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Abstract—The recently presented UW-OFDM (Unique Word
- orthogonal frequency division multiplexing) signaling scheme
[1] uses certain subcarriers in frequency domain for redundant
symbols instead of data, in order to generate a zero word in
the DFT (discrete Fourier transform) interval in time domain.
These redundant symbols depend on the data loaded on the
other carriers and thus introduce correlation. The resulting linear
system model enables sophisticated detectors for data recovery.
As the best known maximum likelihood detector for this case, we
applied the Sphere Decoding (SD) algorithm to a single antenna
UW-OFDM system and evaluated its bit error performance in
AWGN (additive white Gaussian noise) and frequency selective
environments. Compared to linear receivers, the SD is able to
take the correlations on the redundant subcarriers optimally
into account and shows an enormous gain. A reduction of
the redundant energy by increasing the number of redundant
subcarriers improved the bit error performance of UW-OFDM
systems with linear data estimators [2] at the price of a lower
bandwidth efficiency. In contrast it is found, that a receiver
based on Sphere Decoding is able to optimally exploit the excess
redundant energy. The SD based system therefore shows its best
performance at maximum bandwidth efficiency.

I. INTRODUCTION

The recently presented Unique Word (UW) OFDM signal-
ing scheme [1] uses a deterministic sequence in the guard
interval of an OFDM symbol, instead of the cyclic prefix,
as it is used in most current OFDM applications. By putting
the UW inside the DFT (discrete Fourier transform) interval
in time domain the usual cyclicity of the OFDM symbol is
ensured. This is achieved by loading certain subcarriers in
frequency domain with redundant symbols instead of data.
These redundant values depend on the data, and thus introduce
correlation.

For the classic and well known cyclic prefix OFDM, equal-
izers following the zero forcing (ZF) principle are optimal. On
the contrary, due to the introduced correlations, UW-OFDM
allows for much more sophisticated data estimation strategies.

As shown in [1], the LMMSE (linear minimum mean
square error) data estimator uses some information from the
redundant carriers beneficially, in order to improve the MSE.
However, the fact that correlations are introduced as part of
the transmit process allows the use of many more receiver

c©IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works. DOI:
10.1109/GLOCOM.2011.6133996

structures. As we show in Sec. II, the system model can be
interpreted as a MIMO channel, which enables the application
of all the receivers known from the MIMO (multiple input
multiple output) world to be used with single antenna UW-
OFDM systems.

The paper is organized as follows: The UW-OFDM system
description will be presented in Sec. II. Interpreted as a MIMO
channel, the best known receiver for this is a maximum likeli-
hood sequence estimator (MLSE). An efficient implementation
is the Sphere Decoder, whose realization for a single antenna
Unique Word OFDM system will be discussed in Sec. III. In
order to quantify the gain of Sphere Decoding in comparison
to other data estimation strategies, we will show simulation
results of a Unique Word OFDM system in a multi-path as
well as AWGN (additive white Gaussian noise) environment
in Sec. IV. In Sec. V we conclude this work.

II. UNIQUE WORD OFDM SYSTEM MODEL

We briefly review the approach of introducing unique words
in OFDM. For further details see [1]. Let xu be a predefined
sequence of length Nu, which we call the Unique Word. This
Unique Word shall form the tail of the OFDM time domain
symbol vector. Hence, the time domain symbol vector, as the
result of the length N IDFT (inverse DFT), consists of two
parts and is of the form

[
xT
d xT

u

]T ∈ CN×1, whereas only
xd ∈ C(N−Nu)×1 is random and affected by the data. It
turned out that, in order to generate the OFDM symbol, it
is advantageous to generate an OFDM symbol

x =

[
xd

0

]
(1)

with a zero UW in a first step, and to add the desired UW to
determine the transmit symbol

x′ = x+

[
0
xu

]
, (2)

in a second step [3]. Just as in conventional OFDM, the OFDM
symbol is specified by the QAM data symbols in frequency
domain. As we intend a certain number of zero symbols
according to (1) in a part of the IDFT output, we have to load
at least the same number of subcarriers in frequency domain
with appropriate values. We want to name these redundant
subcarriers, as they are loaded with values depending on the
data d̃ ∈ CNd×1. The redundant values are as well gathered in



a vector r̃ ∈ CNr×1. We denote the frequency domain OFDM
symbol vector as

x̃ = P

[
d̃
r̃

]
, x̃ ∈ CN×1, (3)

utilizing a permutation matrix P ∈ {0, 1}N×N to place the
data and redundant values to their dedicated subcarriers. In
contrast to [1], [3], [4], we assemble the OFDM symbols
without introducing zero subcarriers in frequency domain at
the band edges and at the DC carrier.

Employing the N point DFT matrix FN with its element in
the k-th row and the l-th column [FN ]kl = e−j

2π
N kl, the time–

frequency relation of the OFDM symbol can now be written
as

F−1N P

[
d̃
r̃

]
=

[
xd

0

]
. (4)

With
M = F−1N P =

[
M11 M12

M21 M22

]
, (5)

where Mkl are appropriately sized sub-matrices, it follows that
M21d̃ + M22r̃ = 0, and hence r̃ = −M−122 M21d̃. With the
matrix

T = −M−122 M21, T ∈ CNr×Nd , (6)

the vector of redundant subcarrier symbols can thus be deter-
mined by the linear mapping

r̃ = Td̃. (7)

Furthermore, with the definition of

G = P

[
I
T

]
, G ∈ CN×Nd , (8)

the transmit symbol can now be written as

x′ = F−1N Gd̃+

[
0
xu

]
, (9)

and with the UW influence in frequency domain x̃u =

FN

[
0T xT

u

]T
we can also write

x′ = F−1N (Gd̃+ x̃u). (10)

The construction of T highly depends on the choice of
P. In [1] it is suggested to choose P by a minimization
of the symbol energy Ex′ = E

{
x′Hx′

}
which leads to the

optimization problem

P = argmin
{
tr(TTH)

}
, (11)

where T is derived from (6) and (5).
While usually the number of redundant subcarriers is chosen

to the length of the Unique Word Nr = Nu, in [2] also the case
Nr > Nu is considered. Adapting the dimensions of the sub-
matrices in (5), the solution to (6) still exists. It was shown,
that the matrix inverse M−122 in (6) becomes a pseudo inverse
M+

22 =
(
MH

22M22

)−1
MH

22, while the remaining process stays
the same. When determining (11) with this new system setup,

even lower OFDM symbol energies and likewise better BER
performances can be achieved with an LMMSE receiver [2].
This gain comes of course with a loss of bandwidth efficiency,
as less data is transmitted in one OFDM symbol.

The propagation of the OFDM symbol, assembled according
to (10), through a multi-path channel is modeled using a
cyclic convolution matrix Hc and a noise vector n with
the covariance matrix Cnn = σ2

nI. After applying the DFT
in the receiver, the frequency domain receive vector can be
formulated as

ỹr = FNHcx
′ +

ṽ︷ ︸︸ ︷
FNn (12)

= FNHcF
−1
N (Gd̃+ x̃u) + ṽ. (13)

The matrix H̃ = FNHcF
−1
N is diagonal and contains the

sampled channel frequency response on its main diagonal. As
a first receiver processing step we subtract the UW influence
to obtain the symbol ỹ = ỹr− H̃x̃u and arrive at the form of
a linear model

ỹ = H̃Gd̃+ ṽ. (14)

The channel propagation matrix H̃G of size N × Nd can
be interpreted as the propagation matrix of a complex MIMO
channel, although we only modeled a single antenna system:
The Nd data subcarrier positions in the receive vector are
simply the data values sent and disturbed by the channel. The
Nr redundant subcarrier positions depend on all data symbols,
in a way described by the matrix T. This altogether allows
us to treat the UW-OFDM system as a MIMO system with
Nd transmit and N receive antennas, and to use any MIMO
detection method to recover the data.

III. SPHERE DECODING

The best decoding results recovering d̃ from (14) are
achieved by a Maximum Likelihood Sequence Estimation on
each OFDM symbol. In the introduced terminology of the
linear system model this translates to the minimization of
the distance of all possible OFDM symbols after channel
propagation to the received vector:

ˆ̃
d = argmin

d̃∈ANd
||H̃Gd̃− ỹ||22. (15)

In theory, every possible noise-free receive vector H̃Gd̃,
with the vector d̃ containing Nd values from the chosen QAM
alphabet A, needs to be examined for its Euclidean norm,
which is impossible for practical UW-OFDM systems. E.g. for
one of the simulation modes used in this work (see Sec. IV-A),
there exist |A|Nd = 1648 > 6 · 1057 possible different OFDM
symbols.

To allow for MLSE within a practical amount of com-
putational time, Sphere Decoding is a well known method
originating from MIMO decoding. For this work, we applied
the Sphere Decoding algorithm on a single antenna system in
a multi-path environment.



First, a QR decomposition of the transmission matrix

H̃G = Q

[
R
0

]
(16)

enables the required simplifications, where Q ∈ C(N×N) is a
unitary matrix and R ∈ CNd×Nd is upper triangular.

Partitioning Q =
[
Q1 Q2

]
, with Q1 of size (N × Nd)

and Q2 of size (N × Nu), we can elaborate the Euclidean
distance in (15) as∣∣∣∣∣∣H̃Gd̃− ỹ

∣∣∣∣∣∣2
2
=

∣∣∣∣∣∣∣∣Q [R0
]
d̃− ỹ

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣QHQ

[
R
0

]
d̃−QHỹ

∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣[R0
]
d̃−

[
QH

1

QH
2

]
ỹ

∣∣∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣Rd̃−QH

1 ỹ
∣∣∣∣∣∣2
2
+
∣∣∣∣QH

2 ỹ
∣∣∣∣2
2
. (17)

As the second term is independent of d̃, the minimization
problem (15) becomes

ˆ̃
d = argmin

d̃∈ANd

∣∣∣∣∣∣Rd̃−QH
1 ỹ
∣∣∣∣∣∣2
2
. (18)

With the description in (18), one of the many Sphere
Decoding algorithms can be applied. For this work we used the
algorithm, following the Schnorr-Euchner strategy, introduced
in [5]. Anyway, we had to adapt their algorithm DECODE in
order to handle the finite set A of complex QAM symbols,
instead of an infinite real lattice and to fit to our notation
using column vectors.

The run-time complexity of the SD is known to be able to
get out of hand in certain conditions. For practical systems
the complexity needs to be limited, which can be achieved
by several techniques, e.g. [6]. For this work we focus on the
possibilities of Sphere Decoding for UW-OFDM, but imple-
mented a reasonable high bound on the maximum number of
node visits per OFDM symbol, though.

IV. SIMULATION RESULTS

A. Simulation Setup

A block diagram of the system setup used in this work for
simulation is shown in Fig. 1. After the QAM mapping, the
OFDM symbol is assembled in frequency domain, transformed
and supplied with the UW, according to (9), resulting in the
time domain signal x′ to be transmitted. As UW we used the
zero word for our simulations.

Furthermore, we used a system with the parameters shown
in Tab. I. The DFT-length as well as the Unique Word length
are chosen to meet the DFT and the length of the guard interval
specified in IEEE 802.11a [7].

As we used two modes for the subcarrier allocation with
different Nd and Nr, we had to find an optimum P for each
of them using (11). The indices of the redundant subcarriers
used, are listed in Tab. II. These modes will be named r(16)

and r(32), in order to identify the Nr = 16 and 32 modes. It is

worth mentioning, that both modes show an optimum, when
using an equidistant distribution of the redundant subcarriers
throughout the spectrum. In Tab. II we also noted the energy
per bit values Eb, as they result from determining the OFDM
symbol energies Ex′ according to [3], using a normalized 16-
QAM constellation. In [3] it is also shown, that the OFDM
symbol energy can be decomposed to Ex′ = Ed̃ +Er̃, where
Ed̃ corresponds to the data and Er̃ to the redundant values.
The relation between these two energies is also shown in
Tab. II.

From this relation we see the noteworthy property, that the
energy spent for all redundant subcarriers in relation to the
overall OFDM symbol energy decreases, even if the number
of redundant subcarriers is increased, enabling the reduction
of the energy per bit Eb.

We compare the Sphere Decoding (SD) performance with
two linear data estimation schemes. The first data estimator is
a simple channel inversion estimator (CI), that could be seen
as the equivalent of the zero forcing receiver of conventional
OFDM using cyclic prefixes:

ECI =
[
I 0

]
PTH̃−1 (19)

This is an estimator with very low complexity, since the
channel inversion H̃−1 corresponds to a simple division of the
diagonal elements. On the other hand it completely ignores
the information available on the redundant carriers after the
channel inversion step.

The second data estimator is the LMMSE estimator derived
for UW-OFDM in former publications, e.g. [1], [4]:

ELMMSE =

(
GHH̃HH̃G+

Nσ2
n

σ2
d

I

)−1
GHH̃H (20)

Of some low extent, this estimator considers the redundant in-
formation, which also increases the computational complexity
to determine ELMMSE, compared to ECI.

B. Simulation Results in the AWGN channel

The AWGN channel should allow us to observe some trends
of the used transmission modes and detection strategies, as the
channel frequency response does not prefer or penalize certain
subcarrier settings.

TABLE I
PARAMETERS OF THE INVESTIGATED UW-OFDM SYSTEM

Modulation scheme 16-QAM
DFT length N 64
No. of data (redundant) subcarriers Nd (Nr) 48 (16), 32 (32)
Unique Word xu 0(Nu×1)

TABLE II
REDUNDANT SUBCARRIER MODES USED FOR THE SIMULATIONS AND

THEIR ENERGY PROPERTIES

Nr Set of subcarrier indices Eb Er̃/Ex̃′

16 {1, 5, 9, 13, . . . , 57, 61} 7.81 · 10−3 1/2
32 {1, 3, 5, 7, . . . , 61, 63} 5.86 · 10−3 1/3
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Fig. 1. Block diagram of the transceiver system used for simulation

From the bit energies Eb in Tab. II we are able to predict
how the modes compare in case of the CI data estimator, as
it doesn’t utilize the redundant subcarriers. Relating the bit
energies of the modes

E
(16)
b

E
(32)
b

= 1.33 , 1.25 dB,

we can expect a 1.25 dB gain of r(32) compared to r(16).
In Fig. 2 the bit error rate is plotted over the Eb/N0 ratio

for our modes (different colors) and with the introduced data
estimators (different markers). Judging from these results, the
previous valuation is met by the CI estimator (square) and also
approximately by the LMMSE (cross) estimator.

However, this gain is not transferred to the results when
doing Sphere Decoding. Spending more subcarriers for re-
dundancy does not yield a better bit error performance here,
the modes r(16) and r(32) achieve almost the same bit error
rates. This leads to the conclusion that the Sphere Decoder is
able to exploit the entire information present on the redundant
subcarriers. All energy spent, regardless of its use for data
or redundant subcarriers, can be utilized beneficially for the
decoding process. In contrast, the LMMSE estimator shows
only very limited capabilities of processing the redundancies
properly.

C. Simulation Results in Multi-path Channels

In a frequency selective environment, the bit error per-
formance depends not only on the OFDM symbol energies
Ex′ resulting from the choice of redundant subcarrier indices,
but also strongly on the match of the characteristics of the
transmission channel’s frequency response with the positions
of data and redundant subcarriers. For the CI data estimator
a high subcarrier attenuation only has an impact, if this
particular subcarrier is used for data. If this subcarrier switched
its purpose to act as redundant subcarrier, the BER would
improve — changing Ex′ though.

For simulations we use two different channel snapshots.
Each channel impulse response has a total duration not exceed-
ing the guard interval. Their frequency responses are shown
in Fig. 3. Channel A does not show any deep fading holes,
whereas channel B features two spectral notches within the
system bandwidth, both on data subcarrier positions for both
modes used.
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Fig. 2. BER performance in AWGN channel
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Fig. 3. Frequency responses of indoor multi-path channel snapshots

Examining the BER results for channel A in Fig. 4 yields
similar results to those in the AWGN channel. Approximately
the same gain of r(32) compared to r(16) predicted before,
can be found for the CI data estimator. On the other hand, the
LMMSE yields with up to 1.8 dB an even stronger advantage
of the r(32) mode. The SD repeats the behavior observed for
the AWGN channel before. With SD however, the plot shows



a crossover point at a BER of 10−3, from which on the r(16)

mode performs better than r(32), with increasing Eb/N0.
The same observations can be made for channel B, whose

BER plots are shown in Fig. 5. The deep spectral notches of
its frequency response of course have a huge impact on the
performance of the CI data estimator. The methods, which
incorporate the redundancy information perform almost as
good as in channel A. The crossover point of the SD is again
at a BER of 10−3.
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V. CONCLUSION

The distinct system structure of the UW-OFDM signaling
scheme allows for all the detection strategies known for MIMO
channels, even though considering only a single antenna
system. We implemented the Sphere Decoding algorithm for
UW-OFDM systems and compared its bit error performance
with linear receivers. For linear data estimation we considered
the LMMSE estimator and the channel inversion estimator,
which completely ignores the redundancy introduced by UW-
OFDM. The performance was investigated using different
modes, altering data and redundant subcarrier configurations.

We verified a huge gain in performance of the Sphere
Decoder, as it takes the correlations on the redundant sub-
carriers optimally into account. However, it can be seen that
decreasing the redundant energy by spending more redundant
subcarriers, which improved the BER behavior for linear data
estimators, is not worthwhile for the SD. The use of more
subcarriers for redundant symbols does not yield a better bit
error performance for the Sphere Decoder.

We conclude, that for the SD based system it is optimal to
choose the minimum number of redundant subcarriers. Thus,
the SD shows its best performance at maximum bandwidth
efficiency.
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