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Abstract—Unique Word (UW) OFDM is an attractive alterna-
tive to conventional cyclic-prefix OFDM as it offers the potential
to apply more sophisticated detection schemes, resulting in im-
proved performance both in uncoded as well as coded transmis-
sion. In this paper, we study soft-output detection schemes suited
for coded UW-OFDM transmission. In particular, we present an
efficient implementation of near-optimum soft-output detection
based on the soft-output sphere decoder (SOSD) algorithm. The
performance and complexity of this approach is compared to a
low-complexity linear detector (linear minimum mean squared
error, LMMSE), which uses exact statistics of the residual noise
for computation of the soft output. The conducted numerical
simulations emphasize that the SOSD constitutes the decoding
reference for uncoded as well as coded UW-OFDM transmission.
Nevertheless, the LMMSE offers a good performance trade-off
at a constant complexity, while the SD’s complexity is variable.

I. INTRODUCTION

Unique word (UW) OFDM uses a deterministic sequence
in the guard interval of an OFDM symbol, instead of the
cyclic prefix used in most conventional OFDM systems [1]. By
putting the UW inside the DFT (discrete Fourier transform)
interval in time domain, which is achieved by loading cer-
tain subcarriers in frequency domain with redundant symbols
instead of data, the intended cyclicity of the OFDM symbol
is ensured. As the redundant subcarriers depend on the data,
the introduced correlations can be exploited by the receiver,
enabling much more sophisticated data estimation strategies
compared to those applicable for conventional OFDM.

In this paper we focus on soft-output detection schemes for
UW-OFDM in the presence of channel coding. The system
model of UW-OFDM can be interpreted as a MIMO (multiple-
input multiple-output) channel, thus, in principle, all the re-
ceivers known for MIMO detection can be used with single-
antenna UW-OFDM systems. The best known receiver for this
channel type is executing a maximum-likelihood sequence es-
timation (MLSE), which can efficiently be implemented using
the Sphere Decoder (SD) algorithm [2], [3]. In this paper,
we extend this approach to further include the computation
of reliability information on the detected symbols, i.e. so-
called soft-output MLSE. Following the approach for MIMO
detection [4], we present an efficient implementation based
on the single tree search soft-output SD. However, as the
computational complexity of soft-output MLSE varies with
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the channel conditions and may even be prohibitively high,
we compare it to a second soft-output detector given by the
LMMSE (linear minimum mean square error) data estimator
[1], which has lower and in particular constant complexity.

The paper is organized as follows: After the definition of the
UW-OFDM system model in Sec. II, soft-output MLSE and
its implementation using the SD is presented in Sec. III. Fol-
lowing a brief review of LMMSE data estimation in Sec. IV,
we compare the performance of the respective schemes by
means of numerical simulations in Sec. V and conclude with
a summary in Sec. VI.

II. UNIQUE WORD OFDM SYSTEM MODEL

We briefly review the approach of UW-OFDM first in
its systematic variant (see [1] for further details) and then
introduce modifications for a non-systematic approach [5].

A. Systematic UW-OFDM Symbol Generation

Let xu be a predefined sequence of length Nu, the so-
called unique word, forming the tail of the UW-OFDM sym-
bol. Hence, the time domain symbol vector consists of two
parts

[
xT
d xT

u

]T ∈ CN×1, where xd ∈ C(N−Nu)×1 is the
information-bearing part affected by the data symbols. It is
advantageous to generate an OFDM symbol x =

[
xT
d 0T

]T
with a zero UW in a first step, as the result of a length N
IDFT (inverse DFT), and to add the desired UW to determine
the transmit symbol x′ = x +

[
0T xT

u

]T
in a second step

[6]. As we intend Nu zero samples as a part of the IDFT
output, at least the same number of subcarriers in frequency
domain must be set to appropriate values. We spend Nr = Nu
subcarriers and name them redundant subcarriers, as they are
loaded with values depending on the data vector d̃ ∈ CNd×1.

Following the derivations in [1] and employing the N point
DFT matrix FN with its element in the k-th row and the l-th
column [FN ]kl = e−j

2π
N kl, the transmit symbol can be written

as x′ = F−1N Gd̃ +
[
0T xT

u

]T
, utilizing the UW-OFDM

symbol generator matrix G ∈ CN×Nd , which determines the
values on the redundant subcarriers in order to achieve a zero
word in time domain. The generator matrix

G = P

[
I
T

]
(1)

consists of a matrix T ∈ CNr×Nd to determine the values
on the redundant subcarriers, which is calculated in order to



satisfy the zero word constraint at the output of the IDFT.
The permutation matrix P ∈ {0, 1}N×N moves the data and
redundant values to their dedicated subcarriers and results from
an optimization, that aims to minimize the mean energy on the
redundant subcarriers. Both are detailed in [1].

Transforming the UW into frequency domain x̃u =

FN
[
0T xT

u

]T
allows us to rewrite this relationship as

x′ = F−1N (Gd̃ + x̃u). (2)

The propagation of the OFDM symbol, assembled according
to (2), through a multi-path channel is modeled using a cyclic
convolution matrix Hc and a noise vector n with zero mean
and the covariance matrix Cnn = σ2

nI. After applying the
DFT at the receiver, the frequency domain receive vector can
be formulated as

ỹr = FNHcx
′ + FNn = FNHcF

−1
N (Gd̃ + x̃u) + ṽ, (3)

where ṽ = FNn. The matrix H̃ = FNHcF
−1
N is diagonal

and contains the sampled channel frequency response on its
main diagonal. As a first receiver processing step we subtract
the UW influence to obtain the symbol ỹ = ỹr − H̃x̃u

ỹ = H̃Gd̃ + ṽ. (4)

At this point, the channel propagation matrix H̃G ∈
CN×Nd can be interpreted as the channel matrix of a complex
MIMO channel, although we only consider a single antenna
system. This allows us to treat the UW-OFDM system as a
MIMO system with Nd input and Nd + Nr output streams.
All MIMO detection methods can be used to recover the data.
Furthermore, due to the definition of zeros at some IDFT
output positions, the UW-OFDM symbol generation model can
be considered as a complex valued RS-code.

B. Non-Systematic UW-OFDM Symbol Generation

In the last section we showed the basic UW-OFDM symbol
structure, where each subcarrier is dedicated to carry either
data or redundant values. In [5] a non-systematic generation of
UW-OFDM symbols is suggested, that lifts off the dedication
of the subcarriers and improves the system performance. More
precisely, an altered generator matrix Ğ is employed, that
distributes the redundancy over all subcarriers in use. As the
data is not immediately visible in the UW-OFDM symbol
anymore, this approach is called non-systematic generation,
analogously to the same term in channel coding. The other way
round, systematically generated UW-OFDM symbols possess
dedicated carriers, that directly show the information symbols.

The goal in [5] was to find a generator matrix

Ğ = AP

[
I

T̆

]
, (5)

with a yet-to-find real matrix A ∈ RN×N , that minimizes
the sum of the error variances after LMMSE data estimation
for the AWGN (additive white Gaussian noise) channel case,
and at a fixed c = Es/σ

2
n, where Es denotes the mean

energy per data symbol, cf. [5, Eq. (36)]. The cost function

for the minimization is based on the covariance matrix of
the estimation error Cee, as defined later in (13), and can
be treated as a function of the non-singular matrix A, that
distributes the redundancy over all subcarriers. However, the
solution to this optimization problem is ambiguous. Particular
solutions can be found, e.g. by applying the steepest descent
algorithm. As in [5, Eq. (44)] we choose the initialization
A(0) = I, which implies T̆(0) = T and Ğ(0) = G. The
iterative optimization process consequently starts with the code
generator matrix G of the systematic UW-OFDM concept,
which can be considered a good initial guess. Note, that again
T̆ is unambiguously given by the zero word constraint after
the IDFT.

III. SOFT-OUTPUT SPHERE DECODING

For the usual case of equi-probable data sequences, the best
decoding results in the recovery of d̃ from (4) are achieved
by maximum-likelihood sequence estimation (MLSE) on each
OFDM symbol. Since the receive signal is corrupted by
AWGN, using the above linear system model (4), the MLSE
problem translates to the minimization of the distance of all
possible OFDM symbols after channel propagation to the
received vector:

d̃ML = argmin
d̃∈ANd

||H̃Gd̃− ỹ||22 (6)

Every vector d̃ ∈ A(Nd×1) of symbols from the alphabet
A can also be represented by its binary equivalent b ∈
{0, 1}(NdB×1), when B bits form each symbol from A. In
coded UW-OFDM the end-to-end performance is improved
by delivering reliability information on every detected bit bl,
i.e. soft output, to the subsequent channel decoder, e.g. a soft-
input Viterbi decoder in case of convolutional coding.

As soft information we use log-likelihood ratios (LLRs)
on the code bits bML representing the estimated MLSE data
vector d̃ML. Due to the large dimensionality of the search
problem, we employ the max-log approximation. Assuming
equi-probable source bits, the LLRs can be written as [4]

Ll =

{
λML − λML

l if bML
l = 0,

λML
l − λML if bML

l = 1,
(7)

with the bit number l = 0, . . . , NdB − 1, the metric of the

ML solution λML =
∥∥∥H̃G

ˆ̃
dML − ỹ

∥∥∥2 introduced in (6), and
the metric of the counter-hypothesis

λML
l = min

d̃∈A
(bML
l )

l

∥∥∥H̃Gd̃− ỹ
∥∥∥2 . (8)

The metric of the counter-hypothesis is specific to each bit and
determined by fixing the l-th bit of the data vector d̃ under test
to the complement of the MLSE solution bML. The flipped
bit is denoted as the counter-hypothesis bML

l and A(β)
l is the

set of all valid data vectors d̃ with the l-th bit equal to β.
In brute-force MLSE every possible data vector d̃ needs

to be considered, which is an almost impossible task, even
with the slimmed down system as given in Sec. V-A. For this



kind of problem the Sphere Decoder algorithm is an attractive
method, as it is able to solve (6) in a tractable amount of time.
An adapted version of the algorithm in [2], that initially does
not provide soft output, was implemented for Unique Word
OFDM in [3].

To allow for Sphere Decoding, a QR decomposition of the
transmission matrix

H̃G =
[
Q1 Q2

] [R
0

]
(9)

enables the required simplifications, where
[
Q1 Q2

]
= Q ∈

C(N×N) is a unitary matrix and R ∈ CNd×Nd is upper
triangular.

Thus, the term in (6) to be minimized becomes [3]∥∥∥H̃Gd̃− ỹ
∥∥∥2
2

=

∥∥∥∥Q [R0
]
d̃− ỹ

∥∥∥∥2
2

=

∥∥∥∥[R0
]
d̃−

[
QH

1

QH
2

]
ỹ

∥∥∥∥2
2

=
∥∥∥Rd̃−QH

1 ỹ
∥∥∥2
2

+
∥∥QH

2 ỹ
∥∥2
2
. (10)

As the second term is independent of d̃, the minimization
problem (6) transforms into

d̃ML = argmin
d̃∈ANd

∥∥∥Rd̃− ỹ′
∥∥∥2
2
, (11)

defining ỹ′ = QH
1 ỹ. Due to the triangular structure of R, (11)

can be solved in a recursive fashion using the Sphere Decoder
algorithm in [2].

Calculating the LLRs resorts to finding the minimum of
an unrestricted tree search, i.e. (6), and the NdB “next-best”
minima of (8) for each bit. One could solve these minimization
problems subsequently by re-running the SD for each counter-
hypothesis with correspondingly restricted search space, i.e.
perform a so-called repeated tree search. This however requires
to run the SD NdB + 1 times per OFDM symbol, and hence,
imposes a high complexity burden.

To alleviate this, we extend the initial algorithm published
in [2], [3] to provide soft information according to the single
tree search principle shown in [4], [7], which ensures that one
leaf of the SD tree is visited not more than once and branches
are only followed if there is the chance to update either d̃ML

(and thus λML) or one of the NdB counter-hypotheses’ metrics
λML
l . We implemented this single tree search and introduced a

restriction to a finite, possibly complex valued transmit symbol
alphabet A, instead of the ability to operate on an infinite
real lattice only. Our implementation is outlined in Alg. 1,
following the pseudo-code notation in [2], [8], and is available
in [9].

The function INITLIST(k, e(k)k ,
[
R−1

]
kk
,A) creates a list of

all symbols of the alphabet A, that is sorted by the distance∣∣∣e(k)k − d̃k
∣∣∣2 of the received symbol on level k to the possible

undisturbed symbol d̃k in ascending order, together with the
corresponding normalized distance δ =

(
e
(k)
k − d̃k

) [
R−1

]
kk

.

Algorithm 1 Soft-Output Sphere Decoder
function [bML,L] = SOFT-OUTPUT SD(ỹ′,R−1,A)

1: λML ←∞; ∆Nd−1 ← 0; k ← Nd − 1

2: λML
l ←∞, for l = 0, . . . , NdB − 1

3: e(k) ← R−1ỹ′

4: INITLIST(k, e(k)k ,
[
R−1

]
kk
,A)

5: while k < Nd do
6: [d̃k,b, δ] = GETNEXTSYMBOL(k)
7: if isempty(d̃k) then . all symbols from A tried
8: k ← k + 1
9: else

10: ∆new ← ∆k + |δ|2

11: ρ← maxλML
l

∣∣∣
l=0,...,(k+1)B−1 ∨ bl 6=bML

l

12: if ∆new < ρ then
13: if k > 0 then
14: e

(k−1)
l ← e

(k)
l −δ

[
R−1

]
lk
, l = 0, . . . , k−1

15: k ← k − 1
16: ∆k ← ∆new
17: INITLIST(k, e(k)k ,

[
R−1

]
kk
,A)

18: else
19: if ∆new < λML then
20: λML

l ← λML, ∀l with bl 6= bML
l

21: d̃ML ← d̃; λML ← ∆new
22: else
23: λML

l ← min
{
λML
l ,∆k

}
,

∀l with bl 6= bML
l

24: end if
25: λML

l ← min
{
λML
l , λML + Lmax

}
26: end if
27: else
28: k ← k + 1
29: end if
30: end if
31: end while
32: Ll ← (λML− λML

l ) · (2bML
l − 1), ∀l = 0, . . . , NdB− 1

end function

One list is held separately for each level k. The function GET-
NEXTSYMBOL(k) pops off the first transmit symbol d̃k from
the list for level k with the smallest distance, as determined
in INITLIST before, and the normalized difference δ. After
this, the used symbol is deleted from the list. If the list is
already empty upon the call of the function, an empty symbol
d̃ is returned to indicate this. In line 7 this is checked and
provided for, by moving up one level.

LLR clipping during the SD search is an effective means
to speed up the search process and hence reduce its com-
putational complexity [4] at the cost of bit error performance.
This is achieved by limiting the SD search radius ρ (line 11) to
include only counter-hypotheses within the LLR clipping level
Lmax (cf. line 25). As a thorough investigation of the trade-
off between performance and complexity enabled by LLR



clipping is beyond the scope of this paper, we only state that
for our setup an LLR clipping level of Lmax = 5 represents a
good compromise.

The choice of the QR decomposition algorithm (9) required
in the preprocessing step of the SD has significant influence on
the execution time of the Sphere Decoder, as a well sorted QR
decomposition helps in finding the needed hypotheses early.
We apply the post-sorting algorithm using the Householder
reflectors for the decomposition, cf. [10].

IV. LINEAR MMSE DETECTOR

We compare the performance of the soft-output Sphere
Decoder with a linear equalization receiver according to
the MMSE criterion [1]. The data estimates are determined
by first processing the receive symbols with a linear filter
d̃LMMSE = ELMMSEỹ, where

ELMMSE =

(
GHH̃HH̃G +

Nσ2
n

σ2
d

I

)−1
GHH̃H (12)

is the MMSE equalizer matrix. We note that equalization using
LMMSE is enabled by the distinct system structure of UW-
OFDM; it is not usefully applicable for conventional cyclic-
prefix OFDM, where the simple equalizer inverting the channel
frequency response H̃−1 is already the optimum receiver. The
LMMSE estimator can be extended to provide soft information
additionally. To this end, the equalized symbols d̃LMMSE are
fed to a conventional soft-decision QAM demapper. However,
due to the LMMSE filter, the remaining noise values at
the input of this demapper are in general correlated. The
covariance matrix of the remaining additive Gaussian noise
vector is given by

Cee = Nσ2
n

(
GHH̃HH̃G +

Nσ2
n

σ2
d

I

)−1
. (13)

The varying noise variances, given by the main diagonal
elements of the error covariance matrix Cee are taken into
account in the computation of the soft output. The correlations
are neglected. This soft-output detection scheme based on an
LMMSE equalizer represents a low-complexity alternative to
soft-output MLSE.

V. SIMULATION RESULTS

A. Simulation Setup

A block diagram of the system setup used in this work
for simulation is shown in Fig. 1. Before QAM mapping,
the binary input data is channel coded by the widely used
rate 1/2 convolutional code with generator polynomials (133,
171). Then, the UW-OFDM symbol is assembled in frequency
domain, transformed and supplied with the UW, resulting
in the time domain signal to be transmitted. After channel
propagation and subtraction of the UW influence according to
(II-A), the data estimation is performed.

Since we do not utilize the UW itself in the considerations
of this paper, we used the zero word as UW for a length 24
DFT UW-OFDM system for all our simulations. All system
parameters are summarized in Tab. I. The number of redundant

QAM data
input

Assemble
OFDM Symbol IDFT Add

UW

Channel

DFTSubtract UW
influence

Data
Estimation

QAM data
output

Fig. 1. Block diagram of the transceiver system used for simulation.

subcarriers as well as the size of the QAM alphabet is
reduced compared to former simulated UW-OFDM systems
[3] in order to obtain a computational complexity for the soft-
output Sphere Decoder (soft-output SD) in feasible orders of
magnitude.

The soft-output data estimators are compared in terms of
performance and complexity for a rate 1/2 convolutional
coded transmission. We consider an AWGN channel and, more
importantly, a multi-path environment, averaging the results
over a large number of channel realizations. Systematic as
well as non-systematic generation of the UW-OFDM symbol,
whose properties were discussed earlier, is studied. Code
examples for the UW-OFDM setup are available in [9].

B. Bit Error Performance

Fig. 2 depicts the bit error ratio of a transmission over the
AWGN channel for uncoded as well as coded transmission.
In spite of the different parameter choices compared to [11],
the uncoded results show the very same tendencies as in
[11]. In the following we therefore only comment the coded
results. In case of non-systematic generation of the UW-
OFDM symbol, the performance of the soft-output SD and the
LMMSE estimator widely coincides. Systematic generation
of the UW-OFDM symbol induces a loss of approximately
0.5 dB at a BER of 10−5 for the soft-output SD, which is still
about 0.3 dB superior to the LMMSE estimator. We note that
due to the max-log approximation in the determination of the
soft information the soft-output SD is not optimal, but still
performs better than the LMMSE, which uses exact statistics
of the residual noise as soft information.

The more relevant results for OFDM transmission are
observed after transmission over a multi-path channel. Fig. 3
shows the results averaged over a set of 5 000 channels,
which were generated according to the channel model defined
for IEEE 802.11a [12] with a channel impulse response of
length 9. All channel realizations feature (on average) an
rms delay spread of 50 ns and all responses are normalized
such that the receive power is independent of the actual

TABLE I
PARAMETERS OF THE INVESTIGATED UW-OFDM SYSTEM

Modulation scheme 4-QAM
Coding rates uncoded, 1/2
DFT length N 24
No. of data (red.) subcarriers Nd (Nr) 16 (8)
Indices of red. subcarriers {1, 4, . . . , 22}
Unique Word xu 0(8×1)
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Fig. 2. Bit error performance results of the exemplary UW-OFDM system
in the AWGN channel.

channel. The uncoded results show a significant advantage
of the SD compared to the LMMSE of 5.3 / 6.3 dB at a
BER of 10−5, using systematic / non-systematic UW-OFDM
generation. As expected, the gap for the coded transmission is
smaller but the soft-output SD still considerably outperforms
the LMMSE. Especially for the non-systematic UW-OFDM
symbol generation the remaining gain is substantial.
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Fig. 3. Bit error performance results of the exemplary UW-OFDM system
in multi-path environment.

In Fig. 4 the BER curves for coded transmission in multi-
path environment with additional results for LLR clipping with
level Lmax = 5 are enlarged. The LLR clipped detection
shows some minor degradation, but still better results than the
LMMSE at higher Eb/N0 and thus poses a much less complex
alternative to the full soft-output SD.

VI. CONCLUSION

In this paper, we have studied soft-output detection schemes
for coded UW-OFDM. The distinct system structure of UW-
OFDM enables to use detection schemes known for MIMO
channels, even though considering only a single antenna sys-
tem. We derived a near-optimum soft-output detection scheme
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Fig. 4. Bit error performance results of the exemplary coded UW-OFDM
system in multi-path environment for different LLR clipping levels Lmax.

and its implementation using the soft-output SD algorithm.
The SD-based detector has been compared to data estimation
using linear equalization, in particular LMMSE data estima-
tion using the error covariance matrix as soft information.
The LMMSE-based soft-output detector suffers some loss
compared to the SD-based scheme, however it represents
a competitive alternative due to its lower and in particular
constant computational complexity.
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