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Abstract—For electric vehicles, the improvement of the range
of miles and with it the utilization of the available cell/battery
capacity has become an important research focus in the com-
munity. For optimization of the same, an accurate knowledge
of internal cell parameters like the state-of-charge (SoC) or
the impedance is indispensable. Compared to the state-of-the-
art, in this paper discrete-time Kalman and H., filtering based
SoC estimation schemes - up to now applied to linear battery
models - are applied to the nonlinear model of a Li-Ion battery.
For that, a linearization method is proposed, which utilizes a
prior knowledge about the predominant nonlinearities in the
model together with a coarse SOC estimate to obtain a linear
state estimation problem. Based on that, a mixed Kalman/H .
filter-, a discrete-time sliding mode observer-, and an adaptive
Luenberger based estimation scheme is furthermore investigated
for the nonlinear battery model under test. The above-mentioned
methods are compared to the state-of-the-art reduced order SoC
observer and the Coulomb counting method. In order to compare
the performance, an appropriate battery simulation framework
is used, which includes measurement and modeling uncertainties.
The evaluation is done with respect to the ability to reduce the
impact of error sources present in realistic scenarios. For the
simulated load current pattern, best results are achieved by the
mixed Kalman/H , filtering approach, which achieves an average
SoC estimation error of less than 1%.

I. INTRODUCTION

The performance of electrical vehicles (EVs) and hybrid
electrical vehicles (HEVs) is strongly influenced by the used
battery pack. For optimization with respect to energy utiliza-
tion, lifetime extension or damage prevention, an accurate
and reliable knowledge of internal cell parameters is needed.
Especially parameters like the state-of-charge (SoC) or the
state-of-health (SoH) are of particular interest. In practice, the
SoC is often determined based on the Coulomb counting (CC)
method. By simply using the CC method, a highly accurate
determination of the SoC cannot necessarily be achieved.
Inaccuracies are mainly caused by the accumulation of errors
inherently included in the current/charge integration stage.
Errors are introduced by the time-variant offset error which
is present in a realistic current measurement apparatus. Other
error sources are the current sampling process, combined

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works. DOI: 10.1109/VPPC.2013.6671667

with the uncertainty in the initial SoC. This may significantly
degrade the accuracy of the CC method over time [1, 2].

During periods of low loads, typically the CC method is
re-initialized by the use of predefined SoC-open-circuit voltage
(OCV) tables. In general, these SoC-OCV tables are obtained
by characterizing the battery - such that the relation between
SoC and OCYV is known in advance. To rely on these tables,
resting times up to 10h could be required - mainly depending
on factors like the SoC or the ambient temperature. Unfortu-
nately, the availability of such long resting (relaxation) periods
is often not given for practical applications. In [3, 4], we
proposed an OCV extrapolation method, suitable for predicting
the SoC after a short relaxation time. This can be used as a
workaround to cope with initial SoC uncertainities.

In literature, many different approaches for the estimation
of the internal battery states have been proposed. Examples are
the Kalman/H ., filter [2, 5], the extended Kalman filter (EKF)
[6], the unscented Kalman filter (UKF) [7], the Luenberger-
[8] and the sliding mode (SM)- [9, 10] observer. Thereby, the
battery model is described as a linear or a nonlinear system.

In this paper, the focus is on the application of selected
state estimation schemes for a nonlinear battery system de-
scription. In the past, both Kalman and H,, filtering have
been applied to linear battery models. In Section III, it is
shown that Kalman/H, filtering can also be applied to the
nonlinear battery model of Section II. For that, in Section III a
transformation to a linear state estimation problem is proposed,
where a prior knowledge of predominant nonlinearities in
the model together with a coarse SOC estimate is utilized.
Additionally, a mixed Kalman/H, filtering method as well
as a discrete-time SM- and an adaptive Luenberger (AL)-
observer based approach is investigated for the model under
consideration. Section IV presents the simulation framework as
well as simulation results. The performance of the individual
approaches is compared to state-of-the-art estimation schemes,
like the reduced order SoC observer and the Coloumb counting
method. Section V concludes the paper.

II. BATTERY MODEL

In Fig. 1, the considered nonlinear battery model is
presented. The battery runtime is modeled by the current-
controlled current source [;, and the battery capacitance Cy,.
The controlled voltage source Vo (SoC') describes the non-
linear relationship between the cell’s SoC and its OCV. The
normed voltage across the capacitance C}, corresponds to the
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Fig. 1. Equivalent-circuit based cell model, adapted from [3, 11, 12].

SoC of the cell. Ry, Cs, Ry and C) represent two parallel RC
networks which are modeling both the short and the long time
constant, which is present in a realistic battery step response
[3]. Vi and V] denote the corresponding voltages, IR, describes
the ohmic part of the impedance, and V}, indicates the cell’s
terminal voltage. For simplicity, in this study we concentrate
on the short time constant of the transient response and neglect
the RC-network formed by R; and C). Note that in general all
model parameters are varying with the time, the SoC and the
temperature.

III. STATE ESTIMATION

In this section, different estimation schemes will be applied
to the battery model presented in Fig. 1, in order to estimate the
SoC of a battery. In the following paragraphs, the application
of Kalman, H,, and mixed Kalman/H., filtering will be
illustrated. Additionally, both a discrete-time SM observer
and a discrete-time AL observer are shown to be applicable
to the model under consideration. For completeness, in this
section the concept of state-of-the-art estimation schemes like
the reduced order SoC observer [13] or the CC method is
furthermore briefly explained. These approaches will serve as
a reference for the comparison presented in Section IV.

A. Coulomb counting method (CC-method)

By using the CC-method, the estimate of the SoC at time
instant k, SoC', is updated based on the relation
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where the accuracy is mainly influenced by the estimate of the
coulombic efficiency 7;_1 during charge or discharge, as well
as by the estimates for the cell’s capacity C}, ,—; and the initial
SoC (SoCy). T, indicates the sampling time. SoC_1 defines
the SoC at time instant k¥ — 1. For simplicity, in this work a
perfect knowlegde of 7 is assumed, chosen as a constant scalar
n = 1 for charge and discharge. Consequently, the charge or
discharge current contributes to the charge or discharge process
in a one-to-one relation. As the CC-method represents the
most frequently used SoC estimation method in practice, the
performance of this method serves as a reference in this work.
Especially the influences of an erroneous knowledge of Cj, or
SoCy, or an error-afflicted measurement of I, ,_; (e.g. due
to an offset error or due to noise processes) are of particular
interest in this work.

B. Estimation strategy

In order to counteract errors which are introduced by
the use of the CC-method, in this paper the CC-method is
combined with a battery model based approach. Based on the
battery model presented in Fig. 1, we define a state vector
Xp, at time instant k, in the form of x; = [ SoCy, Vs ]T.
Vi, denotes the voltage across the RC-network formed by the
elements Rg and Cj, at time instant k. By the application of
the above mentioned state estimation schemes, an estimate of
Xy, denoted as Xj, = [ SoCy Vi ]T , is determined. In this
work, Xy, is used for the model-based correction of the CC-
method. By deriving the discrete-time state space description
of the battery model presented in Fig. 1, and by neglecting the
influence of the long time constants of the battery transient,
the time-varying state update equation results to

Xp = Fr_1Xp—1 + Gr_1up—1 + Wi 2
with
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where x;_1 denotes the state vector at time instant £ — 1, and
the system input is given by uz_1 = I}, ;,—1. The noise samples
in wi,_; € R2X! correspond to a Gaussian noise process with
a covariance matrix Q;_1 € R?*? (process noise). The output
equation of the derived state space description is given by

Yp = ﬁkxk + Lyu + VOC’k(SOCk) + vk, 3)

with Hy, = [ 0, —1], Ly = [-R,%] , furthermore uj, =
Iy 1, and y;, denotes the battery voltage Vj, ;. at time instant k.
v) represents a Gaussian measurement noise process, with a
covariance matrix Ry € R'*!. Both the process and the mea-
surement noise samples are assumed to be uncorrelated from
one time step to the next. The term Vo k(SoCy) describes
the cell’s OCV at time instant k, for a given SoCy, [3, 11].
Usually, the OCV-SoC relation Voc 1 (SoCy) is assumed to
be known in advance, based on the pre-characterization of a
cell. In practical applications, a fixed OCV-SoC relationship
is often assumed. This is justified by the fact that the OCV-
SoC curves are almost independent of influence factors like
the temperature or the aging. By splitting the OCV-SoC curve
of the cell in both a linear and a nonlinear part, the term
Voc,(SoCy) in (3) can be written as [13]

Voc,k = b1 - SoCy, + bo(SoCY). )

b1 represents a constant parameter which describes the OCV’s
linear dependency on the SoC. by(SoCy) indicates the SoC
dependent nonlinear residual term [13]. The reliability of the
knowledge of Vo, mainly depends on the accuracy with
respect to the estimated SoC. By using (4), (3) can be re-
written as

yr = Hy - xg + Ly - ug, + bo(S0Cy) + vy, (5)

with Hy = [ by, —1 ]. In practice, R, g, Rsx, and Cs
are showing nonlinear dependencies on the SoC and the
temperature. In this paper, we hand over the tracking of the
battery model parameters to a simultaneous running parameter
estimator. In this work, the model parameters are treated as
both time-invariant and time-variant parameters, which are
assumed to be known for further considerations. Exemplary



concepts for the estimation of these time-varying parameters
during runtime are treated in Section IV-A. Assuming a reliable
a-priori knowledge of the model parameters, and by decoupling
them from the state estimation process, the term Vo 1, (S0oCy)
represents the only nonlinear term in the considered state-
space description which depends nonlinear on the SoC. Thus,
in this work, the considered nonlinear estimation problem
is transformed to a linear state estimation problem via the
following proposed linearization method:

Due to an a-priori knowledge of the term Voc (SoCk),
also the parameters by and b; are known in advance. In an
embedded implementation, they can be stored in Look-up
tables (LUTs) and intermediate values can be computed online
by applying interpolation techniques [3]. In (4), by (SoC},) rep-
resents the nonlinear residual term of Vpc . By substracting
an estimate of by from the measured battery terminal voltage
Vb,k, the linearized observation passed to the state estimation
schemes reduces to

Vi = Vi — bo(SoCoc k). (6)

By the use of (6), the nonlinear equation (3) is transformed
to a linear system output equation. To decouple the estimation
of by(SoCcc,) from the state estimation, by(SoCcc k) is
determined based on the SoC estimate SoCcc k. SoCcc,k
denotes the SoC estimate obtained by the application of the
CC-method. The linearized observation Vb . and the measured
charging/discharging current [, , serve as "the inputs for state
estimation. In the following subsections, the concepts of the
applied battery state estimation schemes is presented in detail.

C. Discrete-time Kalman-filter

Based on the estimation strategy presented in section III-B,
a discrete-time Kalman filter (KF) is applied. Thereby, the
states of the linear dynamic system are estimated in a recursive
fashion, based on noisy observations V,, ;. In general, the KF
minimizes the expected value of the squared estimation error,
given as

)A(k. = argminE |:(Xk. - ﬁk)T(Xk - )A(k)“N/b,l, sy %7k} s (7)

Xk ER
whereby X; and xj; denote the true and the estimated state
vector at time instant k£, and Vb 1re- V}) . are the linarized
system observations made up to time instant k. E[-] indicates
the expectation operator. The equations of the KF algorithm
are given by [14]

1) Initialization:

x§ = E[x0] = E [[SoCo, V0] , ®)

PJ = FE [(x0 — % )(x0 — xg)T] . 9)
2)  A-priori estimation step:

PI; = kalpzr_lF%Ll + Qk*h (10)

%, =Frax_ + Groque—1, (11)

K, =P H/ (H,P,H/ +R,)"'. (12

3)  A-posteriori estimation step:
P/ = (1-KH,) P, (13)
Kt =% + K [V — (B +Low)| - (14)

% denotes the exptected value of the initial state xo, P
defines the uncertainity in x§ and I € R?*? denotes the iden-
tity matrix. If no knowledge of xg is available, a reasonable
choice for P{ is P§ = ool. P;, and P} denote the estimation
error covariance matrices of the a-priori estimate f(,:, or rather
the a-posteriori estimate f(;r The Kalman gain Ky, is adjusted
based on the uncertainity in the a-priori state estimate. The
a-posteriori estimate )Acg is updated based on Ky, %X, and the
1mnovation term

ik = |:‘7b,k - (Hk:f(]: + Lkuk)j| . (15)

uy, 1S given by ug = Ib’k. For the KF, Q;—: and R, denote
noise covariance matrices which are ideally known. In practical
applications, an exact knowledge of these covariance matrices
is not necessarily given. Thus, in this work Q;_; and R,
denote used-defined noise covariance matrices. The choice for
Q-1 and R, influences the estimation performance.

D. Discrete-time H-filter

Based on the estimation strategy presented in section III-B,
the discrete-time H.-filter (minimax filter) is applied to the
linear state estimation problem. It minimizes the effects of
the worst possible disturbances (noises) and the worst setting
of the initial state. Consequently, it minimizes the worst-case
estimation error. Compared to the KF, no assumptions about
the underlying noise processes are required. The cost function
to be minimized, is given by [14]

o %k — Xk,

o — %oll3» IS (Iwligr + Ivelifs)

(16)
P, ! and Sy are user-defined weighting matrices. By the
choice of Si, Py, Qi and Ry, a-priori knowledge about the
contribution of noise processes or uncertainties to the cost
function may be included in the estimation process. Xj is
determined such that the cost function J is bounded below
a user-defined bound 6, given as

J =

1

J < - 17

7 a7

The applied H.-filter algorithm is given by [14, 15]

1)  A-priori estimation step:

%, =F1% |+ Gro1ug_1, (18)

A, = (1—6S,P} | + HIR,'H,P; )™ (19)

G, =F, 1P AHIR, . (20)

2)  A-posteriori estimation step:
% =%, + G [V — (i + L), @D
Pl =Fi Pl AFL + Qo (22)

where Gy, is called the H, gain. # has to be chosen such that
the eigenvalues of the covariance matrix Pi have magnitudes
less than one [14, 15].



E. Discrete-time mixed Kalman/H ., filtering

For the battery model under test, also the mixed
Kalman/H, filter estimation approach is applied. The mixed
Kalman/H, filtering approach provides an estimate which
minimizes the Kalman cost function, among all estimators
which are bound by the H,, filter performance bound.
Thereby, the applied algorithm is written as [14]

)A(;: = kai]: + Gr_jur + Mkf/b,k‘ 23)
For stability, the matrices F;, and M, (gain) are chosen as

Fy =F,_; — MH, (24)
M; =P, V!, (25)

where P, and 'V, are defined by

I
— = Pp_1) 'PLH]

P.y=F, Pp H. + Fk71Pk71(6
(26)

I
Vi =Ry + HyPr H{ + HyPy_1 (5 — Pr_1) P HL.

02

27
The positive semidefinite matrix Py, is calculated in a recursive
fashion, given as

Py =Fp 1 Pr 1 F{_ + Qi1 —PukV, Py,

I -
+ kalpkfl(eﬁ —Py_1) 'PrF_,. (28)
For the choice # = 0, the corresponding discrete-time algebraic
Riccati equation (DARE) reduces to the DARE that is known
from the discrete-time Kalman filter theory [14].

FE. Reduced order SoC observer

Recently, in [13] a continuous-time reduced-order linear
(ROL) SoC observer has been published, used as a reference
in this work. There, both the CC-method as well as an OCV-
based correction mechanism are combined to update the SoC.
In this work, a discrete-time version of the ROL SoC observer
is applied to the model under test, using the relation

I, T
bh—1ts

SoCk = SOOk_1 — Cb’k71

(29)

L Vocr-1(80Cs_1) — (Vor_1 + Vork—1+Ver_1)|-

L denotes a user-defined scalar observer gain. Note that even
in the case of a perfect knowledge of V, , and R, j, the ROL
SoC observer is very sensitive to the choice of L.

G. Discrete-time adaptive Luenberger observer

By using the ROL SoC observer, a fixed user-defined
observer gain L is used. Alternatively, in [8] an AL observer
has been applied for state estimation of a linear battery model.
Thereby, the observer gain Ly, is adaptively adjusted based on
Widrow’s stochastic (approximative) gradient approach, using
the instantaneous squared error between the estimated and the
measured battery output voltage [8]. By using the stochastic
gradient approach, the mean of Lj, converges to the minimum
mean squared error solution (optimal solution) of Ly [16]. In

this paper, the AL observer is applied to the nonlinear battery
model under test, given as

. 1)
Ly, = Ly + 20ixHp 1 Fiy =5 (30)
X = Fr_1Xp—1 + Gr_rug—1 + Lyig, (3D
ox OXp— .
(57]—_? = [Fk,1 — Lkalekfl] (5];:1 ! + ZkN. (32)

7 and ‘%’“ denote the learning rate and the partial derivative

of X. In general, the used approximative gradient approach is
expected to achieve a high accuracy for small values of 7. If
1 is chosen too high, the stability of the AL observer cannot
be guaranteed. N € R?*2 denotes an all-ones square matrix.

H. Discrete-time sliding mode (SM) observer

In [9, 10], continuous-time SM observers have been applied
to the nonlinear model of a battery. There, the battery model
has been assumed to be time-invariant. Based on [9, 10], we
investigate a discrete-time SM observer for the time-variant
battery model under test, given by

X =Fp 1Xp—1+ Gr_o1up—1 (33)
+ hyig + pI'sgn(iy).

The switching gain p and the feedforward gain hy are chosen
such that the stability of the SM observer is guaranteed
[9, 10, 17, 18]. sgn(ix), the sign of the output reconstruction
error, represents the discontinuous input for the feedback,
chosen as +1 for i > 0, and —1 for ¢, < 0. Thereby,
tr = Hyey 1, where e, represents the state reconstruction
error given by e, = x; — Xj. hy can be obtained by using
the LQ method [9]. hy is chosen as hg = R 'H,0;, to
preserve stability. R and Oy, denote positive definite matrices,
where Oy, is the solution of the corresponding discrete Riccati
equation. I' decomposes the process noise vector wy as
wy, = I'é, where £ denotes a bounded disturbance input [9].

L. Complexity

Computational effort and memory requirement are still pri-
mary criteria for embedded implementations. For Kalman/H
filtering and the SM observer, time-invariant assumptions for
the system and the noise covariances significantly ease the ef-
fort for an embedded implementation [14]. For the complexity
of the other estimation schemes, we refer to [8, 13, 14].

IV. SIMULATION RESULTS

This section presents simulation results for the applied
estimation schemes as well as the used simulation framework.
Another subsection deals with model parameter estimation.

A. Parameter estimation

In practice, the model parameters R,, Rs and Cg show
dependencies on the SoC or the temperature. As they are
used as input for the applied state estimation schemes, a
reliable knowledge of these parameters is indispensable. For
an estimation during runtime, it is referred to [19], where
sequential least squares estimation schemes have been applied.
Alternatively, the parameters may be determined based on
pre-characterization of the battery under test. To estimate the



ohmic part R, of the impedance of the battery, instantaneous
voltage/current changes may be utilized. For the estimation of
Cp, two reliable SoC readings and the intermediate integrated
charge may be used [20]. In this paper, the focus is on
the analysis of the performance of the individual applied
state estimation schemes. Thus, a perfect knowledge of the
parameters R,, Rs and C; is assumed. In order to evaluate
the performance of the applied state estimation methods for
realistic use cases, both a time-invariant and a time-variant
characteristic of the model parameters is considered. The
uncertainty in C}, is treated below.

B. Simulation framework

To use the voltage V;, and the current Ip; for state
estimation, they are e.g. measured by an analog-to-digital con-
verter (ADC). These are the only quantities which are directly
measureable from the battery. I ; serves as an input for the
model-based state estimation, and V}, ;, represents the output
of the considered battery model. In practice, uncertainties are
existent on the input and the output of the model, as well as
on the initial state estimate. E.g. for the KF the uncertainty in
the initial estimate is modeled by Par. For simplicity, a perfect
knowledge of the initial states has been assumed for all applied
estimation schemes. For practical applications, we propose to
use an OCV extrapolation method to cope with initial SoC
uncertainities [3, 4]. The uncertainty in V}, ;. is modeled by the
measurement noise vy, which is assumed as a Gaussian noise
process with the standard deviation 0. = 0.001. For I,
measurement errors and losses caused by the sampling process
are modeled as a Gaussian noise process with a standard devi-
ation of oy, , = 0.0015. This models worst-case errors around

+3mV for f/ng, and £6mA for I, ;.. Basically, uncertainties in
a measurement are determined by the performance of the used
measurement equipment. To emulate realistic conditions, o7, ,,
is chosen higher compared to T, 0 modeling tolerances of
the employed sensing resistor. The uncertainties in the charge
integration stage are modeled as

I - T
SoCy = SoCh_y + 21 ~°

_ 34
Ch +wi k-1, (34)

where w; 1 (first entry of wy) includes the uncertainty
which is implicated by the not perfect knowledge of Cj, k.
wy k-1 1S assumed to be a Gaussian noise process, with
a standard deviation of o0, , , = 0.0001, simulating an
accumulative worst-case SoC error of 40.03% per iteration.

C. Simulation results

Subsequently, the simulation results of the applied state
estimation schemes are presented. To evaluate the performance
of the presented approaches, a periodic charge/discharge cur-
rent profile with t.pg = tgcng = 5000s is used. A current
rate of 1.1A4 is applied, followed by a period of rest of 1000s,
respectively, see Fig. 2 (a). The sampling time and the nominal
capacity are chosen to Tx = 1s and C, = 1.9Ah. In literature,
a common assumption is to use a time-invariant model for
the battery. In this work, simulation results are presented with
respect to both scenarios, a time-invariant (scenario 1) and a
time-variant (scenario 2) system description. For scenario 2,

Iy, + ix[A]

Timelh]
o T H_—-KF--CC - ROL—AL—SM-~-mixed KF/H_....ideal

L L L n
24 245 25 255 26
Time [h]

i f
22 225 23 23.5

Fig. 2. Scenario 2: (a) Current pattern (b) SoC (10 cycles) (c) Zoomed SoC.

the parameters R,, Rs and C; are empirically chosen as

R, =0.140.28 - exp(—28.7 - SoC), (33
Rs = 0.08 4+ 0.13 - exp(—22.1 - SoC), (36)
Cy = 685.3 — 402.9 - exp(—7.2 - SoC). 37)

For scenario 1, (35), (36) and (37) reduce to their SoC
independent terms. In practice, only a vague knowledge about
the underlying noise processes is available. Thus, a pessimistic
choice of the corresponding estimator noise variances is made.
Thus, the covariance matrices for the Kalman/H ., filters are

0.000122 0
chosen as Qx_1 = 0 0.00012 } , R = [0.52] ,
S, = Pa' = I. Moreover, an exact choice of the initial

state variables is assumed. For the AL observer, a learning
rate of 7 = 1-107!3 is chosen. The gain L of the ROL
observer is chosen as L = —1 - 10~*%. For the SM observer,
the switching gain p and the vector I are chosen to p = 1074,
' = [0.000122, 0.00012]T and R = [1]. The tuning parameter
0 of the H,, and the mixed Kalman/H ., filter is adjusted
to & = 2-10%. In Fig. 2 (b), the simulation results for
the different applied estimation schemes are presented for 10
charge/discharge cycles. Thereby, the focus is on scenario 2,



TABLE 1. COMPARISON: SOC ESTIMATION SCHEMES

Scenario 1 lesoc,avg|[%] lesoc,we|[%]
CC-method 1.1 2.6

KF 4.1 10

Hoo 0.2 2.1

Mixed KF/H o, 0.01 0.03

ROL 3.7 11.4

AL 0.3 1.3

SM 2.7 6.9

Scenario 2 |eSoC,a'Ug‘[%] |eSoC,'wc|[%]
CC-method 1.2 2.3

KF 3.6 8.3

Ho 0.2 1.85

Mixed KF/H o 0.01 0.03

ROL 35 9.8

AL 0.4 1.4

SM 2.4 5.8

for which a time-variant characteristic of the battery model
parameters has been assumed. The red dashed line represents
the ideal SoC curve, not affected by any measurement and/or
modeling noise. In the beginning of the test, almost all lines are
overlapping, yielding comparable performance. With ongoing
time, especially the lines of the CC-method (blue dashed), the
SM observer (magenta solid), the ROL observer (cyan dash-
dotted) and the KF-method (green dashed) start to diverge
from the ideal SoC. These methods are much more sensitive
to the underlying noise processes, requiring a sophisticated
fine-tuning adjustment. The ROL observer uses a fixed gain
L, where a wrong adjustment results in a poor estimation
performance. The lines for the H ., filter (orange dash-dotted),
the mixed KF/H, approach (black dotted) and the AL ob-
server (brown solid) stay close to the ideal curve of the SoC,
which indicates that these methods are able to deal with the
introduced measurement and modeling noise. In Fig. 2 (c), a
zoomed version of the plot in (b) is presented, focusing on the
estimation error at the end of the applied test scenario. Thereby,
the line for the mixed KF/H ., nearly overlaps with the curve
of the ideal SoC. Consequently this approach yields the best
performance for the presented test scenario. This is confirmed
by the results presented in Table I. The table shows the
magnitudes of the average and the worst-case SoC estimation
eITOrS, |€50C avg| AN |€50c wel, for the first 3 charge/discharge
cycles of the two applied scenarios (based on 20 independent
simulation runs). Exhaustive simulations have shown the same
performance trend for other applied load current profiles. In
Table I, |esoc,avg| 18 determined based on averaging over both
the time and the number of total simulation runs. The value for
lesoc,we| 1s identified by averaging the single-run worst-case
estimation error over the total number of simulation runs.

V. CONCLUSION

In this work, the states of a nonlinear battery model
have been estimated based on various applied estimation
schemes. Based on the a-priori knowledge of pre-dominant
nonlinearities, the problem has been transformed to a linear
state estimation problem. The applied estimation schemes
have been evaluated with respect to their ability to reduce
the impact of error sources like measurement offsets or an
inaccurate knowledge of the battery capacity. Already after
some charge/discharge cycles, it turns out that the mixed

Kalman/H, estimation approach outperforms methods like
Coulomb counting, Kalman- and H - filtering, or approaches
like the adaptive Luenberger observer, the sliding mode ob-
server or the reduced-order SoC observer.
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