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Abstract—A reliable knowledge of cell parameters like the
state-of-charge (SoC) is essential for the optimization of battery-
powered applications. Usually, during relaxation (the phase of no
or low loads) the SoC is determined based on the measurement
of the battery’s electro-motive force (EMF). To obtain a reliable
measurment, it is required that the battery voltage transient is
in a well-relaxed state, which is rarely reached in practice (e.g.
due to periodic discharge activities). In this paper, a predictive
methodology is presented which is able to forecast the EMF and
therewith the SoC already during a not well-relaxed state of
the voltage transient. A nonlinear relaxation voltage model is
reformulated such that the problem can be treated as a linear
least squares estimation problem. Based on this estimation, the
performance is evaluated with respect to the following aspects:
prediction time, current rate influence, SoC influence, cell-to-cell
deviation, or rather aging and temperature effects. Experimental
results are presented for a fixed-point implementation of the
estimation scheme on a CY8CKIT-050 PSOC5 programmable
system on chip. For validation, measurements of 2.25A h Sanyo
UR18650A lithium cells have been used. It is shown that the pre-
sented approach offers an improved re-initialization methodology
for the Coulomb counting method, and that it clearly outperforms
the usual EMF-measurement based SoC determination method.

I. INTRODUCTION

In the recent years, the demand on sophisticated battery
management solutions for battery-powered devices has signif-
icantly increased. In the last decade, improving the utilization
of the available cell capacity and increasing the battery runtime
has become an important research focus in the community. For
that, a reliable knowledge of internal cell parameters like the
state-of-charge (SoC) is a crucial requirement. State-of-the-art
implementations of battery fuel gauge integrated circuits (FG
ICs) are mainly based on two concepts [1], [2]:

Coulomb counting: The amount of charge during a charge
or discharge phase is estimated by the integration of the
measured current rate over time. Adversely are the errors
introduced by the sampling process, the time-varying input
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offset of the analog-to-digital converter (ADC), as well as the
uncertainty in the initial SoC and the capacity of the battery.

Open-circuit voltage (OCV) measurement: The
Coulomb counting method is re-initialized based on a
predefined SoC-OCV relationship. For this, the cell voltage
transient is required to be in a well-relaxed state. In practice,
this state is assumed to be reached when the charge or
discharge current is below a specific threshold value Ith for a
specific time period Trelax (typical values are: Ith ≤ 0.1 C−rate
and Trelax ≥ 30 min). Alternatively, the well-relaxed state
can be supposed to be reached if the temporal change of the
relaxation voltage transient drops below a pre-defined value
(e.g. ≤ 3 µV s−1). For the OCV-based determination of the
SoC, in practice usually a fixed, age-independent OCV-SoC
relationship is assumed for the battery.

Unfortunately, the OCV does not promptly coincide with a
cell’s electro-motive force (EMF) when entering the relaxation
phase [1]-[3]. With ongoing time, the OCV converges to
the EMF. The convergence time (Tcvg) strongly depends on
parameters like the SoC, the temperature (T ) or the applied
charge (Ichg) or discharge (Idchg) current rate. Potentially,
Tcvg ≥ Trelax, which is not taken into account appropriately in
most of today’s battery fuel gauge implementations. Recently,
also predictive SoC estimation methodologies have been pro-
posed, which are capable of predicting the SoC based on a
forecast of the OCV during relaxation [4]-[6]. In [7], [8],
impedance-based battery descriptions are used to estimate the
EMF. In the past, also model-based SoC estimation methods
have been published in literature [9]-[13]. Those are used to
compensate for errors which are introduced by the Coulomb
counting method. Exemplary methodologies are based on the
Kalman- or the H∞-filter [9]-[11], the Luenberger observer or
the sliding mode observer [11]-[13]. These methods require a
realistic cell model, which is difficult to extract for the variety
of existing use cases and operating conditions.

In this work, it is shown that a nonlinear battery relaxation
voltage model can be reformulated such that the problem can
be treated as a linear least squares (LS) estimation problem.
The estimation performance is evaluated with respect to pa-
rameters like the prediction time, the current rate, the SoC,
the temperature, cell-to-cell deviations, and the battery aging.
Experimental results are presented based on the measurements



of Sanyo UR18650A lithium cells, and based on the implemen-
tation of the estimation scheme on a CY8CKIT-050 PSOC5
programmable system on chip. In Section II, the concept of the
proposed methodology, and details about the used relaxation
model are presented. Section III presents experimental results
and validates the presented concept with respect to different
influence factors. Section IV concludes the paper.

II. CONCEPT

In this section, the used relaxation voltage model and the
concept of the proposed EMF prediction method are presented.

A. Modeling of the voltage relaxation process

Recently, a voltage model based ordinary LS estimation
approach has been proposed to predict the prospective OCV
of a battery relaxation phase. Based on the forecast of the OCV,
the battery’s SoC is estimated. For the estimation process,
voltage samples from the early phase of the relaxation phase
are used. The OCV transient is modeled by [3]

Vb(t) = Vo −
Γγ

tα logδe(t)
· eεt/2, (1)

where the parameters to be estimated are given by γ, α,
δ > 0 (rate-determining constants) and Vo. Γ equals to ±1,
depending on an occurring relaxation after charge or discharge.
εt represents a random error term with an exponential multi-
plicative error structure, and t indicates the instant of time with
respect to the starting point of the battery relaxation phase.
The validity of (1) has been proven based on the application
of a nonlinear LS estimator, where for the chemistry under
test the OCV transients have been evaluated with respect to
the goodness of fit for different operating conditions. In [3],
Vo is denoted as the end value of the relaxation phase. In
this work we demonstrate that Vo in (1) might not always
be the best candidate for predicting the end value of the
corresponding battery voltage relaxation process. Obviously
there exist combinations of the parameters to be estimated for
which the time-dependent part Vd(t) in (1), given by

Vd(t) =
Γγ

tα logδe(t)
, (2)

does not converge to zero. This is equivalent to the fact that
the battery’s OCV does not converge to Vo with ongoing time.
Thus, the end value of the voltage relaxation process can be
written as

Vb(∞) = Vo − a, (3)

where Vo differs from Vb(∞) by a non-zero offset a. Based
on (3), we propose to not use Vo for the prediction of the
relaxation end value in (1). In the next step, we demonstrate
based on Fig. 1 that the characteristic of the battery voltage
relaxation process strongly depends on the temperature, the
SoC, and the battery aging. In Fig. 1 (a) the battery voltage
characteristic for a pulse discharge scenario is plotted, obtained
by measurements at T = 10 ◦C, starting at a fully charged state
to show different behaviors at different SoCs. The battery has
been discharged in 5% steps of SoC (at 0.1 C−rate), followed
by a period of rest (0 A), respectively. The resting periods have
been aborted as soon as the temporal change of the battery
voltage has dropped below 3 µV s−1, respectively. From that

it can be concluded that the transients around 25− 35% SoC,
as well as around 60 − 80% SoC are reaching their well-
relaxed state much slower compared to the transients at the
remaining SoCs. This behavior has not been observed for high
temperatures (30 ◦C), but it becomes more and more present
for decreasing temperatures. This is mainly caused by diffusion
limitations of the involved electro-chemical reactions [1]. In
order to describe this behavior in terms of an electric quantity,
the battery resistance Rb,relax is introduced. It describes the
battery voltage gain during the relaxation phase in dependency
of the current rate value of the preceding charge or discharge
phase. In Fig. 1 (b), the characteristic of Rb,relax is illustrated
dependent on the temperature, the SoC, the aging (cycle
number N ) and the cell-to-cell deviation. The data has been
obtained based on characterization. As we are interested in
the long term trend of Vb, the first 100 s of the relaxation
process have been neglected for the extraction of Rb,relax. It
can be concluded that both a decreased temperature and an
increased cycle number result in an increased value of Rb,relax,
as expected. Interestingly, also the peaks around 25−35% SoC
and around 60 − 80% SoC are higher at low temperatures.
This is directly related to the speed of the relaxation voltage
transients at these SoC points. Moreover, we observed that
cell-to-cell deviations play just a minor role.
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Fig. 1: Battery characterization.



B. Estimation scheme

Although the model in (1) is non-linear in its parameters,
below we show a way to formulate the estimation process via
a linear LS problem. By squaring (1), and by applying the
logarithm on both sides of the squared version of (1), one gets(

Γγ

tα logδe(t)

)2

= (Vo − Vb(t))
2 · e−εt ,

loge (Vo − Vb)
2

= C +A loge (t) +D loge (loge (t)) + εt,
(4)

with Γ = +1 (discharge scenario), and A, C and D given by

C = 2 loge(γ), (5)
A = −2α, (6)
D = −2δ. (7)

With θ = (C,A,D)T , ti = t1, ..., tN , yti (Vb(ti), Vo) =
2 loge (Vo − Vb(ti)) and hti = [1, loge(ti), loge(loge(ti))]

T ,
this can be formulated in a linear form as

yti (Vb(ti), Vo) = hTtiθ + εti . (8)

ti denote the points in time at which measurements of the
battery voltage Vb(ti) are recorded during relaxation. For
a fixed guess of Vo, θ could in principle be estimated by
a linear LS estimator. One approach is the use of the LS
batch solution (e.g. via a pseudo inverse calculation), where
the calculation would require that all measurements which
are to be considered for the estimation process are already
available. This would lead to an LS solution which minimizes
the LS cost function with respect to a particular choice of Vo.
Theoretically, Vo could be found by performing a grid search
on Vo, which would require to solve the linear LS problem
for each potential Vo on the grid. Clearly, this approach is not
feasible in practical implementations. In this work, we propose
the use of a modified sequential LS estimation strategy, which
iteratively updates the estimate V̂o of Vo by the use of θ̂.
Continuative, the estimation error is reduced step by step based
on the adjustment of θ̂ and V̂o. Thereby, θ̂ is updated iteratively
based on the sequential LS estimation procedure, given by

θ̂ti = θ̂ti−1
+Kti ·

[
yti(Vb(ti), V̂o,ti−1

)− hTti θ̂ti−1

]
, (9)

Kti =
Σti−1

hti

1 + hTtiΣti−1
hti

, (10)

Σti = (I−Ktih
T
ti ) ·Σti−1

. (11)

Kti ∈ R3×1 denotes the so-called gain matrix and Σti ∈ R3×3

defines a temporary matrix which is required for updating Kti .
θ̂ can be initialized via the zero vector. yti

(
Vb(ti), V̂o,ti−1

)
represents the ”measurement” for the estimation process,
where V̂o,ti−1

is the best available estimate of Vo, calculated
at time instant ti−1. V̂o is initialized based on an initial guess.
For this work we used V̂o,t0 = Vb,0 + 0.25 V as initial value,
where Vb,0 is obtained by the measurement of the cell voltage
at the start of the relaxation process [3]. After every sequential
LS update, an updated value for V̂o,ti can be iteratively found
based on ŷti , given by

V̂o,ti = Vb(ti) + eŷti/2. (12)

(12) is found based on the deformation of the term
ŷti

(
Vb(ti), V̂o,ti

)
= 2 loge

(
V̂o,ti − Vb(ti)

)
. By iteratively

solving (9)-(12), new estimates of C, A and D are available
at each time instant ti. According to (5), (6) and (7), updated
values for γ, α and δ can be extracted for ti. Based on (5),
(6), (7) and (12) we can now evaluate (1) for an arbitrary
point in time. As we want to estimate the battery’s EMF, the
evaluation point in time Teval can be chosen dependent on
operating conditions like the temperature or the SoC. For easy
comparison, we choose Teval = 3 h. Thereby, it is assumed
that after 3 h the battery has reached its EMF (an assumption
that was validated by lab measurements).

III. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed
EMF prediction method are presented based on measurements
of 2.25 Ah Sanyo UR18650A lithium cells. Similar results
have been obtained for the application of the proposed method-
ology to batteries with other cell chemistries. The estimation
scheme has been implemented on a CY8CKIT-050 PSOC5
programmable system on chip in 16 bit fixed-point arithmetic.
In Fig. 2 (a), the prediction result for a single OCV relaxation
curve at 25% SoC is plotted. Prior to the no-load relaxation
phase, a 30 min lasting discharge period has been applied
(Idchg = 0.1 C−rate). The black dashed line represents the
measured OCV relaxation curve, denoted by Vb(t). The black
and the gray solid lines show the end value of the relaxation
process Vb(τ = 3 h), plus some pre-defined threshold values
(i.e.±2 mV). These chemistry-dependent threshold values are
defined by the requested SoC estimation accuracy and are
extracted based on the SoC-OCV relationship of the battery
under test. The black dash-dotted line represents the predicted
EMF value, obtained by the application of the proposed estima-
tion scheme. Thereby, (1) has been evaluated for Teval = 3 h,
yielding V̂b(Teval). ti has been set to ti = [120 + k · 100] s,
with k ∈ N ∪ {0}. From Fig. 2 (a) it can be concluded
that by applying the proposed prediction scheme, a reliable
estimate of the relaxation end value is available much earlier
as this is the case by relying on the OCV measurement. For
the considered case, the predicted EMF curve is within the
specified accuracy of ±2 mV after Tpred = 8 min. Contrary
the measured OCV curve lies within the specified threshold
region after around Tmeas = 80 min. Resting periods of
80 min occur rarely in today’s applications. In contrast, 8 min
lasting relaxation periods may appear regularly in practice. The
proposed prediction scheme allows reducing the time intervals
between re-initializing the Coulomb counting method and thus
increasing its accuracy. Capacity tracking algorithms often rely
on the availability of successional relaxation phases. Thus, the
proposed methodology also increases the frequency with which
the capacity of the battery can be estimated.

In Fig. 2 (b), Tmeas and Tpred are compared over the
entire range of the SoC, gathered for Idchg = 0.1 C−rate,
T = 30 ◦C and N = 100 or rather N = 200 (to show
effects of battery aging). The gray (N = 100) and the black
(N = 200) circle-marked data points represent the needed time
until the OCV measurement reaches a specified accuracy of
1% (1% in terms of SoC). The squared-marked data points are
showing the equivalents for using the proposed EMF prediction
procedure. It can be concluded that the EMF prediction method



outperforms the OVC measurement based methodology in all
SoC points, or at least yields the same performance as e.g. for
SoC = 80%. As expected, Tpred is raising for increased values
of Tmeas. This means that if the speed with that the transient
of the relaxation phase reaches its well-relaxed state is getting
slower, then the time needed for the prediction process is
increasing (the time to reach a reliable estimate at the specified
accuracy increases). By comparing Fig. 1 (b) and Fig. 2 (b),
we conclude that increased values of Tmeas especially occur
for SoC regions in which Rb,relax has high values. In general,
aging causes the battery impedance to get increased, which on
the other hand implicates a slowdown of the speed with which
the transients get relaxed. Interestingly, for SoC = 60% and
SoC = 30%, the relaxation transients accelerate with aging.

In Fig. 2 (c), Tmeas and Tpred are compared for T = 10 ◦C.
In general, a decrease of the operating temperature implicates
a slowdown of the speed with that the transients get relaxed.
This is confirmed by the fact that for T = 10 ◦C, the values
of Tmeas are in general much higher compared to the case of
T = 30 ◦C in Fig. 2 (b). On the other hand, at low temperatures
the proposed EMF prediction methodology offers an increased
gain with respect to the achievable SoC estimation accuracy
compared to the state-of-the-art method. Aging causes the
battery impedance to be increased, which on the other hand
implicates a slowdown of the speed with that the transients get
relaxed. At SoC = 25% and SoC = 60%, again the opposite
behavior has been observed. For higher current rates, it was
observed that in general Tpred increases.

IV. CONCLUSION

A methodology has been presented that is able to predict a
battery’s EMF already in a not well-relaxed state of the OCV
transient. This may be utilized to re-initialize the Coulomb
counting method and to update the battery’s capacity informa-
tion more frequently and accurately as this can be done by
state-of-the-art methods. Re-initializing the Coulomb counting
method is important in the presence of initial SoC or battery
capacity uncertainties, or measurement errors. The proposed
approach is based on an extended sequential linear least
squares estimation scheme applied to a nonlinear relaxation
voltage model. The proposed estimation scheme has been im-
plemented on a CY8CKIT-050 PSOC5 programmable system
on chip to demonstrate its capabilites in real world scenarios.
The evaluation is done with respect to influence factors like
the SoC, the temperature and the battery aging. Experimental
results are presented for measurements of Sanyo UR18650A
lithium cells. It is shown that the proposed methodology clearly
outperforms the typically used OCV-measurement method.
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