss-Markov theorem [31] to (15), where we now assume d̃
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to be the realization of a random vector, the LMMSE equalizer

follows to

ELMMSE = (GHH̃HH̃G +
Nσ2

n

σ2
d

I)−1GHH̃H . (22)

Expression (22) shows huge similarity to the BLUE in (20).

For σ2
n = 0 the LMMSE equalizer and the BLUE are identical.

The covariance matrix of the error ẽ = d̃−
̂̃
d is given by

Cẽẽ = Nσ2
n(GHH̃HH̃G +

Nσ2
n

σ2
d

I)−1. (23)

III. UW GENERATION BY OPTIMUM NON-SYSTEMATIC

CODING

In Sec. II we chose the positions of the redundant subcar-

riers (represented by the choice of the permutation matrix P)

such that the redundant energy becomes minimum. For that

we had to minimize the cost function JE in (7). Nevertheless,

the mean power of the redundant subcarrier symbols is still

considerably higher than that of the data symbols; cf. Fig. 2.

In this section we present a novel and completely different

approach to optimize the overall system performance by

adapting our original concept as follows:

1) We give up the idea of dedicated redundant subcarriers,

and we allow to spread the redundant energy over all

codeword symbols.

2) We define new cost functions that additionally take the

receiver processing into account. Instead of purely fo-

cusing on the redundant energy, we define performance

measures based on the sum of the error variances at the

output of the data estimator.

It will turn out that this approach significantly outperforms CP-

OFDM and also our original systematic coded UW-OFDM.

A. The Idea of Non-Systematic Coding in UW-OFDM

With the introduction and optimization of the permutation

matrix P we minimized the energy contribution of the re-

dundant subcarrier symbols. From the optimum choice of the

permutation matrix P we learned that the redundant subcarrier

symbols shall be distributed approximately equidistantly over

the codeword c̃; cf. Fig 2. This means that the redundant

energy is not concentrated in bundles of subcarrier symbols,

but it is spread out over the codeword. Nevertheless, the

portions of the redundant energy are only concentrated on

the dedicated redundant subcarrier symbol positions. However,

from this equidistant distribution of the redundant energy

one could guess, that it might make sense to distribute the

redundancy over all subcarrier symbols. If we do so we can no

longer speak of dedicated redundant subcarriers, since every

subcarrier will then carry an amount of redundant energy

instead. We incorporate this idea into our UW-OFDM symbol

generation process by replacing G as defined in (8) by a code

generator matrix Ğ (of the same size as G) which spreads the

redundancy over all codeword symbols. The code described by

Ğ can then be interpreted as a non-systematic code since the

original data symbols d̃ will not appear in the codeword

c̃ = Ğd̃ (24)

any longer. Ğ distributes portions of a single data symbol over

all (or at least several) codeword symbols, and it additionally

adds redundancy. Consequently, and analogical to G, Ğ can be

interpreted as a mixture of a linear dispersive preprocessor (or

channel-independent precoder, cf. [6],) and a channel coder.

However, Ğ significantly differs from G in the specific way

how data and redundancy are spread over the codeword.

In the following we will formulate optimization criteria

from which Ğ shall be derived. Following the way we

optimized the permutation matrix P, we could again think of a

redundant energy minimization. However, since the redundant

energy will now be smeared over all subcarrier symbols it

is not clear how to enforce this. Therefore, we no longer

primarily focus on the redundant energy reduction, but we

aim for optimization criteria that take the complete transceiver

processing into account.

B. Transceiver Cost Function for the BLUE

Clearly the linear data estimators in (20) and (22) can also

be used for non-systematic coded UW-OFDM, we only have

to substitute G by Ğ. We first focus on the BLUE given by

(20). A possible approach to optimize the overall transceiver

performance is to choose the code generator matrix Ğ such

that the sum over the error variances after the data estimation

becomes minimum. With (21) this would lead to the cost

function

J = tr{Cẽẽ} = Nσ2
ntr
{
(ĞHH̃HH̃Ğ)−1

}
. (25)

We are aiming for a code generator matrix design which shall

be done only once during system design. Because of that

reason the dependence of the cost function on the particular

channel H̃ is inappropriate. We therefore suggest to look for

an optimum Ğ for the case H̃ = I, that is the AWGN channel

case. J then reduces to

J = Nσ2
ntr
{
(ĞHĞ)−1

}
. (26)

In the simulation section we will demonstrate that the finally

derived non-systematic coded UW-OFDM systems not only

perform superior in the AWGN channel case, but also and

particularly in frequency selective channels1. As we will

see this comes from the advantageous combination of the

channel coding and dispersive preprocessing abilities of the

optimized code generator matrices. But let us come back to

the formulation of an appropriate optimization criterion and to

J as given in (26): We could now try to minimize J for a given

σ2
n, where the particular choice of σ2

n is obviously irrelevant.

However, different choices of Ğ lead to different mean OFDM

symbol energies and consequently to different ratios Es/σ2
n,

where Es denotes the mean energy of an individual QAM data

symbol. Since it is not desirable to reach the goal of a small

sum of error variances at the cost of a huge transmit energy, it

is much more reasonable and fair to fix the ratio c = Es/σ2
n

during the optimization. To obtain an expression for Es we

1It will turn out, that the solution to the formulated optimization problem
is not unambiguous.
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calculate the mean OFDM symbol energy Ex (for the case of

a zero UW) first:

Ex = E[xHx]

= E[(F−1
N BĞd̃)HF−1

N BĞd̃]

=
1

N
E[d̃HĞHBTFNF−1

N BĞd̃]

=
1

N
E[d̃HĞHĞd̃] (27)

With aHb = tr{baH} we can further write

Ex =
1

N
E[tr{ĞHĞd̃d̃H}]

=
1

N
tr{E[ĞHĞd̃d̃H ]}

=
σ2

d

N
tr{ĞHĞ}. (28)

The mean QAM data symbol energy Es follows to Es =
Ex/Nd. With c = Es/σ2

n we obtain

σ2
n =

Es

c
=

σ2
dtr{ĞHĞ}

cNNd
. (29)

Inserting (29) into (26) finally yields the cost function

JBLUE =
σ2

d

cNd
tr
{
ĞHĞ

}
tr
{

(ĞHĞ)−1
}

. (30)

The cost function JBLUE measures the overall transceiver

performance at a fixed ratio Es/σ2
n. However, the particular

choice of the ratio c = Es/σ2
n is obviously irrelevant for the

searching of optimum code generator matrices.

An optimum code generator matrix Ğ shall consequently

be found by minimizing JBLUE, but in addition, in order that

the zero UW is generated in the time domain, Ğ has to be

constrained to fulfill

F−1
N BĞd̃ =

[
xd

0

]
(31)

for every possible data vector d̃, or equivalently

F−1
N BĞ =

[
∗
0

]
. (32)

Hence, every column vector of Ğ has to be orthogonal to

the Nu lowermost row vectors of F−1
N B ∈ CN×(Nd+Nr).

Note that F−1
N B is composed of those columns of F−1

N that

correspond to the non-zero entries of the OFDM frequency

domain symbol x̃.

Consequently, we have to solve a constrained optimization

problem for Ğ, which can finally be written as

Ğ = argmin {JBLUE} s.t. F−1
N BĞ =

[
∗
0

]
. (33)

The solutions to the optimization problem will lead to code

generator matrices Ğ matched to the BLUE ’decoding’ pro-

cedure.

C. Transceiver Cost Function for the LMMSE Data Estimator

In this subsection we assume that the LMMSE estimator

will be used for data estimation. Again we are aiming for

optimizing the overall system performance by minimizing the

sum over the error variances after the data estimation. Using

(23) with H̃ = I this leads to

J = Nσ2
ntr

{
(ĞHĞ +

Nσ2
n

σ2
d

I)−1

}
. (34)

Like in the considerations for the BLUE we fix c = Es/σ2
n,

and we therefore insert (29) into (34) to obtain the cost

function

JLMMSE =
σ2

d

cNd
tr{ĞHĞ}tr






(
ĞHĞ +

tr{ĞHĞ}

cNd
I

)−1



 .

(35)

Alternatively, the cost function can also be written as

JLMMSE = σ2
dtr






(
cNd

tr{ĞHĞ}
ĞHĞ + I

)−1



 . (36)

The constrained optimization problem to find Ğ can finally

be written as

Ğ = argmin{JLMMSE} s.t. F−1
N BĞ =

[
∗
0

]
. (37)

For sufficiently large c we have JLMMSE ≈ JBLUE, and the

particular choice of c is again irrelevant for the searching

of optimum code generator matrices. However, this is not

immediately apparent for small values of c. The solutions to

the optimization problem will lead to code generator matrices

Ğ matched to the LMMSE ’decoding’ procedure.

IV. SOLUTIONS OF THE OPTIMIZATION PROBLEMS

In this section we at first solve the optimization problems

in (33) and (37) numerically. The solutions are ambiguous,

however all found code generator matrices share a number of

common properties which we will discuss in detail. With the

help of analytical considerations which are partly shifted to the

appendices we show that all found code generator matrices not

only correspond to local minima but to the global minimum

of the associated cost function.

A. Preparatory Steps and Numerical Solution with the Steep-

est Descent Algorithm

In this section we use the steepest descent algorithm to nu-

merically solve the optimization problems in (33) and (37). As

a preparatory step we transform the constrained optimization

problems into unconstrained problems. For that and according

to (8) we write Ğ in the form

Ğ = AP

[
I

T̆

]
, (38)

with a non-singular real matrix A ∈ R
(Nd+Nr)×(Nd+Nr),

and with a fixed permutation matrix P as e.g., found by
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minimizing the cost function in (7). The constraint in (33)

and (37) can thus be rewritten as

F−1
N BAP

[
I

T̆

]
=

[
∗
0

]
. (39)

With the introduction of

M̆ = F−1
N BAP =

[
M̆11 M̆12

M̆21 M̆22

]
, (40)

the constraint in (39) can now simply be fulfilled by choosing

T̆ as

T̆ = −(M̆22)
−1M̆21. (41)

That means that for a given non-singular real matrix A, the

matrices T̆ and Ğ can un-ambiguously be calculated by (41)

and (38), respectively, such that the constraint in (33) and

(37) is automatically fulfilled. We can therefore consider the

cost functions JBLUE and JLMMSE as functions of the real

matrix A, where T̆ and Ğ have to be determined by (41) and

(38), respectively. The steepest descent algorithm can then be

applied to the unconstrained optimization problems

Aopt = argmin{JBLUE, LMMSE} (42)

in a straight forward manner. In (42) either JBLUE or JLMMSE

is minimized. By following this approach the steepest descent

algorithm automatically only searches within a subset of

matrices Ğ that fulfill the constraint in (33) and (37), or

in other words that produce a zero UW in the OFDM time

domain symbols.

For the steepest descent algorithm the gradients of the

cost functions JBLUE and JLMMSE with respect to the real

matrix A are required. We approximated the partial derivations

∂J/∂[A]ij by

∂J

∂[A]ij
=

J([A]ij + ε) − J([A]ij − ε)

2ε
, (43)

with a very small ε. For J we inserted JBLUE or JLMMSE,

respectively. We used two different approaches for the initial-

ization of the steepest descent algorithm:

1) Initialization with the Code Generator Matrix G: In our

first approach we chose the initialization

A(0) = I (44)

which implies T̆(0) = T and

Ğ(0) = P
[
I TT

]T
= G. (45)

The iterative optimization process consequently starts with the

code generator matrix G of our original systematic coded UW-

OFDM concept, which can definitely be assumed to be a good

initial guess. We denote the resulting optimum code generator

matrix (found after convergence of the algorithm) with Ğ′.

2) Random Initialization: In the second approach we chose

each element of A(0) as a realization of a Gaussian random

variable with mean zero and variance one:

[A(0)]ij ∼ N (0, 1) (46)

We denote the resulting code generator matrix with Ğ′′.

For both cost functions JBLUE and JLMMSE we can claim the

following: By using the initialization as in (44) the steepest

descent algorithm converges at least one order of magnitude

faster compared to the case when (46) is used. For the random

initialization approach the resulting code generator matrix

generally varies from trial to trial.

B. General Properties of Optimum Code Generator Matrices

for the BLUE

Interestingly, all found local minima for the BLUE based

numerical optimization feature the same value of the cost func-

tion JBLUE,min, independently of the choice of the initialization

A(0). Another highly interesting finding is, that all resulting

code generator matrices (again independently of A(0)) feature

the property

ĞHĞ = αI (47)

with some constant α (which may vary dependent on the

results of the optimization process). This property has a

number of important implications. First, inserting (47) into

the cost function (30) leads to

JBLUE,min =
σ2

d

cNd
(Ndα)(Ndα

−1) =
σ2

dNd

c
, (48)

which is in agreement with the numerically found local

minima. We can conclude that every Ğ fulfilling

ĞHĞ = αI and F−1
N BĞ =

[
∗
0

]
(49)

for any value of α will also result in the same value JBLUE,min

of the cost function, and will produce a zero UW in time

domain. Second, if we apply a code generator matrix satisfying

(49), then the error covariance matrix after the data estimation

in the AWGN channel is given by

Cẽẽ,BLUE =
σ2

d

c
I. (50)

This simply follows from inserting (47) and (29) into (21).

As an important consequence we can conclude that the noise

at the output of the BLUE is uncorrelated under AWGN

conditions. This is clearly in contrast to systematic coded

UW-OFDM, where Cẽẽ is non-diagonal also in the AWGN

channel case. And third, (47) implies that all singular values

of Ğ are identical. To show this we consider a singular value

decomposition (SVD) of Ğ as

Ğ = UΣVH , (51)

with unitary matrices U and V, and with the matrix Σ =[
D 0

]T
, where D is a real diagonal matrix having the



8

singular values s1, s2, ..., sNd
of Ğ at its main diagonal. With

(47) we therefore have

αI = ĞHĞ = VΣHUHUΣVH = VD2VH

⇔ αI = D2 = diag
{
s2
1, s

2
2, ..., s

2
Nd

}
. (52)

From (52) it follows that ĞHĞ = αI implies α = s2
1 =

s2
2 = · · · s2

Nd
:= s2. The property in (47) can therefore also

be written as

ĞHĞ = s2I. (53)

The argumentation can also be done the other way round: If all

singular values of Ğ are identical then we have ĞHĞ = αI

with α = s2.

An open question is still whether the value of the cost

function JBLUE,min as in (48) corresponding to the numer-

ically found local minima depicts the global minimum of

the constrained optimization problem in (33). To answer this

question we now at first merely concentrate on the cost

function JBLUE, and we disregard the constraint in (33) for

a moment: Let s =
[
s1 s2 · · · sNd

]T
be the vector of

singular values of Ğ. In Appendix A we will analytically

show that ∂JBLUE/∂s = 0 if and only if all singular values

of Ğ are identical. Consequently, every possible candidate Ğ

for a local minimum satisfies ĞHĞ = s2I (cf. (52) and its

implications). Inserting ĞHĞ = s2I into the cost function

(30) leads to the same expression as in (48), and hence, every

Ğ fulfilling ĞHĞ = s2I results in the same (and minimum)

value JBLUE,min = σ2
dNd/c which therefore constitutes the

global minimum of the cost function.

We now come back to the constrained problem in (33):

From our numerical solutions we know that matrices exist,

that firstly satisfy ĞHĞ = s2I and therefore result in

the global minimum of the cost function JBLUE, and that

secondly fulfill the constraint F−1
N BĞ =

[
∗
0

]
. With these

considerations we finally end up with the following important

proposition:

Properties of optimum code generator matrices: A code

generator matrix Ğ is optimum, i.e., leads to a global mini-

mum of the constrained optimization problem in (33), if and

only if Ğ satisfies

ĞHĞ = s2I and (54)

F−1
N BĞ =

[
∗
0

]
, (55)

where s := s1 = s2 = · · · = sNd
are the (all identical)

singular values of Ğ. The global minimum of the cost function

is given by (48), and the error covariance matrix after data

estimation (in the AWGN channel) is the scaled identity matrix

as given in (50).

Note that because of (54) the colums of any optimum

code generator matrix Ğ form an orthogonal basis of an Nd-

dimensional subspace of C(Nd+Nr)×1. Furthermore, as already

discussed above, (55) implies that every column vector of an

optimum Ğ is orthogonal to the Nu lowermost row vectors

of F−1
N B.

C. General Properties of Optimium Code Generator Matrices

for the LMMSE Estimator

In Appendix B we will analytically show that

∂JLMMSE/∂s = 0 if and only if all singular values of Ğ are

identical. All other findings from Sec. IV-B also hold for the

LMMSE estimator based transceiver optimization, except the

particular expressions for JLMMSE,min and Cẽẽ,LMMSE differ

slightly. With (47), (23) and (36) it immediately follows that

JLMMSE,min =
σ2

dNd

c + 1
, (56)

Cẽẽ,LMMSE =
σ2

d

c + 1
I. (57)

As a consequence of the above findings we learn that a

code generator matrix which is optimum for the BLUE based

’decoding’ procedure is automatically also optimum for the

LMMSE based data estimation (and vice versa).

D. Normalized Optimum Code Generator Matrices

From (48) and (56) we learn that the particular value of

α = s2 does not play any important role. In our simulations,

cf. Sec. VI, we therefore normalized all found code generator

matrices such that α = s2 = 1 or ĞHĞ = I. The

columns of any normalized optimum code generator matrix Ğ

form an orthonormal basis of an Nd-dimensional subspace of

C(Nd+Nr)×1. As another consequence of s = 1 the operation

c̃ = Ğd̃ becomes energy-invariant and we have Ec̃ = E
d̃

=
Ndσ

2
d , and the mean energy of an OFDM time domain symbol

(for the zero UW case) follows to Ex = Ndσ
2
d/N ; cf. (28).

E. Comparison of Generator Matrices obtained from different

Initialization Strategies

We will now discuss some further interesting properties

of two particular numerically found solutions. Here we only

concentrate on Ğ′ and on one particular solution for Ğ′′ (and

the corresponding matrices A′
opt and A′′

opt) found by applying

the LMMSE estimator based optimization with c = 1 for the

initializations as described in (44) and (46), respectively.

The matrix A′
opt features the symmetry property

A′
opt = [a′

0 · · ·a
′
Na/2−1 flip{a′

Na/2−1} · · · flip{a′
0}], (58)

where Na = Nd + Nr and the a′
i with i = 0, 1, ..., Na/2 − 1

are the first Na/2 colums of A′
opt. The corresponding code

generator matrix Ğ′ shows the same symmetry property as G

in Section II, namely

Ğ′ = [ğ′
0 · · · ğ

′
Nd/2−1 flip{(ğ′

Nd/2−1)
∗} · · ·flip{(ğ′

0)
∗}].

(59)

Here the ğ′
i with i = 0, 1, ..., Nd/2 − 1 are the first Nd/2

columns of Ğ′. These symmetry properties do not hold

for A′′
opt and Ğ′′, respectively. It appears that the matrices

A′
opt and A′′

opt show a completely different construction. A′
opt

approximately features a band matrix structure, where all

dominant entries are positioned on the main diagonal and

the first few diagonals directly above and below the main

diagonal. The remaining elements are close to zero. In contrast
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A′′
opt is a full matrix. This results in completely different

(pre)coding properties of Ğ′ and Ğ′′. Ğ′ can be regarded

as the natural perfecting of G and is constructed such that the

energy of one data symbol is mainly (however, not exclusively)

spread locally. In contrast Ğ′′ spreads the energy of each data

symbol approximately uniformly over the codeword c̃. While

Ğ′ and Ğ′′ perform identically in an AWGN environment the

discussed differences lead to a quite different behavior of Ğ′

and Ğ′′ in frequency selective environments. We will exem-

plify these differences and the consequences in the simulation

section.

Example 2: We apply the system parameters as in Example 1

and investigate the mean power levels for all individual subcar-

riers for the case the non-systematic code generator matrix Ğ′

is applied. The mean power values for the codeword symbols

correspond to the diagonal elements of the covariance matrix

Cc̃c̃ = σ2
dĞ

′(Ğ′)H . Fig. 4 shows the power distribution over

all subcarrier symbols (additionally also including the zero

subcarrier symbols) again for the case the UW is the zero

word xu = 0 and for σ2
d = 1. We can clearly identify

Fig. 4. Mean power of individual subcarrier symbols for Example 2.

that our chosen optimality criterion also implies a significant

reduction of the power levels of the former redundant sub-

carriers compared to the original UW-OFDM approach; cf.

Fig. 2. Furthermore, it can be seen that the redundant energy

is now smeared over all subcarriers; consequently we can

no longer speak of data or redundant subcarriers. The power

levels are quite similar for all symbols, the only exceptions

are the two subcarrier symbols at the band edges. Due to

the normalization of Ğ′ such that (Ğ′)HĞ′ = I we have

tr{Cc̃c̃} = σ2
dtr{Ğ′(Ğ′)H} = σ2

dtr{(Ğ′)HĞ′} = Ndσ
2
d. In

Fig. 4 the sum over all mean power levels is therefore 36.

V. ON THE RELATIONSHIP BETWEEN UW-OFDM AND

UW-SC/FDE

With the help of a specific constructed code generator matrix

non-systematic coded UW-OFDM can be converted into a

UW-SC/FDE system. For that we assume for the moment

that no zero subcarriers are used, or B = I ∈ RN×N and

Nd = N − Nr, and we consider the matrix

ĞSC = FN

[
I

0

]
. (60)

ĞSC fulfills

ĞH
SCĞSC = NI and F−1

N BĞSC =

[
I

0

]
, (61)

and consequently constitutes an optimum code generator ma-

trix; cf. (54) and (55). Furthermore, it is apparent that ĞSC

generates a UW-SC/FDE signal with a zero UW xu = 0 since

the time domain symbol vector follows to

x = F−1
N BĞd̃ =

[
I

0

]
d̃ =

[
d̃

0

]
. (62)

Simulation results for a UW-SCFDE system in comparison

with systematic coded UW-OFDM can be found in [25].

VI. SIMULATION RESULTS

In this section we present a number of simulation results

to show the advantageous features of the developed non-

systematic coded UW-OFDM concept. In our simulations the

transmitter processing starts with optional (outer) channel

coding, interleaving and QAM-mapping (we apply QPSK

symbols unless specified otherwise). We used the same outer

convolutional encoder as defined in [30], and we show results

for (outer) coding rates r = 3/4 and r = 1/2, respectively.

Next the complex codewords are determined by either using

G, Ğ′ or Ğ′′. Here, Ğ′ and Ğ′′ are the particular code

generator matrices dicussed in Sec. IV-E. We note that the

(optional) outer convolutional code is a binary code while the

inner code described by G, Ğ′ or Ğ′′ is an RS code over

the field of complex numbers. The latter is naturally always

inherently present due to the proposed way of generating UW-

OFDM symbols with zero UWs at their tails. After applying

a code generator matrix, zero subcarriers are filled in, and the

IFFT (inverse fast Fourier transform) is performed. Finally, the

desired UW is added in time domain. At the receiver side the

processing for one OFDM symbol starts with an FFT, then

the influence of the UW (H̃BT x̃u) is subtracted; cf. (14)-

(15). Next the data estimation is applied. Finally demapping,

deinterleaving and (outer) channel decoding are performed.

For the applied soft decision Viterbi channel decoder the

main diagonal of the appropriate matrix Cẽẽ is used to

specify the (in case of transmitting over frequency selective

channels) varying noise variances along the subcarriers after

data estimation.

A. Simulation Setup

We compare our UW-OFDM approaches with the classical

CP-OFDM concept. The IEEE 802.11a WLAN standard [30]

serves as reference system. We apply the same parameters for

UW-OFDM as in [30] wherever possible, the most important

parameters used in our simulations are specified in Table I.

The sampling frequency has been chosen to be fs = 20MHz.

As in [30] the indices of the zero subcarriers within an OFDM

symbol x̃ are set to {0, 27, 28,...,37}. The indices of the

redundant subcarriers are chosen to be {2, 6, 10, 14, 17, 21,

24, 26, 38, 40, 43, 47, 50, 54, 58, 62} as already discussed

in the Example 1 in Sec. II. Note that in conventional CP-

OFDM like in the WLAN standard, the total length of an
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TABLE I
MAIN PHY PARAMETERS OF THE INVESTIGATED SYSTEMS.

802.11a UW-OFDM

Modulation schemes QPSK, 16QAM QPSK, 16QAM

Coding rates (outer code) 1/2, 3/4 1/2, 3/4

Occupied subcarriers 52 52

Data subcarriers 48 36

Additional subcarriers 4 (pilots) 16 (redundant)

DFT period 3.2 µs 3.2 µs

Guard duration 800 ns (CP) 800 ns (UW)

Total OFDM symbol duration 4 µs 3.2 µs

Subcarrier spacing 312.5 kHz 312.5 kHz

Fig. 5. Power spectral density comparison: CP-OFDM, UW-OFDM using

G (systematic coded), Ğ′ (non-systematic coded - case 1) and Ğ′′ (non-
systematic coded - case 2).

OFDM symbol is given by TDFT + TGI . However, the guard

interval is part of the DFT period in the UW-OFDM approach

which leads to significantly shorter total symbol durations. It

is therefore important to mention that the compared systems

show (almost) identical bandwidth efficiencies.

Note that in the IEEE 802.11a standard 4 pilot subcarriers

are specified. Those are used for estimation and synchro-

nization purposes at the receiver side. In our UW-OFDM

approaches we omitted these pilots, because the unique word,

which is deterministic, shall (at least) take over the estimation

and synchronization tasks which are normally performed with

the help of the 4 pilot subcarriers. In order to make a fair

BER performance comparison, the energy of the UW related

to the total mean energy of a transmit symbol is set to 4/52

in our BER simulations. This exactly corresponds to the total

energy of the 4 pilots related to the total mean energy of a

transmit symbol in the IEEE standard. As UW we applied a

linear chirp sequence exhibiting the same bandwidth as the

data signal, and featuring a constant envelope in time domain

and approximately a constant envelope in frequency domain.

However, the particular shape of the UW has no impact on

the BER behavior; cf. [2].

B. Power Spectral Density

Fig. 5 shows the estimated power spectral densities (PSDs)

of simulated UW-OFDM bursts and of a CP-OFDM burst.

For all cases we simulated a burst composed of a preamble

(in all cases the IEEE 802.11a preamble), and a data part

consisting of 1000 bytes of data. We used an outer channel

code with coding rate r = 1/2. For the UW-OFDM concepts

(G, Ğ′, Ğ′′) we exceptionally applied the zero UW for

these PSD investigations. Note that we did not use any

additional filters for spectral shaping. Fig. 5 clearly shows that

the UW-OFDM spectra feature a significantly better sidelobe

suppression compared to the CP-OFDM spectrum. The out-of-

band emissions generated by G and Ğ′ are more than 15dB

below the emissions of the CP-OFDM system. The emissions

are even notably lower for Ğ′′. Furthermore, the spectra for

Ğ′ and Ğ′′ feature an extremely flat in-band region compared

to systematic coded UW-OFDM. This can be explained by

the fact, that for the systematic coded case the mean power

strongly varies between data and redundant subcarriers, cf. Fig.

2, while all subcarriers (except the ones at the band edges)

show almost equal power in the non-systematic case.

C. BER Simulation Results with Perfect Channel Knowledge

We will now show BER simulation results for the AWGN

channel as well as for frequency selective environments. To

avoid confusions in the figures we at first only use Ğ′ for the

non-systematic coded UW-OFDM system, and at the end of

the section we will then also show and interpret results for

Ğ′′. Perfect channel knowledge at the receiver is assumed in

all simulations.

1) Results for the AWGN case: Clearly, OFDM is designed

for data transmission in frequency selective environments.

Nevertheless, we start our comparison with simulation re-

sults in the AWGN channel, since we optimized the non-

systematic code generator matrices for that case. In Fig. 6

the BER behavior of the IEEE 802.11a CP-OFDM based

standard, and of both, the systematic coded (G) and the non-

systematic coded (Ğ′) UW-OFDM approach are compared

under AWGN conditions. No outer code is used for these

simulations. Simulation results are provided for the BLUE

and for the LMMSE data estimator, respectively. For the sys-

tematic coded system additional results for a simple channel

inversion (CI) receiver (E =
[
I 0

]
H̃−1) are included for

comparison reasons. For the systematic coded UW-OFDM

system it can be observed that the BLUE and the LMMSE

estimator clearly outperform the CI receiver, and the LMMSE

estimator performs slightly better than the BLUE. For non-

systematic coded UW-OFDM we only plotted one single curve

since the BLUE and the LMMSE data estimator perform

completely identical. This is somewhat surprising since the

error variances after data estimation are not identical; cf. (50)

and (57). However, we found that in the AWGN case the

QPSK symbol estimates of the BLUE and of the LMMSE

data estimator always lie in the same decision region of the

constellation diagram, and the difference in the error variances

does not translate into a difference in the BER performance. To

give some numbers we compare the performances at a bit error
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Fig. 6. BER comparison between the UW-OFDM approaches (G and Ğ
′)

and the CP-OFDM system in the AWGN channel (QPSK).

ratio of 10−6. Systematic coded UW-OFDM performs slightly

worse compared to the CP-OFDM reference system, the non-

systematic coded UW-OFDM system outperforms CP-OFDM

by 1dB and systematic coded UW-OFDM (with LMMSE

data estimation) by 1.6dB, respectively. We consider this as

a remarkable performance of the novel non-systematic coded

UW-OFDM system.

2) Results for frequency selective environments (G, Ğ′):

We now turn to results in frequency selective indoor envi-

ronments. Since the LMMSE estimator always outperforms

the BLUE in dispersive channels we only concentrate on the

LMMSE estimator in the following. For the simulation of

indoor multipath channels we applied the model described

in [32], which has also been used during the IEEE 802.11a

standardization process. The channel impulse responses are

modeled as tapped delay lines, each tap with uniformly dis-

tributed phase and Rayleigh distributed magnitude, and with

power decaying exponentially. The model allows the choice

of the channel delay spread. For the following simulations we

have generated and stored 5000 realizations of channel impulse

responses, all featuring a delay spread of 100ns and a total

length not exceeding the guard interval duration. Furthermore,

the channel impulse responses have been normalized such that

the receive power is independent of the actual channel. The

subsequent figures represent BER results averaged over that

5000 channel realizations.

We start with simulation results for the case no outer code

is used; cf. Fig. 7. The gain achieved by systematic coded

UW-OFDM over CP-OFDM is already remarkable. Besides

the coding gain achieved by G together with the LMMSE

data estimator this mainly comes from the fact, that due

to the dispersive preprocessing property of G data symbols

corresponding to deep fading holes in the channel’s frequency

response can still be detected reasonably, since portions of

these data symbols are also available at redundant subcarriers.

Further, the non-systematic coded UW-OFDM system outper-

Fig. 7. BER comparison between the UW-OFDM approaches (G and Ğ
′)

and the CP-OFDM system in a frequency selective environment w/o outer
coding (QPSK).

Fig. 8. BER comparison between the UW-OFDM approaches (G and

Ğ′) and the CP-OFDM system in a frequency selective environment with
additional outer coding (QPSK).

forms the systematic coded one by another 1.6dB, even though

Ğ′ has been optimized for the AWGN channel case.

Next we present simulation results for the case the ad-

ditional outer channel code is used; cf. Fig. 8. For both

outer coding rates the UW-OFDM approaches outperform CP-

OFDM, and non-systematic coded UW-OFDM shows by far

the best performance. The gains of non-systematic coded UW-

OFDM over CP-OFDM at a bit error ratio of 10−6 are 1.9dB

and 1.7dB for r = 3
4 and r = 1

2 , respectively, the gains over

systematic coded UW-OFDM are 1.1dB for both coding rates.

Similar tendencies can also be observed in case 16QAM

symbols are applied as modulation alphabet; cf. Fig. 9. Non-

systematic coded UW-OFDM again significantly outperforms

CP-OFDM by 1.6dB and 1.3dB for r = 1
2 and r = 3

4 ,
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Fig. 9. BER comparison between the UW-OFDM approaches (G and

Ğ′) and the CP-OFDM system in a frequency selective environment with
additional outer coding and 16QAM as modulation alphabet.

respectively (again measured at a bit error ratio of 10−6).

However, the gain of systematic coded UW-OFDM over CP-

OFDM shrinks to 0.2dB for r = 1
2 , and even turns to a loss

of 0.5dB for r = 3
4 . Consequently and quite remarkably, the

achieved gain of Ğ′ over G turns out to be notably larger in

case of 16QAM compared to QPSK modulation.

3) Results for frequency selective environments (Ğ′, Ğ′′):

Finally we compare the performance of the two different

derived code generator matrices Ğ′ and Ğ′′. We can state

that in the AWGN channel they feature exactly the same

performance. This was expected since every optimum code

generator matrix shows the same error covariance matrix

for the AWGN case. However, they feature quite a different

behavior in dispersive channels. In Sec. IV-E we already

discussed the different structures of Ğ′ and the particularly

chosen Ğ′′. We remind the reader that Ğ′ is constructed

such that the energy of one data symbol is mainly (however,

not exclusively) spread locally. Ğ′ can be regarded as the

natural perfecting of G. In contrast Ğ′′ spreads the energy of

each data symbol approximately uniformly over the codeword

c̃. From this point of view the system with Ğ′′ behaves

comparable to a single carrier system, where the energy of

each individual QAM symbol is also approximately uniformly

distributed over the whole bandwidth. In contrast the system

with Ğ′ still rather shows more similarity to classical OFDM,

where a subcarrier exactly corresponds to one QAM symbol.

Fig. 10 shows that Ğ′′ features extremely good performance

without an outer code, it significantly outperforms Ğ′ in that

case. For a coding rate of r = 3
4 , Ğ′′ still performs slightly

better than Ğ′, while for r = 1
2 , Ğ′ clearly outperforms

Ğ′′. The coding gain achieved by a strong outer code in a

frequency selective channel is high for Ğ′ as it might be

expected for a system rather related to classical OFDM, while

it is comparably low for Ğ′′ with its particular dispersive

preprocessing properties making the transceiver rather behave

Fig. 10. Comparison of the different non-systematic coded UW-OFDM

systems: Ğ′ versus Ğ′′ (QPSK).

like a single carrier system.

D. BER Simulation Results for Imperfect Channel Knowledge

Up till now we have presented performance results assuming

perfect channel knowledge at the receiver. In this subsec-

tion we investigate the effect of channel estimation errors

on the BER performance. Since in UW-OFDM the channel

H̃ is incorporated into the receiver processing quite in a

different way as in CP-OFDM, it is not immediately obvious

whether channel estimation errors will degrade the systems’

BER performance in the same scale. While in CP-OFDM

the data estimator is simply given by E = H̃−1, possible

data estimators for UW-OFDM are given by (20) and (22),

respectively. H̃ is usually replaced by an estimated version
̂̃
H, which has a degrading impact on the BER performance.

In UW-OFDM channel estimation errors have an additional

impact, namely in the processing step where the influence of

the UW is subtracted from the received symbol; cf. (14)-(15).

To investigate the influence of channel estimation errors we

apply a standard preamble based channel estimation procedure,

which we briefly describe below. We use the IEEE 802.11a

preamble defined in [30]. This preamble contains two identical

BPSK (binary phase shift keying) modulated OFDM symbols

(preceded by a guard interval) dedicated to channel estimation

which we denote by xp = xp1
= xp2

∈ CN×1. Note

that for the downsized frequency domain version x̃p,d =
BTFNxp we have x̃p,d ∈ {−1, 1}(Nd+Nr)×1. Let yp1

and

yp2
be the received noisy preamble symbols, and let ˜̄yp,d =

1
2B

TFN (yp1
+yp2

). Then a first course unbiased estimate of

the vector of channel frequency response coefficients naturally

follows as

̂̃
h1[k] =

˜̄yp,d[k]

x̃p,d[k]
= ˜̄yp,d[k]x̃p,d[k] (63)

for k = 0, ..., (Nd + Nr − 1). The latter step is true since

x̃p,d[k] ∈ {−1, 1}. This course channel estimate can be



13

significantly improved or rather noise reduced by making the

usually valid assumption that the channel impulse response

does not exceed the guard duration Nu. With the vector of

channel impulse response coefficients h ∈ CNu×1 and its zero

padded version hc ∈ CN×1, respectively, this assumption can

be incorporated by modelling the course channel estimate as

̂̃
h1 = BTFNhc + ñ

= BTFN

[
h

0

]
+ ñ, (64)

where ñ ∈ C(Nd+Nr)×1 represents a white Gaussian (fre-

quency domain) noise vector. By decomposing the DFT matrix

as FN =
[
M1 M2

]
with M1 ∈ CN×Nu and M2 ∈

CN×(N−Nu), (64) can be rewritten as

̂̃
h1 = BTM1h + ñ. (65)

From the linear model in (65) the MVU estimator of the

channel impulse response follows to

ĥ =
(
MH

1 BBTM1

)−1
MH

1 B
̂̃
h1, (66)

cf. [31]. Going back to frequency domain, and again excluding

the zero subcarriers from further operation, delivers the final

and highly noise reduced frequency domain channel estimate

̂̃
h2 = BTFN

[
ĥ

0

]

= BTM1

(
MH

1 BBT M1

)−1
MH

1 B
︸ ︷︷ ︸

W

̂̃
h1. (67)

Note that the smoothing matrix W ∈ C(Nd+Nr)×(Nd+Nr)

does not depend on the channel, and has to be calculated only

once during system design. The preamble based estimate of

the channel matrix is therefore given by
̂̃
H = diag{

̂̃
h2}.

Fig. 11 compares the performance loss of CP-OFDM and

non-systematic coded UW-OFDM (Ğ′) in case the described

preamble based channel estimate given by (67) is used instead

of perfect channel knowledge. As a highly interesting result

we notice that both systems degrade by about the same scale:

CP-OFDM experiences a loss of 0.8dB for r = 1/2 and 0.6dB

for r = 3/4, respectively (all results again measured at a BER

of 10−6), while the performance of UW-OFDM degrades by

0.7dB for both coding rates.

VII. CONCLUSION

In this work we expanded our recently introduced systematic

coded UW-OFDM concept to non-systematic coded UW-

OFDM. For that we introduced optimized code generator

matrices that distribute the redundancy over all subcarriers

instead of only over a dedicated set. We derived optimization

criteria to find a class of code generator matrices that in

case of AWGN conditions ensure minimum error variances

on the subcarriers after the estimation process at the receiver.

However, due to the advantageous combination of the channel

coding and dispersive preprocessing abilities of the optimized

code generator matrices, non-systematic coded UW-OFDM

Fig. 11. Impact of imperfect channel estimation on the BER performance
of CP-OFDM and non-systematic coded UW-OFDM (G′) in a frequency
selective environment with additional outer coding (QPSK).

particularly features its superior performance in frequency

selective channels. We showed simulation results for selected

code generator matrices in the AWGN case as well as in fre-

quency selective environments. It turns out that non-systematic

coded UW-OFDM impressively outperforms systematic coded

UW-OFDM and classical CP-OFDM w.r.t. the spectral and the

bit error ratio behavior.
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APPENDIX A

DERIVATION OF THE GLOBAL MINIMUM OF JBLUE

In Appendix A we proof that the gradient of the

cost function JBLUE with respect to the vector s =[
s1 s2 · · · sNd

]T
of singular values of Ğ is zero if and

only if all singular values are identical. And we proof that

every local minimum of the cost function JBLUE is also a

global minimum with JBLUE,min = σ2
dNd/c. Using the SVD

in (51) we have

tr{ĞHĞ} = tr{VΣHUHUΣVH} = tr{VD2VH}

= tr{D2}, (68)

(ĞHĞ)−1 = (VΣHUHUΣVH)−1 = (VD2VH)−1

= V(D2)−1VH . (69)
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Inserting (68) and (69) into (30) leads to the following

expression for the cost function

JBLUE =
σ2

d

cNd
tr{D2}tr

{
V(D2)−1VH

}

=
σ2

d

cNd
tr{D2}tr

{
(D2)−1

}

=
σ2

d

cNd

(
s2
1 + s2

2 + · · · s2
Nd

)
(

1

s2
1

+
1

s2
2

+ · · ·
1

s2
Nd

)
,

(70)

which can now be regarded as a function of the singular values

of Ğ. The gradient of JBLUE with respect to s follows to

∂JBLUE

∂s
=

2σ2
d

cNd
×

×





s1

(
1
s2

1

+ · · · 1
s2

N
d

)
− s−3

1

(
s2
1 + · · · s2

Nd

)

...

sNd

(
1
s2

1

+ · · · 1
s2

N
d

)
− s−3

Nd

(
s2
1 + · · · s2

Nd

)




.

(71)

Setting the gradient to zero leads to the system of equations

s4
1

(
1

s2
1

+ · · ·
1

s2
Nd

)
= s2

1 + · · · s2
Nd

...

s4
Nd

(
1

s2
1

+ · · ·
1

s2
Nd

)
= s2

1 + · · · s2
Nd

. (72)

It is easy to see that s1 = s2 = · · · sNd
:= s solves

the system of equations. Furthermore, by subtracting the ith

equation from the jth equation for all i, j ∈ {1, ..., Nd}
with i 6= j it immediately follows that s1 = s2 = · · · sNd

is in fact the only solution to this system of equations.

Consequently, every possible candidate Ğ for a local minimum

satisfies ĞHĞ = s2I (cf. (52) and its implications). Inserting

ĞHĞ = s2I into the cost function (30) leads to the same

expression as in (48) that corresponds to the numerically found

local minima. Hence, every Ğ fulfilling ĞHĞ = s2I results

in the same (and minimum) value JBLUE,min = σ2
dNd/c which

therefore constitutes the global minimum of the cost function.

APPENDIX B

DERIVATION OF THE GLOBAL MINIMUM OF JLMMSE

In Appendix B we proof that ∂JLMMSE/∂s = 0 if and only

if all singular values are identical. And we proof that every

local minimum of the cost function JLMMSE is also a global

minimum with JLMMSE,min = σ2
dNd/(c+1). Inserting (68) and

(69) into (36) leads to the following expression for the cost

function

JLMMSE = σ2
dtr

{(
cNd

tr{D2}
VD2VH + I

)−1
}

, (73)

which can be regarded as a function of the singular values

of Ğ. Applying the matrix inversion lemma we immediately

obtain

JLMMSE = σ2
dtr

{
I − V

(
VHV +

tr{D2}

cNd
(D2)−1

)−1

VH

}

= σ2
d

(
Nd − tr

{(
I +

tr{D2}

cNd
(D2)−1

)−1
})

.

(74)

With this step we achieved, that every matrix to be inverted

in (74) has a diagonal structure. Having in mind that D2 is a

diagonal matrix with the squared singular values of Ğ on its

main diagonal, and after some rearrangements we obtain

JLMMSE = σ2
dNd − σ2

dcNd

Nd∑

i=1

s2
i

cNds2
i + tr{D2}

. (75)

The partial derivation of the cost function JLMMSE with respect

to the jth singular value follows to

∂JLMMSE

∂sj
= −2σ2

dcNdsj×

×
∑

{i:i6=j}

[
s2

i

(cNds2
j + tr{D2})2

−
s2

i

(cNds2
i + tr{D2})2

]
.

(76)

It is easy to see that ∂JLMMSE/∂sj = 0 is fulfilled if si = sj

for all i ∈ {1, ..., Nd} with i 6= j. In fact s1 = · · · = sNd
= s

is the only solution to ∂JLMMSE/∂s = 0. This can be proved

by subtracting the equations resulting from ∂JLMMSE/∂si = 0
and ∂JLMMSE/∂sj = 0 for all i 6= j, which is not difficult but

a kind of exhausting. The remaining argumentation coincides

with the one for the BLUE in Appendix A. However, the

expression for the global minimum JLMMSE,min = σ2
dNd/(c+1)

which is obtained by inserting ĞHĞ = s2I into (36) differs

from JBLUE,min.
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