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Abstract—Unique word - orthogonal frequency division multi-
plexing (UW-OFDM) is known to feature an excellent bit error
ratio performance when compared to conventional OFDM using
cyclic prefixes (CP). In recent papers linear and non-linear
UW-OFDM receivers have been investigated and compared for
proper data vectors consisting of QPSK and 16-QAM symbols.
In this work we derive the widely linear minimum mean square
error (WLMMSE) estimator for the application to UW-OFDM
in combination with real and therefore improper data vectors.
For the investigated modulation schemes BPSK and M-ASK our
simulation results indicate a significant performance gain of the
widely linear estimator over strictly linear methods.

Index Terms—Cyclic Prefix (CP), Unique Word (UW),
UW-OFDM, non-systematically encoded UW-OFDM, LMMSE,
WLMMSE.

I. INTRODUCTION

In [1]-[3] we introduced a block-based OFDM-like sig-

naling scheme, where the guard intervals are filled with a

deterministic sequence - the unique word (UW). For the gen-

eration of the unique words we introduced so-called redundant

subcarriers, see also [4]-[7]. In [8] the concept has been

generalized by allowing the redundancy to be spread over

all subcarriers. The resulting non-systematically encoded UW-

OFDM systems clearly outperform the originally introduced

systematically encoded approaches. At the price of higher

complexity the performance of the linear data estimators,

studied e.g. in [3], [8], can be further improved by non-linear

estimation approaches like sphere decoding, cf. [9]. Besides

the higher complexity most of the known non-linear estimation

schemes have the drawback, that soft information to be used

for channel decoding is very difficult to compute. Usually only

approximations can reasonably be derived, cf. [10]. However,

when real and therefore improper data vectors consisting of

BPSK or M-ASK symbols are used, the linear minimum mean

square error (LMMSE) estimator can also be outperformed by

the widely linear MMSE (WLMMSE) data estimator. Like the

strictly linear counterparts, WLMMSE estimation has the nice

feature that a closed form solution of the error covariance
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matrix exists, such that soft information for channel decoding

can easily be obtained.

The paper is organized as follows: In Section II we introduce

the basics of UW-OFDM, and we discuss the systematic as

well as the non-systematic symbol generation approaches.

The system model and linear data estimators are described

in Section III. In Section IV the WLMMSE estimator for real

data vectors is introduced, and finally simulation results and

performance discussions are given in Section V.

II. UNIQUE WORD OFDM BASICS

Let xu ∈ CNu×1 be a predefined sequence which we call

unique word. This unique word shall form the tail of each

time domain OFDM symbol vector. Hence, an OFDM time

domain symbol vector consists of two parts and is of the form

x′ =
[

xT
d xT

u

]T
∈ CN×1. In the concept suggested in [1],

[2] we generate an UW-OFDM symbol x =
[

xT
d 0T

]T
with

a zero UW in a first step, and determine the final transmit

symbol x′ = x +
[

0T xT
u

]T
by adding the desired UW in

time domain in a second step. As in conventional OFDM, the

QAM data symbols (denoted by the vector d ∈ CNd×1) and

the zero subcarriers (usually at the band edges and at DC)

are specified in frequency domain as part of the vector x̃, but

here in addition the zero-word is specified in time domain as

part of the vector x = F−1
N x̃. Here, FN denotes the length-

N -DFT matrix with elements [FN ]k,l = e−j 2π
N

kl for k, l =
0, 1, ..., N − 1. The system of equations x = F−1

N x̃ with the

introduced features can be fulfilled by introducing redundancy

in the frequency domain. We do that by defining codewords

c = Gd (1)

with the help of appropriate complex valued generator ma-

trices G ∈ C(Nd+Nr)×Nd , where Nr = Nu. The fre-

quency domain symbol x̃ is finally built by inserting the

zero-subcarriers which can be modeled by x̃ = Bc, where

B ∈ {0, 1}N×(Nd+Nr) consists of zero-rows at the positions

of the zero subcarriers, and of appropriate unit row vectors at

all other positions. To produce the zero-UW in time domain

a valid code generator matrix has to fulfill

F−1
N BG =

[

∗
0

]

. (2)

Note that F−1
N B is composed of those columns of F−1

N that

correspond to the non-zero entries of the OFDM frequency



domain symbol x̃. Let W ∈ C
Nr×(Nd+Nr) be the matrix built

by the Nr lowermost rows of F−1
N B. Then the constraint (2)

can also be formulated as

WG = 0, (3)

which says that the columns of a valid G have to lie in the

null space of W.

Since we focus on data estimation and not on system

parameter estimation or synchronization tasks in this paper the

particular shape of the UW is irrelevant for the investigations

below. We therefore assume xu = 0 from here on.

A. Systematically Encoded UW-OFDM

In our original UW-OFDM concept presented in [1]-[3] we

chose

G = P

[

I

T

]

, (4)

where P ∈ {0, 1}(Nd+Nr)×(Nd+Nr) is a (carefully selected)

permutation matrix, cf. [4]-[7], [9]. Let M = WP =
[

M1 M2

]

with M1 ∈ C
Nr×Nd and M2 ∈ C

Nr×Nr , then

the constraint (3) is fulfilled by choosing T = −M−1
2 M1 ∈

CNr×Nd . We call r = Td ∈ CNr×1 the vector of redundant

symbols. Hence, a codeword can be written as

c = P

[

d

r

]

. (5)

Consequently, this approach leads to codewords c with ded-

icated data and dedicated redundant elements. We therefore

refer to this approach as systematically encoded UW-OFDM.

B. Non-Systematically Encoded UW-OFDM

In [8] we introduced the concept of non-systematically

encoded UW-OFDM, where we propose code generator ma-

trices G that distribute the redundancy over all subcarriers.

We suggested to derive optimum code generator matrices

by minimizing the trace of the error covariance matrices of

the best linear unbiased estimator (BLUE) and the LMMSE

estimator, respectively, for the case H̃ = I (that is the AWGN

channel case) and for a fixed signal-to-noise ratio. In addition

the constraint (3) has to be fulfilled. It has been shown, that

both constrained optimization problems (for the BLUE and for

the LMMSE estimator) are globally solved by a matrix G if

and only if G fulfills (3) and

GHG = s2I, (6)

where s are the all identical singular values of G. It is

equivalent to say that a matrix is an optimum code generator

matrix if and only if the columns of G build an orthogonal

basis of the nullspace of W. In the following, we only consider

normalized optimum code generator matrices such that s2 = 1
or GHG = I. This normalization implies that the operation

c = Gd becomes energy-invariant. In [8] we found optimum

code generator matrices by choosing

G = A

[

I

T

]

, (7)

with a non-singular A ∈ R
(Nd+Nr)×(Nd+Nr). Let M now be

M = WA =
[

M1 M2

]

, then the constraint (3) is again

fulfilled by choosing

T = −M−1
2 M1. (8)

The optimization problems can therefore be treated as uncon-

strained problems in A, which can numerically be solved e.g.

with the steepest descent method. Different generator matrices

can be found by using different initializations for A. In the

simulations of this work we use a generator matrix which has

been derived by a random initialization of A. This particular

generator matrix, which has been discussed in detail in [8], is

denoted as G′′.

III. SYSTEM MODEL AND LINEAR DATA ESTIMATORS

As derived in detail in [1]-[3], after subtraction of a UW

depending portion (which becomes 0 for xu = 0), the

receive symbol ỹ ∈ C(Nd+Nr)×1 (already excluding the zero

subcarrier symbols) can be modeled as

ỹ = H̃Gd+ ṽ, (9)

where the diagonal matrix H̃ ∈ C(Nd+Nr)×(Nd+Nr) contains

the corresponding channel frequency response coefficients on

its main diagonal, and ṽ represents a zero-mean Gaussian

(frequency domain) noise vector with the covariance matrix

Cvv = σ2
vI. Furthermore, we assume the data vector to have

zero mean and covariance matrix Cdd = σ2
dI.

In [3], [8] linear data estimators of the form d̂ = Eỹ

have been derived and studied. A simple zero forcing (ZF)

solution for systematically encoded UW-OFDM is the channel

inversion estimator given by

ECI =
[

I 0
]

PT H̃−1. (10)

For both systematically and non-systematically encoded UW-

OFDM the optimum ZF data estimator corresponds to the

BLUE as a representative of classical estimators given by

EBLUE = (GHH̃HH̃G)−1GHH̃H . (11)

Its covariance matrix C
d̂d̂

coincides with the covariance matrix

Cee of the error vector e = d̂BLUE − d and is given by

Cee = σ2
v(G

HH̃HH̃G)−1. (12)

The Bayesian LMMSE estimator and the covariance matrix

of its error vector e = d̂LMMSE − d are given by ELMMSE =
CdyC

−1
yy and Cee = Cdd − CdyC

−1
yy C

H
dy, respectively. For

uncorrelated data with the covariance matrix Cdd = σ2
dI the

estimator and its error covariance matrix take on the form

ELMMSE = (GHH̃HH̃G+
σ2

v

σ2

d

I)−1GHH̃H , (13)

and

Cee = σ2
v(G

HH̃HH̃G+
σ2

v

σ2

d

I)−1, (14)

respectively. We note that the expectation operation for deriv-

ing the error covariance matrix in (14) is with respect to the

joint probability density function (PDF) of ỹ and d (Bayesian



approach), while for deriving the error covariance matrix in

(12) the expectation operation is with respect to the PDF

of ỹ only, since d is assumed to be deterministic (classical

approach).

IV. WIDELY LINEAR DATA ESTIMATION

A data vector fulfills the properness condition, cf. [11], if

C̃dd = E[ddT ] = 0. C̃dd is called complementary or pseudo

data covariance matrix. The properness condition is fulfilled

by data vectors consisting of e.g. QPSK, 16-QAM or 64-QAM

symbols. For improper data vectors, i.e. C̃dd 6= 0, the strictly

linear MMSE estimator can be outperformed by the widely

linear MMSE estimator which is given by

d̂WLMMSE = E1ỹ +E2ỹ
∗ (15)

for zero mean data vectors. For the determination of the

WLMMSE estimator we not only require the covariance

matrix Cyy = E[ỹỹH ] and the cross covariance matrix Cdy =
E[dỹH ], but in addition the complementary covariance matrix

C̃yy = E[ỹỹT ] and the complementary cross covariance

matrix C̃dy = E[dỹT ]. The estimator matrices in (15) are

given by

E1 = (Cdy − C̃dyC
−∗

yy C̃
∗

yy)P
−1
yy , (16)

E2 = (C̃dy −CdyC
−1
yy C̃yy)P

−∗

yy , (17)

where Pyy = Cyy − C̃yyC
−∗

yy C̃
∗

yy , cf. [11]. The covariance

matrix Cee of the error vector e = d̂WLMMSE − d reads as

Cee = Cdd − (Cdy − C̃dyC
−∗

yy C̃
∗

yy)P
−1
yy C

H
dy

−(C̃dy −CdyC
−1
yy C̃yy)P

−∗

yy C̃
H
dy. (18)

For proper data vectors the complementary covariance matri-

ces C̃dd, C̃yy and the complementary cross-covariance matrix

C̃dy become zero matrices, and the WLMMSE estimator

degenerates to the LMMSE estimator, i.e. E1 = E,E2 = 0.

A. Widely Linear Data Estimator for Real Data Vectors

In this paper we focus on data vectors consisting of elements

out of real alphabets like e.g. BPSK and 8-ASK, which are

improper by nature. For such data vectors and under the

assumption of uncorrelated data symbols the data covariance

matrix and the complementary data covariance matrix become

Cdd = C̃dd = σ2
dI. For the complementary cross-covariance

matrix we have C̃dy = C∗

dy, and the WLMMSE estimator

(15)-(17) simplifies to E2 = E∗

1 or

d̂WLMMSE = 2Re{E1ỹ}. (19)

While the LMMSE estimate of a real data vector from a

complex receive vector is generally complex, the WLMMSE

estimate is always real. Also the error covariance matrix (18)

simplifies and can be written as

Cee = Cdd − 2Re{(Cdy − C̃dyC
−∗

yy C̃
∗

yy)P
−1
yy C

H
dy}. (20)

By inserting the linear model equation (9) the required covari-

ance and complementary covariance matrices become

Cyy = σ2
dH̃GGHH̃H + σ2

vI, (21)

C̃yy = σ2
dH̃GGT H̃T , (22)

Cdy = σ2
dG

HH̃H , (23)

C̃dy = σ2
dG

T H̃T . (24)

B. Optimum Code Generator Matrices for Real Data Vectors

In [14] we show that fulfilling (3) together with (6) is

again sufficient for a code generator matrix to perform op-

timum for real data vectors in combination with WLMMSE

estimation under AWGN conditions. However, the condition

is not necessary. Let G0 =
[

g0 g1 g2 · · · gNd−1

]

be a code generator matrix fulfilling GH
0 G0 = I and

WG0 = 0. Then it can be shown that any matrix built

by an arbitrary subset of Nd vectors out of the 2Nd vec-

tors {g0, jg0,g1, jg1, · · · ,gNd−1, jgNd−1} forms a new code

generator matrix featuring the same MSE performance in the

AWGN channel as the original matrix G0. The new generator

matrix does not necessarily have to fulfill (6).

V. SIMULATION RESULTS

In the following we show simulation results for systemati-

cally as well for non-systematically encoded UW-OFDM. The

most important parameters of our simulated system approaches

are specified in Table I.

TABLE I
MAIN PHY PARAMETERS OF THE INVESTIGATED UW-OFDM SYSTEMS.

Modulation schemes BPSK, 8-ASK, QPSK

Coding rates (outer code) 1/2

FFT length N 64

Occupied subcarriers 52

Number of zero-subcarriers 12

Length of data vector Nd 36

Length of guard interval Nu 16

Sampling frequency 20 MHz

As in [12] the indices of the zero subcarriers within an

OFDM symbol x̃ are set to {0, 27, 28,...,37}. For the sys-

tematically encoded UW-OFDM system the indexes of the

redundant subcarriers are chosen to be {2, 6, 10, 14, 17, 21,

24, 26, 38, 40, 43, 47, 50, 54, 58, 62}, cf. [1]. Since we

focus on data estimation procedures in this work rather than

on synchronization or channel estimation approaches we chose

the zero UW for the bit error ratio (BER) simulations below.

For outer channel coding we used the same convolutional

encoder with the industry standard rate 1/2, constraint length 7

code with generator polynomials (133, 171) as defined in [12].

A soft decision Viterbi algorithm is applied for decoding. The

main diagonal of the appropriate error covariance matrix Cee

is used to specify the varying noise variances along the data

symbols after data estimation.
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Fig. 1. BER simulation results in the AWGN channel.

A. Simulation Results in the AWGN Channel

Clearly, OFDM systems are designed to overcome the

problems of frequency selective channels. However, we start

with simulations in the AWGN channel, since these results

provide first interesting insights. In the following the particular

code generator matrices for the systematically encoded and the

non-systematically encoded UW-OFDM system are denoted

by G and G′′, respectively.

Fig. 1 shows BER over Eb/N0 simulation results for BPSK

and 8-ASK as well as for QPSK as a reference. BPSK is used

as a fall back solution in many standards and constitutes a slow

but reliable operation mode. 8-ASK is rarely used in practice,

however we include the results for demonstration purposes. In

the following all performance comparisons are measured at a

BER of 10−6.

For 8-ASK in combination with G the WLMMSE receiver

outperforms the LMMSE and the CI receiver by 1dB and

2.2 dB, respectively. Another 0.5dB and 0.75dB are gained

by G′′/LMMSE and G′′/WLMMSE, respectively.

The situation is similar for systematically encoded UW-

OFDM (G) in combination with BPSK, here the gains of

G/WLMMSE over G/LMMSE and G/CI are 0.4dB and

2.5dB, respectively. As a quite interesting result we note that

BPSK/G/LMMSE clearly outperforms QPSK/G/LMMSE.

This differs to the usual behavior of CP-OFDM or single

carrier transmission schemes, where BPSK and QPSK perform

equivalently in the AWGN channel, when plotted over Eb/N0.

Eventually, BPSK/G/WLMMSE outperforms the QPSK refer-

ence system by around 1dB which is quite remarkable.

The situation is different for non-systematically en-

coded UW-OFDM (G′′). Here, the schemes BPSK/LMMSE,

BPSK/WLMMSE and QPSK/LMMSE perform equivalently,

outperforming the best performing systematically encoded

system (BPSK/WLMMSE) by 0.5 dB. The equivalent perfor-

mance of the LMMSE and the WLMMSE receiver for BPSK

transmission can be explained by inserting GHG = I and

Re

Im

-1 1

α1d̂BLUE

α2Re{d̂BLUE}

d̂BLUE

BLUE

LMMSE

WLMMSE

Fig. 2. Relationships between the BLUE, LMMSE, and WLMMSE estimates
in the AWGN channel.

H̃ = I into (11), (13) and (19) which gives

d̂BLUE = GH ỹ, (25)

d̂LMMSE =
σ2
d

σ2
d + σ2

v

GH ỹ = α1d̂BLUE, (26)

d̂WLMMSE =
2σ2

d

2σ2
d + σ2

v

Re{GH ỹ} = α2Re{d̂BLUE}, (27)

with 0 < α1 ≤ 1, 0 < α2 ≤ 1, and α2 ≥ α1. Fig. 2 illustrates

these relationships for a BPSK constellation: The LMMSE

estimate lies on the straight connection of the origin and the

BLUE estimate, and the WLMMSE estimator first projects the

BLUE estimate onto the real axis and then scales the projected

value with α2. These considerations explain that once the

BLUE estimate in BPSK transmission lies in the right (wrong)

decision half-plane, then the LMMSE and the WLMMSE

estimate will also lie in the right (wrong) decision region.

In terms of the Bayesian MSE the WLMMSE outperforms

the LMMSE estimator, and the LMMSE estimator performs

better than the BLUE, however these gains are not translated

into BER gains. The same conclusion is not true for higher

order ASK constellations, since the estimates of the BLUE,

the LMMSE and the WLMMSE receiver might fall in different

decision regions for such schemes, see also Fig. 1.

B. Performance Results in Frequency Selective Indoor Envi-

ronments

For the generation of indoor multipath channels we ap-

plied the model described in [13], which has also been

used during the IEEE 802.11a standardization process. The

channel impulse responses are modeled as tapped delay

lines, each tap with uniformly distributed phase and Rayleigh

distributed magnitude, and with power decaying exponen-

tially. The model allows the choice of the channel delay

spread. For the following simulations we generated and stored

10000 realizations of channel impulse responses, featuring

(on average) a delay spread of 100ns and a total length

not exceeding the guard interval duration. The impulse re-

sponses have been normalized such that the receive power

is independent of the actual channel. The subsequent fig-

ures represent BER results averaged over that 10000 chan-

nel realizations. We assumed perfect channel knowledge at

the receiver in the simulations to be presented below. In

our discussion we concentrate on non-systematically encoded
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Fig. 3. BER simulation results in frequency selective indoor environments.

UW-OFDM (G′′), and we only show one systematically

encoded case (G/CI) for comparison reasons. Different to

the AWGN results BPSK/G′′/WLMMSE, BPSK/G′′/LMMSE

and QPSK/G′′/LMMSE perform quite different in fre-

quency selective scenarios. BPSK/G′′/WLMMSE outper-

forms BPSK/G′′/LMMSE by 1dB, and the QPSK mode

is outperformed by 1.2dB, such that the combination

BPSK/G′′/WLMMSE can be considered as an exceptionally

well performing fallback mode for the regarded UW-OFDM

transmission.

VI. CONCLUSION

In this work we investigated widely linear data estimation in

unique word OFDM for data vectors consisting of elements out

of a real symbol alphabet. Especially interesting is BPSK, as

this modulation scheme constitutes a low rate fallback solution

in many standards. We discussed some interesting differences

in estimation performance between systematically and non-

systematically encoded UW-OFDM in the AWGN channel.

Finally, we showed that for the investigated non-systematic

code generator matrix the gain of WLMMSE over LMMSE

estimation in frequency selective scenarios is remarkable, and

the combination BPSK/WLMMSE can be considered as a

highly reliable low rate transmission scheme.
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