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Abstract—Unique word orthogonal frequency division multi-
plexing (UW-OFDM) inherently introduces a complex number
Reed Solomon (RS) code. Originally, the code generator matrix of
systematic coded UW-OFDM had been designed rather intuitively
by minimizing the mean redundant energy. In this work we
justify this approach by applying a cost function that incorporates
the overall transceiver chain including a linear minimum mean
square error (LMMSE) data estimator. In addition to the
LMMSE estimator we investigate a nonlinear sphere detection
(SD) receiver for both systematic and nonsystematic coded UW-
OFDM. We study and interpret the estimators’ performance and
their diverse ability to exploit the redundant energy.

Index Terms—OFDM, Unique word OFDM (UW-OFDM),
Cyclic prefix (CP), Minimum mean square error (MMSE), Sphere
detection (SD).

I. INTRODUCTION

In [1]-[3] we introduced an orthogonal frequency division

multiplexing (OFDM) signaling scheme, where the usual

cyclic prefixes (CPs) are replaced by deterministic sequences,

that we call unique words (UWs). Different as in KSP (known

symbol padding)-OFDM [4] the UWs are part of the discrete

Fourier transform (DFT)-interval, which requires a certain

level of redundancy in frequency domain. In [1] we proposed

to generate UW-OFDM symbols by appropriately loading a set

of dedicated redundant subcarriers. This process introduces a

systematic Reed Solomon (RS) code over the field of complex

numbers (instead of a finite field as usual). We optimized

the positions of the redundant subcarriers by minimizing their

mean energy contribution which leads to an improved bit error

ratio (BER) performance. However, this original UW-OFDM

concept still suffers from a disproportionately high energy

contribution of the redundant subcarriers. In [5] we solved this

problem by introducing a nonsystematic complex number RS

code construction. The idea of dedicated redundant subcarriers

is abandoned, and the redundancy is distributed across all sub-

carriers. In [5], the code generator matrix has been chosen to
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be optimally matched to the linear minimum mean square error

(LMMSE) data estimation procedure. Nonsystematic coded

UW-OFDM in combination with LMMSE data estimation has

been shown in [5] to significantly outperform classical OFDM

and the original systematic coded UW-OFDM.

In the present paper we show, that minimizing the mean

redundant energy in systematic coded UW-OFDM is in fact

also optimum in the sense that the sum of the error variances

after an LMMSE data estimation is minimized. Furthermore,

we compare the LMMSE estimator with a sphere detector (SD)

for both systematic and nonsystematic coded UW-OFDM. It

turns out, that under AWGN conditions the SD optimally

exploits the excess of redundant energy in systematic coded

UW-OFDM, and it asymptotically reaches the performance

of nonsystematic coded UW-OFDM, for which the LMMSE

estimator and the SD perform equivalently. In frequency

selective environments nonsystematic coded UW-OFDM in

combination with an SD inherently exploits the diversity

offered by the channel most effectively.

II. REVIEW OF UW-OFDM

A. Transmit Symbol Generation

In the following we use a tilde to express frequency domain

vectors and matrices (ã, Ã,...), respectively. Let xu ∈ CNu×1

be a predefined sequence which we call unique word. This

unique word shall form the tail of each OFDM time domain

symbol vector. Hence, an UW-OFDM time domain symbol

vector of length N consists of two parts and is of the form[
xT

d xT
u

]T
, at which only xd ∈ C(N−Nu)×1 is random

and affected by the data. Following [2], we generate the

time domain symbol x =
[
xT

d 0T
]T

with a zero UW

in a first step, and we determine the final transmit symbol

x′ = x +
[
0T xT

u

]T
by adding the desired UW in time

domain in a second step. As in conventional OFDM, the QAM

data symbols (denoted by the vector d̃ ∈ CNd×1) and the

zero subcarriers (usually at the band edges and at DC) are

specified as part of the frequency domain vector x̃, but here

in addition the zero-word is specified in time domain as part of

the vector x = F−1
N x̃. FN denotes the length-N -DFT matrix

with elements [FN ]kl = e−j 2π

N
kl for k, l = 0, 1, ..., N−1. The

generation of the zeros in the time domain requires a certain

level of redundancy in the frequency domain. For this purpose

we define codewords c̃ ∈ C(Nd+Nr)×1 with Nr = Nu by

c̃ = Gd̃, (1)
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where G ∈ C(Nd+Nr)×Nd depicts a complex valued code

generator matrix. Furthermore, we model the insertion of the

zero subcarriers by x̃ = Bc̃, where B ∈ {0, 1}N×(Nd+Nr)

consists of zero-rows at the positions of the zero subcarriers,

and of appropriate unit row vectors at the positions of occupied

subcarriers. With these definitions the system of equations

F−1
N x̃ = x takes on the form F−1

N BGd̃ =
[
xT

d 0T
]T

.

Consequently, in order that the zero UW is generated for every

possible data vector d̃, G has to fulfill the constraint

F−1
N BG =

[
∗
0

]
. (2)

With the frequency domain version of the UW x̃u =

FN

[
0T xT

u

]T
the transmit symbol can finally be written as

x′ = F−1
N (BGd̃ + x̃u). (3)

In our original UW-OFDM concept in [1]-[2] we chose

G = P

[
I

T

]
(4)

with a carefully selected permutation matrix P ∈
{0, 1}(Nd+Nr)×(Nd+Nr) and with T ∈ CNr×Nd . In this ap-

proach the frequency domain symbol follows to x̃ = BGd̃ =

BP
[
d̃T r̃T

]T
, where the vector of dedicated redundant

subcarriers is given by r̃ = Td̃. By using (4) the constraint

in (2) can be re-written as

F−1
N BP

[
I

T

]
=

[
∗
0

]
. (5)

With M = F−1
N BP =

[
M11 M12

M21 M22

]
, where Mij are appro-

priate sized sub-matrices, (5) is fulfilled by choosing T =
−M−1

22 M21. However, the choice of the permutation matrix P

which defines the positions of the dedicated data and redundant

subcarriers turns out to be a highly critical design aspect. We

will discuss this problem in detail in Sec. II-C. We further

note, that G as in (4) can be interpreted as the code generator

matrix of a systematic Reed Solomon code over the field of

complex numbers (instead of a finite field as usual), cf. [5].

B. Data Estimation

After the transmission over a dispersive channel a received

frequency domain UW-OFDM symbol (after elimination of

the zero subcarriers) can be modeled as

ỹd = H̃Gd̃ + H̃BT x̃u + BTFNn, (6)

cf. (3). A detailed derivation of (6) can e.g. be found in [5].

H̃ ∈ C(Nd+Nr)×(Nd+Nr) denotes the diagonal channel matrix

which contains the sampled channel frequency response on

its main diagonal, and n ∈ C
N×1 represents a zero-mean

Gaussian (time domain) noise vector with covariance matrix

σ2
nI. Note that H̃BT x̃u represents a known portion contained

in the received vector ỹd originating from the UW. As a first

step of the receiver processing we therefore subtract the UW

influence (assuming that the channel matrix H̃ or at least an

estimate of it is available) to obtain the corrected symbol ỹ =
ỹd − H̃BT x̃u in the form of the linear model

ỹ = H̃Gd̃ + ṽ, (7)

with the noise vector ṽ = BTFNn. ỹ serves as the input of the

data estimation procedure. The most common data estimator is

the linear minimum mean square error estimator. The LMMSE

data estimate can be found to be

̂̃
dLMMSE = (GHH̃HH̃G +

Nσ2

n

σ2

d

I)−1GHH̃H ỹ, (8)

where a zero-mean QAM data vector with the covariance

matrix σ2
dI is assumed, cf. [3]. The covariance matrix of the

error ẽ = d̃−
̂̃
d is

Cẽẽ = Nσ2
n(GHH̃HH̃G +

Nσ2

n

σ2

d

I)−1. (9)

The overall transceiver performance can generally further be

improved by applying nonlinear data estimation principles.

For equiprobable data sequences an optimum receiver is

the maximum likelihood sequence estimator (MLSE) which

selects the data vector that minimizes the Euclidean distance

between the actually received vector ỹ and each possible noise

free receive symbol vector (for a given H̃):

̂̃
dMLSE = arg min

d̃∈AN
d

∥∥∥H̃Gd̃ − ỹ

∥∥∥
2

2
(10)

Here, A denotes the chosen QAM alphabet. The MLSE

solution can efficiently (on average) be implemented with the

sphere detection approach which is a well known method usu-

ally applied in multiple antenna systems. To enable SD, a QR-

decomposition H̃G = Q [R
0

] =
[
Q1 Q2

]
[ R
0

], with unitary

Q ∈ C(Nd+Nr)×(Nd+Nr) and upper triangular R ∈ CNd×Nd

is required. It can immediately be shown that the optimization

problem in (10) can be re-written as

̂̃
dMLSE = arg min

d̃∈AN
d

∥∥∥Rd̃− ỹ′

∥∥∥
2

2
, (11)

where ỹ′ = QH
1 ỹ. The representation in (11) allows the

application of the tree-search based SD approach. In this work

we used a slightly adapted version of the Schnorr-Euchner

strategy described in [6].

C. Finding the Optimum Permutation Matrix

In [1] we suggested to choose the permutation matrix P

such that the mean redundant energy becomes minimum.

To motivate this approach we first discuss the mean OFDM

symbol energy Ex′ = E[x′Hx′] which can easily be calculated

to

Ex′ =
σ2

d

N
tr{GHG} + xH

u xu (12)

=
1

N

(
Ndσ

2
d︸ ︷︷ ︸

E
d̃

+ σ2
dtr{TTH}︸ ︷︷ ︸

Er̃

)
+ xH

u xu︸ ︷︷ ︸
Exu

. (13)

In the latter step we used GHG = I+THT, cf. (4).
E

d̃

N
and

Er̃

N
describe the contributions of the data and the redundant

subcarrier symbols to the mean transmit symbol energy before

the addition of the UW, respectively, and Exu
describes the

contribution of the UW. Note that T and thus also Er̃ depend

on P. Er̃ can take on extremely high values for inappropriate
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choices of P, a disadvantageous option is e.g. P = I. In [1] we

therefore decided to choose P by minimizing the cost function

JE =
Er̃

N
=

σ2
d

N
tr

{
TTH

}
. (14)

We solved this discrete optimization problem by means of

a heuristic approach. The solver computes the optimum P

within a few seconds (of course depending on N ) using e.g.

Matlab on a standard PC. In Sec. IV we give an example of

the redundant subcarrier distribution that minimizes JE for a

specific parameter setup.

The BER simulation results in [1] confirmed that this ap-

proach leads to an excellent system performance. Nevertheless,

the cost function JE only takes the transmit symbols’ (mean)

energy into account and the question arises whether this choice

is effectively optimum in terms of the overall transceiver

performance. We now regard a different cost function which

focuses on the system performance including the data estima-

tion at the receiver. We assume that the LMMSE estimator is

used since its error covariance matrix is available in closed

form. A possible measure of the overall system performance

is the sum of the error variances after the data estimation.

From (9) it becomes clear that this measure would depend

on the particular channel instance H̃. We are aiming to design

the code generator matrix G (which is unambiguously defined

by the choice of P) only once during system design, and we

therefore look for a cost function for H̃ = I, that is the AWGN

channel case. With (9) the sum of the error variances then

becomes

tr{Cẽẽ} = Nσ2
ntr

{
(GHG +

Nσ2

n

σ2

d

I)−1
}

. (15)

Let Es = E
x′

Nd

denote the mean energy per data symbol. For

a fair performance comparison of different code generator

matrices G (or equivalently of different matrices P) we fix

the ratio c = Es

σ2
n

during the optimization. By applying (12)

with the assumption of a zero UW our cost function finally

reads

JLMMSE = σ2
dtr

{(
cNd

tr{GHG}
GHG + I

)−1
}

(16)

= σ2
dtr

{(
cNd

Nd + tr{TTH}
(THT + I) + I

)−1
}

.

(17)

For the minimization of JLMMSE as in (17) we can use the

same heuristic solver as for the minimization of JE, we only

have to exchange the cost function. For the example in Sec.

IV optimum permutation matrices have been determined by

minimizing JE and JLMMSE, respectively. It is of great interest

that solving the two different optimization problems leads

to the same P. Apparently, the more intuitive approach of

minimizing the mean redundant energy which has been used

in [1]-[2] was in fact a highly reasonable choice.

III. NONSYSTEMATIC CODED UW-OFDM

Recently, in [5] we introduced the so-called nonsystematic

coded UW-OFDM concept, where we proposed a code gen-

erator matrix Ğ that allows to distribute the redundancy over

all subcarriers instead of only dedicated ones. For that purpose

we model the code generator matrix as

Ğ = A

[
I

T̆

]
, (18)

where the non-singular real matrix A ∈ R
(Nd+Nr)×(Nd+Nr)

replaces P, cf. (4). Thus, the constraint in (2) becomes

F−1
N BA

[
I

T̆

]
=

[
∗
0

]
. (19)

With M̆ = F−1
N BA =

[
M̆11 M̆12

M̆21 M̆22

]
the constraint in (19) is

fulfilled by choosing T̆ = −M̆−1
22 M̆21. In [5] we aimed at

finding a generator matrix Ğ that minimizes the sum of the

error variances after LMMSE data estimation for H̃ = I at

a fixed c = Es

σ2
n

. This clearly leads to the same cost function

as in (16), we only have to substitute G by Ğ. Note, that

JLMMSE has now to be treated as a function of the real valued

matrix A instead of the permutation matrix P. The solution to

this optimization problem is ambiguous. In [5] we have shown

that every solution fulfills ĞHĞ = s2I, where s corresponds

to the all identical singular values of Ğ. Furthermore, and

different to the systematic coded case the error covariance

matrix after LMMSE data estimation in the AWGN channel

becomes diagonal:

Cẽẽ =
σ2

d

c + 1
I (20)

Particular solutions of the optimization problem can e.g. be

found by applying the steepest descent algorithm. In [5] we

chose the initialization A(0) = P which implies T̆(0) = T and

Ğ(0) = P
[
I TT

]T
= G. The iterative optimization process

consequently starts with the code generator matrix G of the

systematic coded UW-OFDM concept, which can be assumed

to be a good initial guess. In correspondence to [5] we denote

the resulting optimum code generator matrix with Ğ′.

IV. SIMULATION RESULTS

The parameters of our simulated system are adapted to

current wireless local area network (WLAN) standards and

are as follows: N = 64, Nd = 36, Nr = Nu = 16, sampling

frequency fs = 20MHz, DFT period TDFT = 3.2µs, guard

duration TGI = 800ns. The index set of the zero subcarriers is

{0, 27, 28,...,37}, and the optimum index set for the redundant

subcarriers minimizing JE is {2, 6, 10, 14, 17, 21, 24, 26, 38,

40, 43, 47, 50, 54, 58, 62}. This choice can easily also be

described by appropriate matrices P and B, respectively. It is

a highly interesting observation that this choice of positions

of the redundant subcarriers also minimizes JLMMSE in (17).

The upper plot in Fig. 1 shows the mean power distribution

over the individual subcarriers for this parameter setup in case

the zero UW is used (which will be the case in all subsequent

simulation results). The optimized mean power values of the

redundant subcarrier symbols are the elements of the vector

σ2
ddiag

(
TTH

)
evaluated for the optimum P, cf. (13). It can

be observed that the mean power of the redundant subcarrier

symbols is still considerably higher than that of the data

symbols (σ2
d = 1). The lower plot in Fig. 1 shows the mean
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Fig. 1. Mean power of individual subcarrier symbols for G (systematic coded

UW-OFDM; above), and Ğ
′ (nonsystematic coded UW-OFDM; below).

Fig. 2. BER simulation results in the AWGN channel.

power distribution for the nonsystematic coded UW-OFDM

system, where G has been replaced by Ğ′. We can clearly

identify that Ğ′ implicates a significant mean power reduction

for subcarriers that corresponded to redundant symbols in the

original UW-OFDM approach. Furthermore, it can be seen that

the redundant energy is now smeared over all subcarriers.

Fig. 2 shows BER simulation results for the AWGN channel

(modulation: QPSK). We can observe, that in case the LMMSE

data estimator is used Ğ′ (nonsystematic RS code) clearly

outperforms G (systematic RS code), the gain at a BER of

10−6 is 1.7dB. For Ğ′ the SD and the LMMSE receiver show

the same performance. Consequently, in the AWGN channel

case the simple LMMSE estimator already represents the

optimum data estimator for nonsystematic coded UW-OFDM.

On the other hand, for the systematic coded system the SD data

estimator significantly outperforms the LMMSE estimator. The

SD is able to exploit the excess of redundant energy provided

by G compared to Ğ′. It is exciting to observe, that the

performance of the systematic coded system in combination

Fig. 3. BER simulation results in a frequency selective indoor environment.

with the SD receiver asymptotically reaches the performance

of the nonsystematic coded system.

Fig. 3 shows results for the frequency selective case. The

indoor channel impulse responses are modeled as tapped

delay lines, each tap with uniformly distributed phase and

Rayleigh distributed magnitude, and with power decaying

exponentially, cf. [7]. For each BER curve we averaged over

10000 random channel realizations, featuring (on average) an

rms delay spread of 100ns, and all being normalized such

that the receive power is independent of the actual channel.

Perfect channel knowledge is assumed at the receiver. For the

LMMSE estimator the gain of Ğ′ over G is comparable to

the AWGN channel result. However, different to the AWGN

case, the SD significantly improves the performance over the

LMMSE estimator for both, Ğ′ and G. For the SD receiver

Ğ′ outperforms G by 3.5dB at a BER of 10−6. Nonsystematic

coded UW-OFDM in combination with an SD consequently

exploits the diversity offered by frequency selective channels

most effectively.

Finally, it is worth to compare the UW-OFDM concepts

with traditional CP-OFDM. Clearly, UW-OFDM shows an

increased computational complexity, cf. [3], however, due

to the inherent RS code all discussed UW-OFDM versions

significantly outperform a comparable CP-OFDM system (Fig.

3 shows a simulation result of the CP-OFDM based IEEE

802.11a WLAN standard without outer channel coding), while

featuring an (almost) identical bandwidth efficiency.

V. CONCLUSION

In this work we compared the LMMSE data estimator and

the SD receiver for systematic and nonsystematic complex

number RS coded UW-OFDM systems. The characteristics of

the two estimators are discussed for the AWGN as well as for

frequency selective channels. Furthermore, our original code

generator matrix design approach for systematic coded UW-

OFDM is justified by the introduction and minimization of a

different cost function which focuses on the overall transceiver

performance rather than on the redundant energy.
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