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Abstract

This paper deals with a verification methodology and
environment for open source central processing units
(CPUs). The aim is to save development time and veri-
fication effort by (i) implementing a flexible and reusable
verification environment by means of Open Verification
Methodology (OVM) and (ii) using the instruction set
simulator (ISS) of the CPU core as a golden model. Ap-
plying this methodology implements a unified verifica-
tion environment which facilitates a comparative verifi-
cation of the CPU core and its ISS on a single platform.
Hence, it significantly saves resources to implement the
golden model and to perform the verification of the ISS.
Moreover, reusing the ISS as a golden model considerably
speeds up the CPU design process. We developed a plat-
form to verify the open source OpenRISC1200 (OR1200)
core and its ISS as a benchmark.

1 Introduction

According to [14], the performance of modern proces-
sors doubles every 18 months by exploiting several mech-
anisms like out-of-orderexecution, on-chip caching, spec-
ulative execution, prefetching and thread switching. Of
course, these techniques increase the complexity of the
processors [10] as well as the complexity of verification.
Thus, the verification of processors requires a great en-
gineering effort and time. It consumes50% to 70% of
the design resources (time and effort) and is considered to
be a bottleneck in the development of modern computing
systems [15]. Hence, a more innovative and practical ap-
proach is needed to verify complex designs and to keep
expenses within the budget. The basic questions which
arise for the verification of a hardware design are: (i) what
is the most effective and appropriate verification method,
(ii) how can the reusability of the verification effort be in-
creased and (iii) how can the verification cost (time and
effort) be reduced.

It has been proven that traditional verification methods
of writing directed tests in assembly or in high-level lan-
guages (C/C++) are insufficient for the verification of
complex designs [16]. The reason is that the results of
directed tests need to be known in advance for compar-
ison. Hence, this verification approach is not suitable

for CPU cores because of their complex instruction sets
[6][16]. Another choice is to perform formal verification
and mathematically prove a given system [7]. Although
this approach offers high verification coverage, it is very
complex to apply for designs of large size [3]. How-
ever, the functional verification is an essential verification
methodology for complex designs [6]. This methodology
increases the productivity of a SoC design on a higher ab-
straction [17]. A coverage-driven constraint random test
generation is not only an appropriate functional verifica-
tion approach for complex designs but also offers high
verification coverage. Therefore, we opted this approach
for the functional verification of the OR1200 core.

The lack of flexibility and reusability in the development
of verification environments consumes more resources
and keeps the verification costs high [15]. Hence, reusing
the verification blocks will significantly reduce the devel-
opment time and effort. It would be of great value if flexi-
ble verification environments are developed which employ
reconfigurable and reusable verification components.

In this paper, we present a flexible verification environ-
ment which is created by means of OVM. This allows the
users to develop modular and reusable verification compo-
nents and environments by providing a methodology and a
SystemVerilog based supplementary class library [5][11].
Since all components in OVM based verification environ-
ments interact with each other via standard transaction-
level modeling (TLM) interfaces, such environments are
very easy to build and maintain.

Although the verification is performed at every abstrac-
tion level of a design, the architectural verification of reg-
ister transfer level (RTL) is particularly difficult because
of the unavailability of a high-level description for the
comparison of the results [4]. There are mainly two ap-
proaches for this purpose. One is to implement a golden
model of the design for the comparison of the simulation
results. The other one is to write assertions for the entire
design. The latter approach is rather inconvenient because
well-defined specifications of designs at RTL abstraction
are mostly not available. Hence, the implementation of a
golden model is mostly needed. As a matter of fact, the
implementation of a CPU core’s golden model is a very
complex task.

In this paper, we propose a verification methodology in
which the ISS of a CPU core is used as a golden model.
To follow this methodology, a CPU core and its ISS need
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Figure 1. Block diagram of the OR1200 processor.

to be available. Typically, the ISS is implemented before
the core for performance analysis on the instruction set.
Thereby, the proposed methodology of reusing the ISS as
a golden model not only speeds up the implementation and
verification process of a CPU core but also saves resources
for implementing a golden model.

In this paper, an OVM based verification environment is
developed by following the methodology described above.
It performs a coverage-driven constraint random func-
tional verification of the OR1200 core (RTL model) where
the ISS (Or1ksim 0.3.0) of the core is used as a golden
model.

2 OR1200 Core

2.1 Overview

We performed the functional verification of the OR1200
core which is the CPU of the OR1200 processor as shown
in Figure 1. The OR1200 processor is an open source
soft-processor under the LGPL license. Along with the
core, the processor also provides additional utilities in-
cluding a debug unit, a high-resolution hardware timer, an
interrupt controller and a power management unit. The
OR1200 core is a 32-bit scalar RISC core with a Har-
vard memory architecture. It has a single-issue 5-stage
integer pipeline, virtual memory support and a multiply-
accumulate (MAC) unit for basic digital signal process-
ing (DSP) operations. The OR1200 core delivers a sus-
tained throughput and supports single-cycle execution for
most of its instructions. The core is connected to exter-
nal peripherals and memories through two Wishbone in-
terfaces, the data interface (DWB) and the instruction in-
terface (IWB).

2.2 Instruction Pipeline Architecture

The OR1200 core implements a 5-stage integer pipeline
as shown in Figure 2. The Instruction Fetch (IF) stage
is the first pipeline stage followed by the Instruction De-
code (ID), the Execute (EX), the Load/Store (LS) and the
Write-Back (WB) stage. The instructions are fetched from
the memory system and dispatched to the corresponding

Gen PC

IC

ID Reg file

Operand
muxes

LSU MAC ALU

DC

Writeback
muxes

PC

IF

ID

LS

EX

WB

Figure 2. Register abstraction of the OR1200 pipeline
[1].

execution units: (i) the load/store unit (LSU), (ii) the arith-
metic logic unit (ALU) and (iii) the MAC unit. A precise
exception-model is implemented in parallel to control the
pipeline.

The functional verification of such a deeply pipelined
CPU core is a challenging task. It is considered to be the
most complex and expensive task in the development of
modern SoC designs [13]. The verification of the OR1200
core is even more complex because of its complex instruc-
tion set. There are five instruction formats and two ad-
dressing modes. The instruction set mainly consists of
single- and multi-cycle instructions, jumps and branches
followed by a delay-slot, and MAC instructions. Ac-
counting the dependencies between these instructions in
the pipeline and the exception handling, the verification
becomes even more complex. Furthermore, the simula-
tion time to run test sequences and to get a satisfactory
verification coverage is a matter of high significance, par-
ticularly while verifying pipelined cores like the OR1200
which has a large number of registers and a complex in-
struction set.

3 Verification Environment

3.1 Overview

We used OVM to implement a reconfigurable and
reusable verification environment for the simulation based
verification of the OR1200 core. It implements a con-
strained random generation of verification scenarios and
a vibrant coverage model including a scoreboard to as-
sess the verification completeness. Figure 3 elaborates the
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Figure 3. Verification environment for the OR1200
core.

architecture of the verification environment (OR1200 TB
Top) which includes

• theGolden Model,

• the device under verification (DUV) wrapper
(OR1200 Wrapper),

• the main test bench (OR1200 TB),

• the global package (Package),

• theTest libraryand

• theTest bench configuration.

3.2 Golden Model

The ISS of the OR1200 core, which is used as a golden
model, can be compiled as an executable or as a library
[2]. In the verification environment the ISS is used as a
library. Since it is not intended to execute an application
program, an empty ELF image is provided to the ISS. By
default the ISS library provides two upcalls (upr, upw) to
its public interface to read/write the external peripherals
[8]. These upcalls are modified to feed the ISS with in-
structions and data for load instruction, and to read data
for store instructions. A third upcall (upcpustatus) is im-
plemented to write the ISS status up to SystemC wrapper
after the execution of each instruction. The communica-
tion between the ISS and the test bench is synchronized
by means of SystemC FIFOs. The main test bench, im-
plemented in SystemVerilog (OVM), accesses these FI-
FOs through Direct Programming Interface (DPI) func-
tions. More details about the DPI can be found in [9].

3.3 DUV Wrapper

A SystemVerilog based wrapper (OR1200 Wrapper) is
implemented around the OR1200 core for a structural con-
nectivity as shown in Figure 3. This wrapper provides in-
terfaces for instructions, data and the status of the OR1200
core. These interfaces are used to access the IWB inter-
face, the DWB interface and the internal signals of the
core, respectively. The status interface of this wrapper
makes all required internal signals of the DUV available at
its ports. The internal signals include the status registers
(to be monitored) and the control signals (to control the
monitoring). The status of the OR1200 core is read over
simulator functions. The wrapper manipulates the internal
control signals according to the requirements e.g., delay
a control signal for two clock cycles. The wrapper also
performs the translation of the internal signals to usable
formats. All components of the verification environment
interact with the DUV only through the wrapper’s inter-
faces.

3.4 Main Test Bench

The main test bench (OR1200 TB) is a reconfigurable
and reusable component which is developed by means
of OVM. It interacts with the golden model through its
imported DPI functionsand uses its physical interfaces
to interact with the DUV wrapper. The main test bench
executes configurable tests generated by thetest library.
All tests are a constrained random generation of scenar-
ios comprised of OR1200 instructions. Every verification
component at any hierarchical level is reusable and can
be configured by thetest bench configuration. For exam-
ple, (i) whether the coverage model or the scoreboard is
implemented or not, (ii) whether an agent component op-
erates as a passive component, or (iii) which tests of the
test library are executed. All components interact with
each other through standard TLM interfaces. The main
test bench implements a layered architecture and is com-
prised of three main components:

• the interface verification component (ivc_or1200),

• the system verification component (svc_or1200) and

• the virtual sequencer (or1200_virtual_sequencer).

The main test bench first sends an instruction to the
golden model, writes/reads data (if the instruction is a
Load or a Store instruction) and receives the ISS status
once the instruction has been executed. This instruction is
then sent to the DUV. Since the DUV is a pipelined imple-
mentation, the main test bench implements a synchroniza-
tion mechanism by examining the control state machine
of the DUV along with the data-path and reacting accord-
ingly. It copes with the core’s pipeline problems (delays)
by monitoring the control signals of the DUV. It deter-
mines the exact time to examine the status of the DUV,
which is indicated by the program counter (PC) and the
special purpose registers (SPRs), and the execution results



Table 1. Malfunctions in the OR1200 core and the ISS.

Instructions Error Description

Extend Byte with Sign (l.extbs)
Extend Byte with Zero (l.extbz)
Extend Half Word with Sign (l.exths)
Extend Half Word with Zero (l.exthz)

All these instructions are working correctly in the ISS but are not implemented in
the OR1200 core. If any of these instructions is sent to the core, another instruction
“l.movhi” is executed instead of generating an illegal instruction exception. Hence,
the execution of an unimplemented instruction is not reported and an incorrect result
is calculated.

Add Signed and Carry (l.addc)
Since the carry flag is not controlled by the freeze logic in the OR1200 core, a wrong
value is added to the result. Moreover, the carry flag implementation in the ISS is also
erroneous.

Divide Signed (l.div)
Divide Unsigned (l.divu)

According to the specification of both divide instructions the carry flag should be set
if the divisor is zero. However, the ISS generates an illegalexception if the divisor is
zero. The OR1200 core neither generates an illegal exception nor sets the carry flag.
This is a clear discrepancy between the specification of the divide instructions and their
implementation in the OR1200 core and the ISS.

Find Last 1 (l.fl1)

The instruction is neither implemented in the OR1200 core nor in the ISS. However,
when this instruction is sent to the core, another instruction “Find First 1 (l.ff1)” is
executed instead of generating an illegal instruction exception. Hence, the execution
of an unimplemented instruction is not reported and an incorrect result is calculated.

Multiply Immediate Signed and Accumulate (l.maci)
The instruction is decoded correctly neither in the OR1200 core nor in the ISS. There-
fore, a wrong immediate value is used in the calculation.

Multiply Immediate Signed (l.muli)
The instruction is not working correctly in the OR1200 core.It is a multi-cycle instruc-
tion but not controlled by the freeze logic. Therefore, an incorrect result is selected.

Multiply Unsigned (l.mulu)

The instruction is neither implemented in the ISS nor in the OR1200 core. According
to the specification, this instruction is compulsory to implement [12]. Despite that,
when this instruction is sent to the core, a wrong implementation is executed instead of
generating an illegal instruction exception. Hence, the execution of an unimplemented
instruction is not reported and an incorrect result is calculated.

Jump Register and Link (l.jalr)
Jump Register (l.jr)

The effective address for both jump instructions is the content of a GPR which can
be an unaligned address. The instruction fetch in the OR1200core is naturally word-
aligned but not in the ISS. Moreover, the ISS does not implement exception handling
in case of an unaligned access to fetch a new instruction.

Add Immediate Signed and Carry (l.addic)
The instruction is implemented in the OR1200 core but not in the ISS. Although the in-
struction generates correct results in the OR1200 core for directed tests, its correctness
is not proven since it could not be included in the exhaustiveverification test.

MAC Read and Clear (l.macrc)
The instruction is not working correctly in the ISS. Although the instruction generates
correct results in the OR1200 core for directed tests, its correctness is not proven since
it could not be included in the exhaustive verification test.

Rotate Right (l.ror)
Rotate Right with Immediate (l.rori)

Both instructions are implemented in the OR1200 core but notin the ISS. Although
both instructions generate correct results in the OR1200 core for directed tests, their
correctness is not proven since they could not be included inthe main verification test.

Move to Special Purpose Registers (l.mtspr)
Move from Special Purpose Registers (l.mfspr)

The ISS implementation of both instructions defines a wrong address for accessing the
special purpose register. The implementation in the OR1200core is correct but not
proven because it could not be included in the main verification test.

Unimplemented Overflow Flag (OV)
According to the OR1200 architectural manual a number of instructions can drive the
OV flag. However, the OV flag is not implemented in the OR1200 core.

within the general purpose registers (GPRs). Then it com-
pares the status of the golden model with the DUV status
and scoreboards it. The main test bench also implements
a coverage model to assess the completeness of the verifi-
cation.

In case of reusing this verification environment for ver-
ifying further open source CPU core, the main effort will
focus on the timing synchronization between the core and
its ISS. The rest of the components can be easily reconfig-
ured and employed.

4 Verification Results

The verification results of the OR1200 core show that
the core has some malfunctions including (i) erroneous
instructions, (ii) unimplemented instructions, (iii) design
errors and (iv) discrepancies between the specification and
its implementation. Moreover, the OR1200 ISS has some
implementation errors and unimplemented instructions,
too. Since these instructions have to be excluded from the
verification, it significantly restricts the achievable veri-



Table 2. Coverage results of the OR1200 core.

OR1200 instruction types Total number of
instruction

Executed number of
instruction

Achievable coverage
(%)

Reached coverage (%)

Insn rD, rA, rB 17 11 64.7 60.2

Insn rA, rB 12 12 100 100

Insn rD, rA, I 13 9 69.2 69.2

Insn rA, I 10 10 100 100

Insn I (rA), rB 4 3 75 75

Insn rD, rA, L 4 3 75 75

Insn N 5 5 100 100

Insn rD, K 1 1 100 100

Insn rD, rA 4 0 0 0

Insn rB 2 0 0 0

Insn rD 1 0 0 0

Insn rB, I 1 0 0 0

Driving carry flag 10 4 40 40

Driving flag 20 20 100 100

fication coverage of the OR1200 core. The verification
results are summarized below.

4.1 Malfunctions in the OR1200 core and the ISS

The Table 1 presents a summery of all errors and faults
discovered in the OR1200 core and its ISS.

Several benchmark programs were compiled using the
OpenRISC32 C/C++ compiler but it did not generate most
of these erroneous instructions. This means that the com-
piler either does not implement these instructions or does
not often generate them. This is the reason why the er-
rors within these instructions stayed unidentified before.
However, the OR32 assembler is able to assemble these
instructions.

4.2 Verification Coverage Results

This section presents the verification coverage of the
OR1200 core.

The main scope of this verification coverage is to show
the verification completeness with respect to the decoding
of instructions within the core. Therefore, the coverage
matrix corresponds to the instruction decode and pipeline
control logic. Verifying the correctness of the execution
of instructions with respect to data values is not included
due to the state explosion problem.

No instruction or scenario having a problem either in
the ISS or in the OR1200 core is included in this veri-
fication since the errors have not been corrected. There
are78 instructions in the OR1200 instruction set but only
58 instructions could be included in the verification test
because20 instructions are erroneous or unimplemented
(either in the OR1200 core or in its ISS). Hence, the over-
all instruction verification coverage is restricted to74.3%

which was successfully achieved.
The Table 2 shows the verification coverage results of

the OR1200 core. There are several instruction types in
the OR1200 instruction set where each OR1200 instruc-
tion belongs to one of these types. The table shows the

total number of instructions belonging to a particular in-
struction type along with the number of instructions that
could be executed in the main verification test. The results
show the verification coverage achieved for each instruc-
tion type which is based on the number of executed in-
structions. The maximum achievable coverage is reached
for all instruction types except for the instruction type
“Insn rD, rA, rB” . This is because of its large test space
which is composed of17 instructions and three GPRs i.e.,
17 × 32 × 32 × 32 combinations. The maximum achiev-
able coverage for this instruction type is64.7% while
only 60.2% could be reached. There are four instructions
namelyl.nop, l.csync, l.msyncandl.psyncwhich are sep-
arately verified and working correctly in the core and the
ISS.

The cross coverage of three contiguous instructions in
pipeline stages of the OR1200 core is also taken into
account to observe the dependencies between instruc-
tions. The maximum achievable cross coverage is40.7%

while only 40.0% could be reached because of large test
space and unreached combinations of the instruction type
“Insn rD, rA, rB” .

5 Conclusion

The verification of processors consumes upto70% of
resources (time and effort) and is acknowledged as a
major bottleneck in the development process, accord-
ing to a variety of publications. This paper presents an
OVM based reusable verification environment for cover-
age driven constrained random verification of the OR1200
core. Furthermore, a new verification methodology is in-
troduced by using the ISS of the core as a golden model.
This methodology is successfully proven because it has
credibly verified not only the OR1200 core but also the
ISS on a single platform. Since the ISS is often imple-
mented before the core, it can be easily reused as a golden
model. This will significantly reduce the development



time and the verification effort. Hence, the methodology
is also proven beneficial because it saved resources to ver-
ify the ISS and to develop the golden model for the core.
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