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Abstract

Unique Word OFDM (orthogonal frequency division multiplexing) is an attractive alter-
native to OFDM with cyclic prefix, which is adopted for data transmission in standards
like DSL, LTE, DVB and IEEE 802.11 (WLAN). In this signaling concept, a deterministic
sequence, a “unique word” (UW), is inserted into the transmit stream, instead of a cyclic
copy of the data. Furthermore, this UW is part of the IDFT (inverse discrete Fourier
transform) interval. This property distinguishes UW-OFDM from most other OFDM
variants, while it offers the same advantages as the conventional OFDM (free of inter-
symbol interference, diagonalization of the channel matrix). By defining of a sequence
in time domain, some capacity has to be allocated for redundancy in frequency domain.
This redundancy solely depends on the transmit data (and defined system parameters)
and can be utilized for a reliable recovery of the data. In order to exploit this redundancy,
sophisticated receiver structures need to be employed, which is topic of this work. The
achieved gain can be used for a higher data rate, range, reliability, capacity or battery
lifespan.

Methods to generate valid UW-OFDM symbols are introduced in two variants: The sys-
tematic generation of UW-OFDM symbols, which can be done directly or in two steps,
and the non-systematic generation. An analysis of the mean transmit energy of all gen-
eration methods sheds light on their suitability for communication systems and reveals
possibilities for optimization.

The main part of this work is about suited receivers for UW-OFDM that are able to
reconstruct the data reliably, after transmission over a dispersive channel. Besides the
estimated transmit symbols, all these receivers need to provide reliability information,
which enables a channel decoder to achieve better decoding results. All receivers are
investigated regarding their bit error performance with and without channel coding, in
the AWGN (additive white Gaussian noise) channel as well as in a multipath environ-
ment.

Besides two rather intuitively derived, two more optimum linear receivers are discussed,
which emerge from classical as well as Bayesian estimation theory: The BLUE (best lin-
ear unbiased estimator) and the LMMSE (linear minimum mean square error) estimator.
The computational complexity of all these receivers is analyzed for both OFDM sym-
bol generation approaches and compared numerically. When using real transmit symbol
constellations, the LMMSE estimator can be outperformed by the WLMMSE (widely
LMMSE) estimator. Furthermore, a symbol scaling effect can be identified for these
Bayesian receivers. This turns out to be harmful for the detection quality with higher
order constellations, such as 16-QAM or 4-ASK. Symbol scaling compensated versions
of the LMMSE and WLMMSE estimators are introduced and their performance docu-
mented.

As another main topic of this work, a few nonlinear receivers are discussed, starting with
two decision directed concepts. First, a method for noise interpolation is introduced,
which exploits the correlation of the data symbols after an LMMSE estimation, in order
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to obtain improved estimates. It turns out that the selection of the samples which are used
for estimation is decisive for the performance of this receiver.

In decision feedback equalization, the influence of detected data symbols on the re-
ceive signal is subtracted iteratively, in order to allow for a more reliable decision of
the remaining symbols. Here, the order of detection is crucial for the decision qual-
ity.

For the derived linear UW-OFDM system model, a maximum-likelihood sequence estima-
tion (MLSE) yields the best estimates possible. However, due to its computational com-
plexity, it is unsuitable for practical application. As a practical realization of the MLSE,
sphere decoding is presented, which obtains the same results with acceptable effort. For
the determination of reliability information, however, a mathematical approximation and
a limitation of parameter dynamics has to be applied, to keep the complexity in adequate
limits, which destroys the optimality of the method.

An investigation of QR decomposition, as it is directly used for sphere decoding and in a
version of decision feedback equalization, shows that the way, how the QR decomposition
is computed, has significant impact on runtime or detection performance, respectively. An
overall performance investigation reveals that the nonlinear receivers clearly outperform
the LMMSE estimator in uncoded transmission. If channel coding is used, they are still
able to achieve a small gain over the best performing linear estimator. However, the
LMMSE estimator constitutes a highly reasonable compromise when performance and
complexity are taken into account.
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1. Introduction

1.1. Communication with High Data Rate over
Dispersive Channels

With the demand of higher data rates and the technological possibilities to build communi-
cation systems transmitting many Megabits per second, the time interval to transmit one
symbol has become very small. For this reason the dispersive properties of the propaga-
tion channel dominate the transmission quality. For wireless single-carrier communication
scenarios, where one data symbol is transmitted after another, multipath propagation (see
Figure 1.1) becomes a tough issue. In order to recover the transmitted data, it needs to be
dealt with reflections, diffusions, diffractions and scattering of the electromagnetic wave at
walls, buildings, landmarks and basically any obstacle, as this causes initially independent
data symbols to interfere with each other. A simple computation shows that, considering
a symbol rate of 10 million symbols per second, which is close to the fastest mode in
IEEE 802.11g [IEE06] or LTE [Tec09], an indirect propagation path adding a detour of
30 m already corresponds to the duration of one symbol, thus causing strong inter-symbol
interference. It is obvious that for cellular scenarios many hundreds of meters in addition
to the shortest path are common. For DSL transmission, which is based on copper wire,
the symbol rate is so high that a transmitted symbol can have an effect on a receive symbol
received more than 100 symbols later. An important task for a high data rate receiver is
to cope with these dispersive propagation effects.

Figure 1.1.: Schematic visualization of multipath propagation.

The high symbol rate is a reason for inter-symbol interference (ISI) in the first place.
Beyond that it puts a lot of pressure on all the countermeasures a receiver employs in
order to deal with these effects regarding complexity and computation time. In the usual
block-based real-time communication scenario, the receiver has only the amount of time to
process a receive block, until the next block is fully received.
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1. Introduction

Therefore, multi-carrier block transmission is an adequate practice. In particular, Or-
thogonal Frequency Division Multiplexing (OFDM) is a well researched multi-carrier
technique that fulfills the need to cope with severe multipath propagation as well as
simple processing. Its origins [Wei09] stem from the 1960s, where the foundations of
OFDM in the modern form were laid [Sal67, Cha66]. In [CG68, WE71] the theoretical
foundations were brought into a more practical and usable form. For practical imple-
mentations and lab realizations, however, it took until the early eighties [PR80, Hir81],
when hardware became capable of handling the technique and OFDM started its track
record.

Currently in 2013, in almost every modern digital communication standard, OFDM plays
an important role. It is used in the audio and video broadcasting standards DAB and
DVB [Eur95, Eur97] that are realized in wireless as well as wire-bound modes. Internet
service providers lay out their last mile to the customer usually via DSL [ANS95]. In-
building networks can be realized by power line communication [GL08] or wireless via
the IEEE 802.11 standards [IEE12]. Finally, OFDM is also used in the LTE cellular
communications standard [DPS11], permeating most communication standards currently
used.

On the downside of OFDM is the need of a guard interval that collects the channel transient
caused by multipath propagation. The guard interval separates the OFDM symbols as a
countermeasure for inter-symbol interference, and is, depending on the sequence transmit-
ted during that interval, a rather wasteful consumer of transmit energy and in some way a
waste of transmit time reducing the bandwidth efficiency. There have been investigations
to reduce this dissipation by diminishing the length of the guard interval, but giving up a
part of the orthogonality feature of OFDM [HTO+02].

Along with other ideas that make different use of the guard interval and are cited in the
next section, Unique Word OFDM transmits a deterministic sequence instead of a cyclic
prefix, and is able to avoid most drawbacks of a guard interval while introducing some very
nice and interesting properties, that can be exploited at the receiver.

1.2. State of the Art

The classical OFDM flavor using cyclic prefixes (CP) to ensure cyclicity of the OFDM
symbols, as it is described in Section 2.1, is dominant and well known; a reference on a text
book [NP00] shall stand for a huge variety of publications on this topic. This cyclic prefix
depends on the data and is hence random. There are many variations of OFDM using
CPs that change the content of the guard interval. For example, by rotating the prefix
part in the complex domain, the transmitter of a CP-OFDM system is able to mitigate
bad channels [CDCY11, Coo12]. This is under the assumption of channel knowledge at
the transmitter and transmission of side information.

Related to UW-OFDM but in detail also very different is KSP-OFDM (known symbol
padding) [TYP+07, WSM08, WS10], where the guard interval is occupied by a determin-
istic sequence. This technique is used, for example, in [CNS06]. In contrast to UW-OFDM
the guard interval is not part of the DFT (discrete Fourier transform) interval. By remov-
ing the known portion of the known sequence in the guard interval (taking the channel
dispersion into account), and adding the remaining transient of the data to the begin-
ning of the observed block interval, the cyclicity of the KSP-OFDM symbols is achieved.

2



1.2. State of the Art

For UW-OFDM, the UW needs to be removed at the receiver in the same way, under the
knowledge of the multipath characteristics of the channel. However, in case of UW-OFDM,
the generation of the UW within the DFT interval introduces correlations among the sub-
carriers which can be advantageously exploited by the receiver to improve the bit error
performance. Whilst in both schemes, UW- and KSP-OFDM, the deterministic sequences
can be used for synchronization and channel estimation purposes, these correlations are
not present in KSP-OFDM.

Actually under the label of KSP-OFDM, a method was shown in [CM01] that resembles
the UW-OFDM concept according to the direct approach, described in Section 2.3.2. Due
to the huge excess energies for the redundant subcarriers this method did not perform
well, as shown in this work as well. Another variant can be derived from KSP-OFDM
by setting the deterministic guard interval sequence to zero. This is called ZP-OFDM
(zero padded) [LPV10, SM07] and endures the same shortcomings over UW-OFDM as
KSP-OFDM. Also equivalent with KSP-OFDM, only termed differently, is TDS-OFDM
(time domain synchronous OFDM). In a recent approach [DWC11] the TDS principle is
adapted in order to mitigate the orthogonality loss problem in an elegant way. However,
no redundancy is introduced in frequency domain, which is one of the main UW-OFDM
features.

Several other attempts to place a deterministic sequence in the guard interval can be found,
for example [MdCD06, WLL11, JHJR02]. All of them differ from the proposed UW-OFDM
scheme in the way that the guard interval is not part of the DFT interval, and thus no
correlations and coding is introduced by these approaches.

Since UW-OFDM time domain symbols contain a block of fixed samples, which is the
UW, the set of all corresponding vectors in the discrete frequency domain forms a coset
to a Reed Solomon (RS) code. Usually RS codes are defined for a finite field along with
a suited discrete Fourier transform. The set of code words is specified by the fact, that
the (inverse) DFT of all code words contains a block of dmin − 1 successive zeros, where
dmin is the minimum Hamming distance of the RS code. Due to the introduction of a
fixed unique word, a coset code to an RS code is generated with respect to this Fourier
transform with the same minimum distance dmin (see [Bla03]). All these definitions apply
for the field of complex numbers and a usual DFT of length N as well and thus to
UW-OFDM. All these parallels to RS codes suggest algebraic decoding. In [HHH10a,
HHK09] it is shown that this leads to an ill-conditioned system of equations that is very
sensitive to noise. Hence, other methods, like those introduced in this work, need to be
applied.

The term “unique word” is derived from the corresponding concept for SC/FDE (single-
carrier / frequency domain equalization) transmission. In single-carrier transmission also
a cyclic prefix or a unique word can be used for establishing block cyclicity and simpler
processing. The introduction of CPs [SKJ94, Czy97, Kad97] as well as UWs [DGE01,
CM01, WMS+02a, WMS+02b, HWH03, Wit04, RBH05] in SC/FDE has been studied
very well. Even the parallels to RS codes could be identified for SC/FDE [MMM09]. The
introduction of UWs in SC/FDE systems is straightforward, since the data symbols as
well as the UW symbols are defined in time domain. In UW-OFDM the data symbols
are defined in frequency domain, whereas the UW symbols are defined in time domain,
which leads to some difficulties. In [HHH10d] the similarities and differences of the UW
approach for OFDM and SC/FDE are studied.
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1. Introduction

1.3. Scope of this Work

Although, some believe that there is not much more to learn on single-antenna OFDM,
this work is dedicated to exactly this topic, and to show that OFDM with the unique
word prefix still offers a lot challenges and chances. Specifically, the introduction of
redundancy during the UW-OFDM symbol generation process poses an interesting task, as
this redundancy can be beneficially exploited at the receiver in order to get better estimates
of the data vector. This is what this work is dedicated to.

In Chapter 2 the principles of OFDM are introduced descriptively and mathematically,
using the example of the ‘classical’ OFDM utilizing cyclic prefixes at first, in order to
come to the main topic of this work: Unique Word OFDM. This chapter leads to specific
receiver processing instructions in order to obtain a simple linear system model, describing
the UW-OFDM transmission from modulation to the input of the data estimator. This
‘basic’ UW-OFDM scheme is called systematically generated UW-OFDM and requires
the dedication of subcarriers to the role of data or redundant subcarriers. A study of
OFDM symbol energies and the impact on the bit error ratio of the introduced UW-OFDM
generation approach, along with a very similar and intuitive symbol generation alternative
is shown. The OFDM symbol energy also depends on the positions of the redundant
subcarriers. A well performing set can be found using the heuristic, introduced in this
chapter as well. Then, a non-systematic approach will be briefly introduced, that lifts
this role dedication from the subcarriers in order get all-purpose UW-OFDM subcarriers.
While a big attenuation of a data subcarrier in a particular realization of the multipath
channel has a very bad impact on the decoding results in systematic UW-OFDM, this
effect is highly mitigated in the non-systematic approach.

After the presentation how to formulate the UW-OFDM transmission procedure in terms
of a linear system model, some linear receivers are presented in Chapter 3. Two esti-
mators are derived using classical and Bayesian estimation theory, and compared against
two rather intuitive equalizers. Furthermore, an estimator will be shown that is better
suited for improper transmit constellations. An inherent issue of the Bayesian receivers is
the bias introduction, which consists of an inter-symbol interference and a symbol scaling
part and poses a severe bit error degradation when using higher order transmit constel-
lations. Symbol scaling compensated versions of the two introduced Bayesian estimators
will be derived, in addition. For some of the linear estimators, complexity optimized
versions are shown, and a complexity analysis proves the effectivity of these optimized
equalizers. In a bit error comparison, the estimators will be evaluated regarding their
performance. The improved estimators, suited for the special cases of improper or higher
order constellations highlight a better bit error performance in the use case they were built
for.

Several nonlinear receivers are shown in Chapter 4, which are well known in the MIMO
(multiple input multiple output) world, where multiple transmit and/or receive anten-
nas are used. Although UW-OFDM is designed for the use of only one transmit and
receive antenna, the interpretation as a MIMO system is valid. The noise interpolation
method is based on the correlation inherent in the remaining noise after an initial linear
estimation, and is derived from Wiener filter theory. The problem of sample selection
is introduced: The noise samples that shall be estimated as well as the samples that
these samples are estimated from need to be picked very carefully, in order to improve
the initial estimates. This behavior is analyzed in the same section. As another MIMO
receiver, decision feedback equalization is shown in the ZF and MMSE version. After the
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presentation of (due to its computational complexity mostly unfeasible) maximum likeli-
hood sequence estimation, the sphere decoder (SD) as a much more practical receiver is
shown. The sphere decoder algorithm is introduced for the UW-OFDM context, and its
complexity is investigated. A performance comparison in the end of the chapter reveals
the best receivers.

For all linear and nonlinear receivers, possibilities are shown to determine soft infor-
mation, to be used by a channel decoder, a Viterbi decoder for example. With this
soft information, as a measure of reliability, a channel decoder is able to deliver much
better decoding results as opposed to only getting hardly decided binary symbols as in-
put.

A QR matrix decomposition plays an important role as a tool for some of the presented
receivers. Therefore, some methods to achieve this are shown in Chapter 5, along with an
analysis of their impact. Chapter 6 will provide a conclusion, and an outlook to interesting
research possibilities and questions left open by this work.

The mathematical notation throughout this work is as follows: Vectors and matrices are
denoted in bold face lower case a and upper case A letters. The element number k of a
vector is addressed by ak. If appropriate, the k-th column of a matrix A is denoted by
ak, such that a matrix with N columns is given by A = [a0,a1,a2, . . . ,aN−1]. In order
to name the element in row k and column l of the same matrix the notation [A]k,l will be
used. To address row number k of a matrix the same notation will be used with an asterisk
to denote the whole range of column indices, as in [A]k,∗. The conjugate complex of a
scalar or of all elements of a vector or matrix is given by a∗. Applicable to scalars, whole
vectors or matrices, the operations <{a} and ={a} return the real part or the imaginary
part of the complex numbers in a. The transpose operation on a vector or a matrix is
denoted by AT, the conjugate transpose

(
AT
)∗

= (A∗)T, or Hermitian of a matrix is AH.
The identity matrix is given by I.

A binary symbol b ∈ {0, 1} is flipped to the other possibility by b. The probability of an
event is displayed as Pr (·). A probability density function (pdf) is shown as p (·), and if
the context is not adequate to distinguish different pdfs, an index pa (·) is added to show
its affiliation to random variable a.

Starting in Chapter 3, furthermore, the following notational rules aid comprehension.
A vector with a tilde ã denotes an estimate of a vector a and a hat denotes a vec-
tor with its values sliced to a valid data symbol, for example â = bãe. With a slicing
operation b·e, the resulting vector contains values of the given transmit symbol alpha-
bet A.
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2. The Unique Word OFDM Signaling Scheme

In this section, the multi-carrier transmission technique OFDM is introduced by starting
with a quite intuitive solution, resulting in cyclic prefix OFDM, which will be further
elaborated in order to come to the main topic of this work: Unique Word OFDM. A few
preparatory steps at the receiver will be formulated that help to formulate the UW-OFDM
transmission scheme as a linear model. This simple model will be the basis for the further
receiver considerations in this work.

The basic idea of multi-carrier transmission in contrast to single-carrier transmission is
to put the data symbols one after another in frequency domain, instead of putting them
one after another in the time domain transmission stream. Therefore, a block of N data
symbols is put into a data vector d ∈ CN×1, which shall be transmitted at once. By
modulating the data symbols on a set of subcarriers that are orthogonal to each other,
all symbols can be easily separated again after the transmission. A set of N orthogonal
signals can be formed easily from complex exponentials

fn[k] =
1

N
ej 2π
N
nk, n, k = 0, . . . , N − 1. (2.1)

By putting all N signals fn[k] in the columns of a matrix

F−1
N =


f0[0] f1[0] · · · fN−1[0]
f0[1] f1[1] fN−1[1]

...
...

f0[N − 1] f1[N − 1] · · · fN−1[N − 1]

 , (2.2)

the inverse DFT (IDFT) matrix is obtained, having the element in the k-th row and l-th
column [

F−1
N

]
k,l

=
1

N
ej 2π
N
kl. (2.3)

The modulation of the data symbols onto different subcarriers is implied by the choice
of the orthogonal signals in (2.1). Consequently, with these signals in vector form fn =

[fn[0], fn[1], . . . , fn[N − 1]]T and a data vector d consisting of the data symbols to be
transmitted, the time domain transmit signal is computed by

x =

N−1∑
n=0

fndn

= F−1
N d.

(2.4)
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2. The Unique Word OFDM Signaling Scheme

By the definition of the IDFT matrix F−1
N , the matrix FN constitutes the DFT matrix

with the elements

[FN ]k,l = e−j 2π
N
kl. (2.5)

Using these definitions of the DFT and IDFT matrices as in (2.5) and (2.3), the N -point
discrete Fourier transform of a sequence x[k]� X[n] with n, k = 0, 1, . . . , N − 1, and the
inverse discrete Fourier transform, defined as

X[n] =

N−1∑
k=0

x[k]e−j 2π
N
kn, x[k] =

1

N

N−1∑
n=0

X[n]ej 2π
N
kn, (2.6)

can be elegantly expressed in vector notation (only in this case the upper case X is a
vector and not a matrix)

X = FNx, x = F−1
N X.

Another common definition of the DFT matrices is[
F′N
]
kl

=
1
√
N

e−j 2π
N
kl

and
[
F′N
−1
]
kl

=
1
√
N

ej 2π
N
kl,

which has the advantages that both matrices are unitary and thus, the inverse of the DFT
matrix is simply its Hermitian:

F′NF′HN = I ⇒ F′−1
N = F′HN .

The definition does not have further impact on the operation of OFDM or other mathe-
matical coherence in this work, but in order to coincide with recent publications covering
UW-OFDM, this work uses the definition as in (2.5), such that

F−1
N =

1

N
FH
N . (2.7)

With these tools the following explanation of the classical OFDM using cyclic prefixes is
well supported.

After assembly of the OFDM symbol according to (2.4), it is transmitted over a dispersive
propagation channel. This channel is modeled as a multipath channel, which in turn is
realized as a tapped delay line with the channel impulse response (CIR) as its coefficients.
The noise introduced at the receiver is usually modeled as additive white Gaussian noise
(AWGN). Thus, the channel propagation of a signal x[k] resulting in y[k] can be written
as

y[k] = x[k] ∗ h[k] + n[k]

=

∞∑
n=0

h[n]x[k − n] + n[k]
(2.8)

and visualized as in Figure 2.1, with the CIR h[k], the sequence of additive white Gaussian
noise n[k] and the linear convolution operation ‘∗’.
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2.1. Orthogonal Frequency Division Multiplexing with Cyclic Prefixing

x[k] h[k] +

n[k]

y[k]

Figure 2.1.: Model of channel propagation.

2.1. Orthogonal Frequency Division Multiplexing with
Cyclic Prefixing

To accommodate the intention to tackle the effect of multipath propagation and keep
individual transmit blocks (from here OFDM symbols) free of inter-symbol interference
(ISI), a guard interval is introduced between them. The duration of the guard interval of
NG samples should be defined at system design and adapted to the propagation scenario:
The channel impulse response should not outlast the guard interval, as shown in Figure 2.2.
A design like this ensures that the transient of the current OFDM symbol caused by the
CIR and shown as the decaying curve in the guard interval of Figure 2.2 does never affect
the next symbol, thus avoiding ISI.

OFDM Symbol

N

OFDM Symbol

NNG NG

. . . . . .

Figure 2.2.: Insertion of a guard interval between OFDM symbols.

Since the only purpose of the guard interval until now is to separate the OFDM symbols to
avoid ISI, the transmitter can transmit anything during that time. Although transmitting
nothing in the guard interval preserves transmit energy, it makes sense to insert a non-zero
block, which is going to be reasoned in the following part.

Convolution Theorem A very important property of the (continuous) Fourier transform is
that it transforms the linear convolution in time domain into a multiplication in frequency
domain. However, switching to a discrete time signal and employing the DFT1, the
representative of the multiplication in frequency domain is the cyclic convolution in time
domain [GRS01]

y[k] = x1[k]
N
~ x2[k] � Y [n] = X1[n] ·X2[n], (2.9)

1In this section, a sequence denoted with an uppercase letter shall represent the DFT domain version
of the time domain sequence denoted in lowercase, for instance y[k]� Y [n].
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2. The Unique Word OFDM Signaling Scheme

relating to sequences of length N . The time discrete cyclic convolution of length N is
defined as

y[k] = x1[k]
N
~ x2[k]

=

N−1∑
n=0

x1[n]x2[(k − n) mod N ],

k = 0, 1, . . . , N − 1.

(2.10)

Cyclic Prefix In classical OFDM, the guard interval preceding each OFDM symbol is
filled with a copy of the NG last values of the symbol in time domain, as shown in
Figure 2.3.

Symbol

NG N

CP

copy

CP-OFDM symbol

Figure 2.3.: Construction of an OFDM symbol using a cyclic prefix.

With the cyclic convolution theorem (2.9) the use of the cyclic prefix is understood clearly:
By cutting off the guard interval at the receiver, all the influence of the preceding OFDM
symbol is removed and thus, ISI is avoided. Additionally, when observing the remaining
length N OFDM symbol, a cyclic convolution can be used to describe the dispersive
channel propagation effect on the OFDM symbol, when being observed for the DFT
duration N only (Figure 2.3)

y[k] = x[k]
N
~ h[k] + n[k], k = 0, 1, . . . , N − 1. (2.11)

Here, the signals x[k] and y[k] are the transmitted and received signals, h[k] is the CIR
and n[k] is complex additive white Gaussian noise with zero mean and a variance of
σ2
n.

The convolution theorem justifies to express the propagation also in frequency domain
by

Y [n] = X[n]H[n] +N [n], n = 0, 1, . . . , N − 1. (2.12)

With the transmit symbol vector d, its time domain representation x given by (2.4) and
additive white Gaussian noise n′ in time domain and n in frequency domain, this can be
expressed in vector notation by

y = H̃ · FNx + FNn′

= H̃d + n,
(2.13)

10



2.2. The UW-OFDM Symbol Generation and System Model

introducing the diagonal matrix H̃ with the sampled channel frequency response FNh on
its main diagonal2. While the time domain noise vector is a realization of complex white
Gaussian noise3 and its statistics are n′ ∼ NC(0;σ2

nI), the statistics of its frequency do-
main representation n = FNn′ need to be derived. The assumption of n′ to be white and
having a diagonal covariance matrix is valid, as optimal band-limited analog signal pro-
cessing can be assumed. After a linear transformation y = Ax of a Gaussian distributed
vector x ∼ NC (µx; Cxx) with a full rank matrix A the resulting mean vector µy and
covariance matrix Cyy can be determined as [Kay93]:

µy = E {y} = E {Ax} = AE {x}

= Aµx,

Cyy = E
{

yyH
}

= E
{

AxxHAH
}

= AE
{

xxH
}

AH

= ACxxAH.

(2.14)

Obviously the zero-mean property holds for n, and as σ2
nFN IFH

N = σ2
nNI, the frequency

domain noise vector n can be considered as the realization of a multivariate Gaussian
random variable n ∼ NC(0;Nσ2

nI).

For the receive vector as in (2.13), the most obvious receiver is the zero-forcing receiver
that simply inverts the channel influence by

d̃ = H̃−1y, (2.15)

which is also the best zero forcing receiver for the here described OFDM system using
cyclic prefixes, or in short CP-OFDM.

Using a CP in the guard interval creates these nice mathematical circumstances, but
besides this it is a waste of energy and bandwidth efficiency, as the CP is a dispensable
copy of the random data part. The problem of the randomness and the dispensability
of the guard interval content, while keeping the necessary mathematical properties and
offering a lot more possibilities, is dealt with a method that is introduced in the next
section.

2.2. The UW-OFDM Symbol Generation and System Model

Let xu ∈ CNu×1 be a predefined sequence of length Nu that is called unique word. This
unique word shall form the tail of each OFDM time domain symbol of total length N and
occupy the guard interval, as shown in Figure 2.4.

Hence, an OFDM time domain symbol vector, as the result of a length-N IDFT, consists
of two parts and is of the form

x′ =

[
xp

xu

]
, (2.16)

2h is the channel impulse response with a duration not longer than the guard interval NG, zero padded
to the DFT length N

3The short notation of a normally distributed complex random vector n with mean vector µn and
covariance matrix Cnn is n ∼ NC (µn; Cnn).
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2. The Unique Word OFDM Signaling Scheme

UW

NG
N

UW

UW-OFDM symbol

Figure 2.4.: Structure of an OFDM symbol using a unique word.

whereas xu ∈ CNu×1 is the unique word and only xp ∈ C(N−Nu)×1 is random and affected
by the data, the only part holding payload. In the concept suggested in [HHH10c] an
OFDM symbol

x =

[
xp

0

]
(2.17)

with a zero UW is generated in a first step. The final transmit symbol is determined by
adding the desired UW in time domain in a second step

x′ = x +

[
0
xu

]
, (2.18)

as it is visualized in Figure 2.5. The reason for this two-step approach instead of a direct
generation of the UW is due to energy reasons and explained in Section 2.3.

= +

xp

xu

xp

0

0

xu

Figure 2.5.: Two-step UW-OFDM symbol generation.

As in conventional OFDM, the data symbols are from a symbol alphabet A, usually QAM
(quadrature amplitude modulation), PSK (phase shift keying) or ASK (amplitude shift
keying) constellations, and put into the vector d ∈ ANd×1. This data vector shall be
specified in frequency domain as part of a vector x̄, but here in addition the zero-word
is specified in time domain as part of the vector x = F−1

N x̄. As Nu values are preset in
the time domain vector x, at least the same number of data subcarriers has to be spent
in frequency domain from x̄, in order to introduce some kind of redundancy. At first,
the values on the redundant subcarriers are gathered in a vector r of length Nr (later
in Section 2.4, another UW-OFDM symbol generation method is presented that lifts the
distinction of data/redundant subcarriers again). Then an OFDM symbol is formed in
frequency domain by

x̄ = BP

[
d
r

]
, (2.19)
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2.2. The UW-OFDM Symbol Generation and System Model

introducing a permutation matrix P ∈ {0, 1}(Nd+Nr)×(Nd+Nr), which places the data and
redundant values on their dedicated subcarrier positions. The position of these subcarriers
in the transmission bandwidth is very important and will be explained in more detail in
Section 2.3. Although the solution of the linear system of equations requires Nr ≥ Nu,
this work only deals with the case

Nr = Nu. (2.20)

An analysis of the usage of more redundant subcarriers Nr > Nu is given in [HHH10b].
Furthermore, a subcarrier selection matrix B ∈ {0, 1}N×(Nd+Nr) is introduced to insert
unused zero subcarriers, usually at the band edges and the DC subcarrier. This is done
in many standards that employ OFDM in order to control the out-of-band radiation and
obey spectral masks. The matrix B is constructed by starting with an identity matrix
of size (Nd + Nr) and adding zero rows at the subcarrier positions that are supposed to
remain unused.

The time–frequency relation x = F−1
N x̄ can now be written as

x =

M︷ ︸︸ ︷
F−1
N BP

[
d
r

]
def.
=

[
M11 M12

M21 M22

] [
d
r

]
=

[
xp

0

] (2.21)

which is visualized in Figure 2.6 by detailing in- and output of the IDFT operation.

IDFT

dr 0 xp

0
N − 1

0

N − 1

0

N − Nu

Figure 2.6.: Time and frequency domain partitioning at the transmitter IDFT.

With the appropriately sized sub-matrices Mkl of M in (2.21), it follows that

0 = M21d + M22r,

r = −M−1
22 M21d. (2.22)

With the matrix

T = −M−1
22 M21 ∈ CNr×Nd , (2.23)
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2. The Unique Word OFDM Signaling Scheme

the vector of redundant subcarrier symbols can be determined by the linear mapping

r = Td. (2.24)

This presentation makes it clear why the values in r are called the values on the redundant
subcarriers or redundant values, as they solely depend on the data, and hence introduce
redundancy that can be exploited at the receiver. The construction of T and accordingly
also the energy of the redundant subcarrier symbols highly depend on the choice of P,
see Section 2.3 for details on the energy of a UW-OFDM symbol and for optimization
methods.

With (2.24) the assembled UW-OFDM symbol in frequency domain is

x̄ = BP

[
d
r

]
= BP

[
I
T

]
d = BGd. (2.25)

The matrix in (2.25)

G = P

[
I
T

]
, G ∈ C(Nd+Nr)×Nd (2.26)

can be considered as a UW-OFDM generator matrix, which allows to rewrite the transmit
symbol in time domain as

x′ = F−1
N BGd +

[
0
xu

]
, (2.27)

Identifying the frequency domain influence of the UW part as x̄u = FN

[
0
xu

]
, this be-

comes

x′ = F−1
N (BGd + x̄u). (2.28)

After transmission over a dispersive channel, a received OFDM time domain symbol can
be modeled as

yr = Hcx
′ + n′ (2.29)

= HcF
−1
N (BGd + x̄u) + n′, (2.30)

where n′ ∼ NC

(
0;σ2

nI
)

represents a complex Gaussian noise vector of length N , which is

white and zero-mean analogous to (2.14), and Hc ∈ CN×N denotes a cyclic convolution
matrix with the zero-padded CIR vector h ∈ CN×1 in its first column. It is not directly
evident to model the propagation using a cyclic convolution instead of the linear convolu-
tion in the same way as for CP-OFDM, but it becomes clear due to the repeating unique
words. This is shown in detail in Appendix B. After applying the DFT at the receiver
the zero subcarriers are excluded from further operation, which leads to the down-sized
vector of length (Nd +Nr)

yd = BTFNyr (2.31)

= BTFNHcF
−1
N (BGd + x̄u) + BTFNn′. (2.32)
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2.2. The UW-OFDM Symbol Generation and System Model

As any circulant matrix is diagonalized by the DFT matrix, the matrix FNHcF
−1
N is

diagonal and contains the sampled channel frequency response on its main diagonal.
Without altering yd, it is allowed to replace x̄u in (2.32) by BBTx̄u. This operation
first removes possibly non-zero values on the zero subcarrier positions from x̄u (BT), to
insert the zeros again (B). Although some frequency components of the unique word
are lost in this procedure, the operations are allowed as FNHcF

−1
N is diagonal and due

to the final removal of the zero subcarriers. With this step, the down-sized vector be-
comes

yd = BTFNHcF
−1
N B(Gd + BTx̄u) + BTFNn′. (2.33)

Furthermore, excluding the entries from the diagonal FNHcF
−1
N that correspond to the

zero subcarriers yields

H̃ = BTFNHcF
−1
N B,

where H̃ ∈ C(Nd+Nr)×(Nd+Nr),
(2.34)

which yields the receive vector in frequency domain, written in the form of the affine
model

yd = H̃Gd + H̃BTx̄u + BTFNn′︸ ︷︷ ︸
n

. (2.35)

Note that the channel characteristics and thus H̃ are unknown at the receiver at first,
which are usually estimated. However, in this work perfect channel knowledge is assumed
at any time. H̃BTx̄u represents the known portion contained in the received vector yd
originating from the UW. Therefore, as the next preparatory step for data estimation, the
UW influence is subtracted

y = yd − H̃BTx̄u (2.36)

to obtain the corrected OFDM symbol. Removing the constant offset due to the UW from
(2.35) produces the linear model form of UW-OFDM transmission

y = H̃G︸︷︷︸
H

d + n, (2.37)

with the complex noise vector n ∼ NC

(
0;Nσ2

nI
)

of length (Nd+Nr).

The model in (2.37) constitutes the starting point, from which the data symbols shall be
estimated.

Link to Reed-Solomon Codes The matrix G in (2.25) can be interpreted as the code
generator matrix for a systematic complex valued block code that generates the code
words c = Gd. Furthermore, in time domain this code has defined Nu consecutive zeros.
This shows many parallels to the definition of a Reed-Solomon (RS) code used for channel
coding, which is traditionally defined on a Galois field, instead of the field of complex
numbers and has consecutive zeros defined in frequency domain [Bla03]. Since UW-OFDM
time domain symbols contain a block of fixed samples, the set of all corresponding vectors
in discrete frequency domain forms a coset to a Reed Solomon code. Usually RS codes of
length N are defined for a finite field FNQ using an element w ∈ FQ of order N,N ·l = Q−1,
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2. The Unique Word OFDM Signaling Scheme

with N, l,Q ∈ N to define a discrete Fourier transform FNQ → FNQ in FQ. The set of code

words is specified by the fact that the (inverse) DFT of all code words contains a block
of dmin − 1 successive zeros, where dmin is the minimum Hamming distance of the RS
code. If this block of dmin − 1 successive symbols differs from zero, but is also fixed for
all code words, a coset code to an RS code is generated in the other domain with respect
to this Fourier transform with the same minimum distance dmin (see [Bla03]). In contrast
to the usual approach using RS codes over a finite field, for example F28 , for an outer
code in a concatenated code scheme, in UW-OFDM there is an inner RS code over the
field of complex numbers. If any further channel coding scheme is applied, the OFDM
guard interval is here additionally exploited for redundancy of an inner channel coding
scheme in a natural way. All these parallels to RS codes suggest algebraic decoding. In
[HHH10a, HHK09] it is shown that this leads to an ill-conditioned system of equations
that is very sensitive to noise. Hence, other methods, like those introduced in this work,
need to be applied.

2.3. UW-OFDM Symbol Energies

Up to now the UW-OFDM symbols were generated by a two-step approach, that added
the unique word in a second step, after generating zeros at the UW position. An approach
yielding much higher OFDM symbol energies is to generate the UW at the IDFT output
in a direct way. The mean energy of a UW-OFDM symbol has direct impact on the
performance on the whole communication chain. This energy does not only depend on the
data symbols in d, but is also affected by the redundant values in r, which in turn depend
on the data, the positions of the redundant subcarriers within the system bandwidth and
most importantly the symbol generation method. Therefore, in this section, the mean
OFDM symbol energies are derived analytically for the two-step approach and the briefly
introduced direct approach.

2.3.1. Symbol Energy for Two-Step Approach

The mean energy of an UW-OFDM symbol when averaging over all possible data vectors,
assembled according to (2.27), is given by [OH10]

Ex = E
{

x′Hx′
}

= E
{

xHx
}

+ xH
uxu

=
1

N
E
{

x̄Hx̄
}

+ xH
uxu

=
1

N
E

{[
dH rH

] [d
r

]}
+ xH

uxu

=
1

N
E
{

dHd
}

︸ ︷︷ ︸
Ed

+
1

N
E
{

rHr
}

︸ ︷︷ ︸
Er

+ xH
uxu︸ ︷︷ ︸
Eu

. (2.38)

The data symbols are assumed to be uncorrelated and from an alphabet A with zero mean
and variance σ2

d, which provides

Ed =
Ndσ

2
d

N
. (2.39)
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The trace operation tr (·)4 and (2.24) help to rewrite the energy of the redundant subcar-
riers as

Er =
1

N
E
{

rHr
}

=
1

N
E
{

tr
(
rrH
)}

=
1

N
tr
(

E
{

rrH
})

=
1

N
tr
(

E
{

TddHTH
})

=
1

N
tr
(
TE

{
ddH

}
TH
)

=
σ2
d

N
tr
(
TTH

)
. (2.40)

Hence, the average amount of energy present on the redundant subcarriers depends solely
on T, which is only influenced by the number and positions of the redundant subcarriers
and thus by the matrix P.

To conclude, the overall mean energy of UW-OFDM symbols generated following the
two-step approach becomes

Ex =
Ndσ

2
d

N︸ ︷︷ ︸
Ed

+
σ2
d

N
tr
(
TTH

)
︸ ︷︷ ︸

Er

+ xH
uxu︸ ︷︷ ︸
Eu

. (2.41)

It is possible to identify the energies descriptively as related to the data Ed, the redundant
subcarriers Er and the unique word Eu.

2.3.2. Symbol Energy for Direct Approach

In contrast to the two-step approach (2.27), in a direct approach the UW can be generated
at the output of the IDFT directly, skipping the addition (2.18). This requires different
vectors and matrices, which are denoted with a superscript (d) (direct approach) in this
section. The initial relation (2.21) has to be written as

x(d) = F−1
N BP

[
d

r(d)

]
=

[
x

(d)
p

xu

]
. (2.42)

With the same definition of M as in (2.21), the derivation becomes xu = M21d+M22r(d)

and further

r(d) = M−1
22 xu −M−1

22 M21d

= M−1
22 xu + Td, (2.43)

which finally leads to

x̄(d) = BP

[
I
T

]
d + BP

[
0

M−1
22

]
xu

= BGd + BP

[
0

M−1
22

]
xu.

(2.44)

4The trace of a matrix is the sum of the elements on its main diagonal.
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Starting in frequency domain, the mean energy per OFDM symbol can be determined
as

E
(d)
x =

1

N
E
{

x̄(d)Hx̄(d)
}

=
1

N
E
{

dHd
}

+
1

N
E
{

r(d)Hr(d)
}
. (2.45)

Applying (2.43) expands the last term further to

E
{

r(d)Hr(d)
}

= E
{

tr
(
r(d)r(d)H

)}
= tr

(
E
{

r(d)r(d)H
})

= tr

(
E

{(
Td + M−1

22 xu

)(
Td + M−1

22 xu

)H})
= tr

(
E
{

TddHTH + M−1
22 xudHTH + TdxH

uM−H
22 + M−1

22 xuxH
uM−H

22

})
.

As xu is deterministic and d has zero mean, the mixed terms vanish and the average
redundant energy is5

E
{

r(d)Hr(d)
}

= σ2
dtr
(
TTH

)
+ tr

(
M−1

22 xuxH
uM−H

22

)
. (2.46)

Putting everything together produces

E
(d)
x =

Ndσ
2
d

N︸ ︷︷ ︸
Ed

+
σ2
d

N
tr
(
TTH

)
︸ ︷︷ ︸

Er

+
1

N
xH

uM−H
22 M−1

22 xu︸ ︷︷ ︸
E

(d)
u

, (2.47)

which only differs from (2.41) in E
(d)
u . This small difference has a big impact on the

final mean OFDM symbol energy and is quantified with exemplary sequences in the next
section. Furthermore, it can be shown that the inequality

1

N
xH

uM−H
22 M−1

22 xu ≥ xH
uxu (2.48)

always holds, which is shown in detail in Appendix C.

The main differences between direct and two-step approach can be summarized in two
points:

• The direct approach yields higher or equal mean energy on the redundant subcarriers,
compared to the two-step approach.

• In direct approach, the UW affects only the redundant subcarriers spectrally, as
seen in (2.44). In the two-step approach, the UW sequence is added afterwards
and thus its frequency representation affects the whole spectrum. Thus, in direct
approach a subtraction of the UW from the receive vector is not necessary, but the
simple channel inversion estimator that is introduced in Section 3.1.3 would still
work. However, more sophisticated data estimators are not usable in this case.

5As the operation order of the Hermitian transposition and the inversion does not matter(
MH

22

)−1
=
(
M−1

22

)H
, it is written as M−H

22 .
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2.3.3. Numerical Examples

With the inequality (2.48) it is obvious that the energy of an OFDM symbol generated
by the two-step approach is always equal or less than the energy of a symbol generated
using the direct approach. The fact that the UW only affects the redundant subcarriers in
the final UW-OFDM symbol x̄ could be exploited as an advantage of the approach, if the
energy penalty is rather low. For actual and reasonable unique words the excess energy in
fact dominates the OFDM symbol energy budget and makes the direct approach unusable
for communications.

In this section, some insight to the dimension of this issue for practical setups is given.
Therefore, three common unique word sequences are considered, their energy consumption
in the two-step and the direct approach are compared, and finally their impact on the bit
error probability (BER – bit error ratio) is shown [OH10].

For the investigation the parameters of the UW-OFDM systems with a DFT length of
64, with 12 zero subcarriers and without zero subcarriers is applied, as introduced as
exemplary UW-OFDM system A and B in Appendix A. The unique word is scaled in
order to consume 25% of the overall average OFDM symbol energy generated by the
two-step approach

xH
uxu

Ex
= 0.25, (2.49)

as it also occupies one fourth of the OFDM symbol duration in time domain.

Therefore, the OFDM symbol energies are calculated using the following sequences as
unique words:

1. the generalized Barker sequence [GS65] of length 12 padded with zeros to the target
length (UW1)

2. a CAZAC sequence (constant amplitude, zero autocorrelation) from [Pop92], as often
used for channel estimation, frequency offset estimation and timing synchronization
(UW2)

3. the Frank-Zadoff sequence of length 16, which is used as a unique word in [IEE04]
and also has CAZAC properties (UW3)

For data symbols from the 4-QAM alphabet, the average energy demand per OFDM sym-
bol when using these sequences as unique words is shown in Figure 2.7, split in the three
components data energy Ed, redundant energy Er and UW generation energy Eu. The
latter is either just the energy of the unique word itself for the two-step approach Eu, or

the whole term in (2.47), which was identified as the UW related energy E
(d)
u . Addition-

ally, the UW generation energy in relation to the whole symbol energy Eu/Ex is given on
top of each bar.

In both subplots the leftmost bar shows the symbol energy for the zero word as UW.
Obviously, the parts Ed and Er are the same as for all other UWs. The next bar shows
the symbol energy for all UWs with the two-step approach, which does not differ between
different UWs. The additional surplus due to the UW is 25% of the whole symbol energy
budget, as postulated earlier. The three remaining bars show the average energies of the
OFDM symbols generated by the direct approach for the chosen UWs. For the setup
without zero subcarriers it is observed in Figure 2.7b that more than half of the symbol
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Figure 2.7.: Energies of UW-OFDM symbols generated by two-step and direct approach,
with different UWs and for UW-OFDM systems according to Table A.1, par-
titioned in data, redundant and UW related part.

energy is related to the UW. The setup inserting 12 zero subcarriers, displayed in sub-
figure (a), increases the excess energy demand even more, up to a ratio, where more than
90% of the transmit energy is spent on the unique word’s influence on the redundant
subcarriers.

The excess energy is more or less wasted. It cannot be utilized for data symbol recovery
at all, as the UW is subtracted in the beginning of the receiver processing. This can
be perfectly observed, when looking at the bit error performance of UW-OFDM systems
with an LMMSE (linear minimum mean square error) receiver, which will be introduced
in Section 3.2, and these particular UWs in the AWGN channel. For the discussed five
methods the bit error performance is displayed in Figure 2.8 revealing a huge advantage of
the two-step approach compared to all direct approach results, that cannot be expected to
be diminished by more sophisticated UW-OFDM receivers.

In particular, relating the direct approach with the highest OFDM symbol energy (UW3,
Frank-Zadoff sequence) to the two-step approach symbol energy yields

E
(UW3)
x

E
(two-step)
x

=
70.51

3.02
= 23.35 , 13.7 dB. (2.50)

These 13.7 dB of energy difference can be observed as gap between the BER curve for the
two-step approach and the UW3, direct approach.

When using the zero word both approaches perform equally, as Eu = 0. This of course
yields the best bit error results, but no UW is present that could be exploited beneficially
for estimation, tracking or synchronization.

Due to these findings, the direct approach is dropped and the two-step approach is used
throughout this work, instead.
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Figure 2.8.: Bit error performance of UW-OFDM system A according to Table A.1 with
two-step and direct UW generation and different UWs in the AWGN channel.

2.3.4. Optimization of the Redundant Subcarrier Positions

In previous publications, for example [HHH10c, HOH11], and in Section 2.2 the neces-
sity of finding good positions of the redundant subcarrier symbols and hence a suited
permutation matrix P was stressed. These positions can be determined by an optimiza-
tion that minimizes a given criterion, which needs to be defined. In [HHOH12] a cost
function is used that incorporates the variances of the remaining error values after a sup-
posed LMMSE data estimation at the receiver, which will be introduced in Section 3.2.
It was found that minimizing the sum of these variances produces practically the same
results, and hence P, as the rather intuitive criterion to minimize the redundant en-
ergy

Er =
σ2
d

N
tr
(
TTH

)
, (2.51)

which, for fixed system parameters σ2
d andN , permits the cost function

JEr (P) = tr
(
TTH

)
. (2.52)

The matrix T of course depends on P according to (2.21) and (2.23).

In [Hof] more optimization criteria are developed. Since it is also shown that the adjusted
cost functions yield mostly the same P, the redundant energy criterion considered in this
work, is sufficient.

For either optimization goal and reasonable choices of N and Nr, an exhaustive search
turns out to be unfeasible. In fact, the energy that has to be spent for the redundant sub-
carriers depending on their positions has been under research recently [Ste12, Ste13], but
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2. The Unique Word OFDM Signaling Scheme

a simple heuristic optimization method turned out to be most successful and convenient.
This heuristic is presented in this section and is able to solve this integer valued optimiza-
tion problem in reasonable computation time [MF04].

Instead of working with a permutation matrix, index sets and index vectors are used in
the following. The index sets of the redundant and the data subcarriers are defined as Ir
and Id respectively, which have to fulfill

Ir ∪ Id = {0, 1, ..., Nr +Nd − 1},
Ir ∩ Id = ∅.

(2.53)

Furthermore, the corresponding index vectors ir and id are used. It shall be noted that
the permutation matrix P can unambiguously be derived from the sorted index vectors ir
and id, and hence also the cost according to (2.52)

JEr (P) = J (ir, id) . (2.54)

In Algorithm 1 and 2 this heuristic is reproduced in pseudo-code. The function heuris-
tic optimization starts with index vectors ir and id that are randomly chosen but valid
according to (2.53). Then in the function find better indexset a better index set is
searched for by exchanging one element of ir with one element of id, such that the cost
function decreases by a maximum amount. This function is called repeatedly until at least
a local minimum is found. Fortunately, the supposedly global minimum can be found by
executing Algorithm 1 only a few times (typically below 10 times for the parameter sets
in this work, see Table A.1).

In summary, this algorithm delivers index sets in a local minimum within a few seconds or
at most a few minutes (depending on N) when implemented in Matlab and executed on
a standard PC system. For some setups, there exists more than one index set minimizing
the cost function. The positions of the redundant subcarriers, given in Appendix A, were
determined by these algorithms.

Algorithm 1 heuristic optimization

1: choose valid index vectors ir and id randomly
2: i′r ← ir, i′d ← id
3: Jnew ←∞
4: repeat
5: ir ← i′r, id ← i′d
6: Jold ← Jnew

7: (i′r, i
′
d)← find better indexset(ir, id)

8: Jnew ← J
(
i′r, i
′
d

)
9: until Jnew ≥ Jold

10: Jbest ← Jold

11: sort ir and id
12: determine P from ir and id
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2.4. Non-Systematic UW-OFDM

Algorithm 2 find better indexset

1: function
[
ir,out, id,out

]
=find better indexset(ir, id)

2: Jbest ← J (ir, id)
3: ir,out ← ir
4: id,out ← id
5: for k = 0, 1, ..., Nr − 1 do
6: for l = 0, 1, ..., Nd − 1 do
7: ir,tmp ← ir
8: id,tmp ← id
9: swap ir,tmp[k] and id,tmp[l]

10: Jnew ← J
(
ir,tmp, id,tmp

)
11: if Jnew < Jbest then
12: ir,out ← ir,tmp

13: id,out ← id,tmp

14: Jbest ← Jnew

15: end if
16: end for
17: end for
18: end function

2.4. Non-Systematic UW-OFDM

In the last section the basic UW-OFDM symbol structure was shown, where each subcar-
rier is dedicated to carry either data or redundant values. In [HHH12] a non-systematic
generation of UW-OFDM symbols is suggested that lifts off the dedication of the subcar-
riers to a data or redundant role and improves the system performance. More precisely, an
altered generator matrix G is employed, which disperses the redundancy over all subcarri-
ers in use. As the data is not immediately visible in the UW-OFDM symbol anymore, this
approach is called non-systematic generation, analogously to the same term in channel
coding. The other way round, systematically generated UW-OFDM symbols possess dedi-
cated data subcarriers that directly show the information symbols.

Although the G for non-systematic UW-OFDM, as presented in this section, is different
from the G for systematic UW-OFDM, it is denoted with the same symbol, as most
processing in this work is also suited to both UW-OFDM generator matrices. Whenever
a distinction between a systematic and non-systematic G is necessary, it is mentioned
explicitly, or it becomes clear from the context.

2.4.1. Generating UW-OFDM Symbols Non-Systematically

In [HHH12] a different generator matrix was assumed to have the form

G = AP

[
I
T

]
, (2.55)

including, opposed to (2.26), an altered version of T and an additional real valued non-
singular matrix A ∈ R(Nd+Nr)×(Nd+Nr), to be found by the minimization of an appro-
priate system based cost function. Analogous to (2.21), this generator matrix still has to
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2. The Unique Word OFDM Signaling Scheme

ensure the zero word at the position of the guard interval

F−1
N BGd =

[
xp

0

]
. (2.56)

With the dispersion of data and redundant values by A, the frequency domain UW-OFDM
symbol in (2.25) becomes

x̄ = Bc = BGd, (2.57)

with a vector c ∈ C(Nd+Nr)×1, c = Gd gathering all values that depend on the data, tak-
ing the place of the permuted vector with data and redundant symbols.

The cost function defined in [HHH12] for finding optimum generator matrices is based on
the covariance matrix of the estimation error Cee after an LMMSE data estimation, as
defined in (3.30). The LMMSE topic will be introduced later in Section 3.2. However, the
solution to this optimization problem is ambiguous. Particular solutions can be found,
for example by applying the steepest descent algorithm. As in [HHH12, Eq. (44)] the
initialization can be chosen as

A(0) = I, (2.58)

which implies T(0) and G(0) to be chosen as T and G for systematic UW-OFDM. The iter-
ative optimization process consequently starts with the code generator matrix G of the sys-
tematic UW-OFDM concept, which can be considered a good initial guess. Note that again
T is unambiguously given by the zero word constraint after the IDFT.

While this approach yields a mainly local dispersion of the energy of each data symbol, a
second approach shown in [HHH12] that uses a random initialization of A(0) shows a global
energy dispersion over the whole system bandwidth. For this work only the first case with
local energy dispersion and initialization as in (2.58) is considered.

Interestingly, it was found that a matrix G, generated as introduced above, fulfills the
property

GHG = αI, α ∈ R, (2.59)

which will be helpful when determining the non-systematic UW-OFDM symbol energy in
Section 2.4.2.

It was found in [HHH12] that any matrix G fulfilling the properties (2.56) and (2.59) is a
valid generator matrix for non-systematic UW-OFDM.

2.4.2. Energy of Non-Systematically Generated UW-OFDM Symbols

For non-systematically generated UW-OFDM the distinction between data and redundant
energy is of course not possible anymore, but the property (2.59) simplifies the determi-
nation of the mean OFDM symbol energy a lot:

Ex = E
{

x′Hx′
}

=
1

N
E
{

x̄Hx̄
}

+ xH
uxu

=
1

N
E
{

dHGHGd
}

+ xH
uxu

=
α

N
E
{

dHd
}

+ xH
uxu

=
αNdσ

2
d

N
+ Eu.

(2.60)
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It makes sense to normalize the non-systematic generator matrix G, such that α = 1,
in order to have OFDM symbol energies independent of the actually used generator ma-
trix.

2.5. Simulation Setup

Linear and nonlinear receiver concepts for Unique Word OFDM are the main contribution
of this work and covered in Chapter 3 and 4. The performance of the presented receiver
concepts will be evaluated by numerical simulation in terms of the bit error ratio they
achieve at a given signal-to-noise-ratio (SNR).

Signal-to-Noise Ratio As measure for the SNR, the average energy per bit of informa-
tion Eb and the noise energy are put into relation. The noise energy can be derived
from the noise power by multiplication with the sampling time Ts. Usually, in a digi-
tal signal processing setup, Ts is normalized to 1. Thus, the noise energy double-acts
as noise power. The noise power again can be derived from the noise power spectral
density N0. Assuming optimum transmit and receive filters, alias-free sampling with sam-
pling time Ts and representation in the ECB (equivalent complex baseband) domain, the
noise power is given by N0/Ts = N0. This reduces the regarded SNR measure to the
Eb/N0-ratio, which is defined by the average transmit energy per bit of information Eb
and the one-sided noise power spectral density N0 (corresponds to a two-sided noise power
spectral density in ECB domain). Furthermore, as additive noise is considered to be free
of mean, N0 can be considered as noise variance σ2

n, which is considerably done in this
work.

Block Diagram The transmission chain of the UW-OFDM system is modeled as a block
diagram as shown in Figure 2.9 with the following steps: The binary transmit data,
which is assumed to be uniformly distributed and iid.6, is either transmitted directly, or
channel coded and interleaved prior to further processing. Both, the channel coding and
interleaving operation, which are detailed later in this section, are optional and hence
shown in dashed boxes. The sequence of binary symbols is then mapped to transmit
symbols. While, in general these transmit symbols can be from any alphabet, in this
work only 4-QAM will be used, having constellation points at {1 + j, 1− j,−1 + j,−1− j},
with the exception of 2-, 4- and 8-ASK (constellation points at {−1, 1}, {−3,−1, 1, 3}
and {−7,−5, . . . , 7}), when discussing the widely linear receiver in Section 3.2.3, and 16-
QAM (with the values {−3,−1, 1, 3} in real and imaginary part) for the symbol scaling
compensation in Section 3.2.4.

With channel coding, a conjunction of coding and mapping should be realized for opti-
mality. However, a separate realization with an interleaver of a suitable depth together
with bit-interleaved coded modulation (BICM) is close to optimal, if not optimal in some
scenarios. According to [CTB98], it is asymptotically optimal and practically sufficient to
employ Gray labeling in the mapping operation. According to these findings, in this work
only Gray labeled mapping as well as a block interleaver, as detailed later in this section,
is used.

6independent and identically distributed
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2. The Unique Word OFDM Signaling Scheme

An OFDM symbol is assembled in frequency domain according to (2.25) and then trans-
formed into time domain, where it is equipped with the UW (2.18). Next, the channel
propagation is modeled, which consists of a multipath propagation and additive white
Gaussian noise. In the receiver, first the DFT is performed to get the frequency domain
representation, from which the UW influence is subtracted, as described in (2.36). The
next block performs the data estimation using any of the receivers that will be introduced
in Chapter 3 and 4. After that, these estimates are mapped to a sequence of binary sym-
bols that corresponds to the closest symbol of the transmit alphabet. If applicable, the
deinterleaving and channel decoding follows then.

binary
data input

Channel
Coding

Inter-
leaving

QAM
Mapping

Assemble
OFDM Symbol

IDFT
Add
UW

Channel

DFT
Subtract UW

influence
Data

Estimation
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binary data
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Figure 2.9.: Block diagram of the simulated Unique Word OFDM systems.

Channel Coding Transmission with and without channel coding is considered in this
work. For the case when a channel code is used, the block diagram in Figure 2.9 shows
a channel encoder at the transmitter side and a decoder at the receiver side in dashed
boxes. The convolutional encoder with rate r = 1/2, constraint length 7 and the gen-
erator polynomials (133, 171) is used, which is based on the definitions used during the
standardization process of the IEEE 802.11a standard [IEE99]. A soft decision Viterbi
algorithm is applied for decoding. If the Viterbi decoder is provided with reliability infor-
mation for the receive symbols, the so-called soft information, it is able to further improve
upon the hard-decision result. In this work, soft information is determined for all re-
ceiver types and soft-decision is done in all simulations using channel coding, rather than
hard-decision.

Reliability Information For most receivers shown in this work, the statistics of the re-
maining error (that is the difference between estimated and actual data symbol) are used
to determine the soft information. In particular, the main diagonal of the error covariance
matrix is of interest, which holds the variances of the error. In the binary representation
of the receive symbols, after QAM demapping, the ratio of the probabilities of each sym-
bol to be 0 and 1 is an adequate reliability measure: A data symbol estimate d̃ = d + e
is assumed to consist of the actual transmitted symbol and a complex error, which is
zero-mean and Gaussian distributed with a variance given by σ2

e . 4-QAM with neigh-
boring QAM symbols separated by dmin is considered, where the real and imaginary
part are independently detectable, such that both parts affect one detected bit b0 and
b1 only. Then, the so-called log-likelihood ratio L0 of the bit representing the real part
is (equiprobable symbols assumed with complex Gaussian noise of zero mean and vari-
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ance σ2
e)

L0 , ln
Pr
(
b0 = 1

∣∣∣<{d̃})
Pr
(
b0 = 0

∣∣∣<{d̃}) . (2.61)

By applying Bayes’ theorem (a more detailed derivation and discussion is given in Sec-
tion 4.3.2), this becomes

L0 = ln
p
(
<
{
d̃
}∣∣∣b0 = 1

)
p
(
<
{
d̃
}∣∣∣b0 = 0

)

= ln

exp

{
− (<{d̃}−dmin/2)2

σ2
e

}
exp

{
− (<{d̃}+dmin/2)2

σ2
e

}

=

(
<
{
d̃
}

+ dmin/2
)2

σ2
e

−

(
<
{
d̃
}
− dmin/2

)2

σ2
e

=
2dmin

σ2
e

<
{
d̃
}

(2.62)

which yields 4
σ2
e
<
{
d̃
}

for the definition of the QAM constellations in this work. The

same applies to the bit for the imaginary part b1. This is how the reliability measure is
determined from the data estimate and the noise variance for all estimates. It is exact for
4-QAM constellation, and acceptably accurate for higher order QAM constellations. Note
that the same log-likelihood ratio applies for 2-ASK (and approximately for higher order
ASK) with complex Gaussian noise, as it is used in this work.

Interleaving In order to avoid bundle errors, the coded bits are interleaved using a block
interleaver over the complete bit stream. The block interleaver separates adjacent code
bits by as many positions as indicated by the interleaving factor, which has to be cho-
sen in order to spread adjacent bits further apart, than the constraint length of the
code. This operation is reversed by a deinterleaver before channel decoding at the re-
ceiver.

For the choice of the interleaving factor, the time-invariance of the channel and the
burst-wise transmission pose the following problem: The interleaving factor shall be
large in order to spread symbols, which are affected by possibly correlated channel in-
fluence7, as far as possible apart. On the other hand, due to the time-invariance and
the transmission of many OFDM symbols over one realization of the channel, it should
be avoided that neighboring bits are transmitted on the same subcarrier (or ones with
correlated channel attenuation) in one of the next OFDM symbols. In general it can be
stated:

7The channel attenuation factors given by H̃ are necessarily correlated, as only NG + 1 < N taps of
the CIR determine the channel frequency response of length N .
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• the further apart the bit positions inside the OFDM symbol, the lower the correlation
of the channel attenuation

• the further two symbols are separated in the non-interleaved stream, the less negative
impact has a possible correlation in the decoding process

• it should be avoided that both of these distances are low

This trade-off is taken care of by the choice of interleaving factors (number of positions,
neighboring code bits are spread apart), as given for each system setup in Appendix A.
In Figure 2.10, an interleaving factor of 15 is visualized, as it is used in the exemplary
UW-OFDM systems B. The system shown here uses 4-QAM and therefore packs 96 coded
binary symbols in one OFDM symbol. The blue marks indicate initially adjacent binary
symbols that are separated by 15 other symbols after interleaving. Observing the relation
to symbol 2, which is in position 16 of OFDM symbol 1 and marked with a black asterisk,
a couple of symbols (circled in red) can be identified in positions that are highly correlated
to the channel attenuation in the same position. Symbol number 8, 15 and 21 are the first
symbols that lie in closest vicinity of symbol 2, at the positions 10, 19 and 13, compared
to 16. This is an acceptable trade-off that was empirically found to show good BER
results, even when used with different transmit constellations. For all other utilized UW-
OFDM system setups, the same considerations were pursued in order to find a suitable
interleaving factor, also under consideration of other transmit constellations used in this
work.
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Figure 2.10.: Visualization of the separation of initially adjacent binary symbols with inter-
leaving factor 15 in exemplary UW-OFDM system B and 4-QAM, according
to Appendix A.

Simulation For the simulations, the multipath channel propagation is modeled as the
convolution of the transmit signal with a time-invariant discrete channel impulse response
vector h not exceeding the guard interval, which is with a maximum length of NG +1 taps.
In any case additive white Gaussian noise is added after this. Its variance is set according
to the desired Eb/N0-ratio, determined at the transmitter output. For the simulations of
the multipath environment, channel impulse responses (CIRs) are generated according to
the model presented in [Fak97], which has also been used during the IEEE 802.11a stan-
dardization process. A fixed set of 10 000 CIRs is used as realization of the channel model,
having a channel delay spread τrms = 100 ns for the exemplary UW-OFDM systems A and
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B and τrms = 50 ns for systems SD and ML (see Appendix A for the system parameters).
The CIR is assumed to be constant during the transmission of a burst of several hundred
OFDM symbols. The BER values are averaged by dividing the total number of bit errors
by the total number of transmitted bits over all channel realizations, which are used for
transmission equally often. When the transmission over an AWGN channel is simulated,
the CIR is simply h = [1].

For all operations arbitrarily accurate arithmetic is assumed, which means that quantiza-
tion effects and numerical effects due to arithmetic implementation are neglected. Perfect
channel knowledge, which is the CIR and the Eb/N0-ratio, is assumed in the simulations.
Since the focus lies on data estimation procedures in this work rather than on synchroniza-
tion or channel estimation approaches, the zero UW is chosen for the BER simulations.
When discussing the simulation results, performance differences are given in dB, measured
at a BER of 10−5, if not stated otherwise.
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With the derivations in Section 2.2, the linear model of the Unique Word OFDM trans-
mission system (2.37) is at hand. This linear model allows for many receiver types in order
to recover the data from the receive vector y. It has already been stated that the inver-
sion of the channel influence by multiplication with H̃−1 represents the optimum receiver
for CP-OFDM. The UW-OFDM receiver, however, can be much more sophisticated and
complex. This puts an important feature of OFDM and in particular CP-OFDM, its sim-
plicity at the receiver side, into perspective. But, as shown in a performance comparison,
the additional effort is not in vain.

In this chapter, several linear receivers will be derived that are either intuitive or emerge
from classical or Bayesian estimation theory [Kay93, HOH11]. Also methods of complexity
reduction will be shown, which require a slightly different definition of the linear model in
(2.37). Therefore, the linear model for the systematic approach for UW-OFDM symbol
generation (2.37) is expanded back to

y = BTFNHcF
−1
N B︸ ︷︷ ︸

H̃

P

[
I
T

]
︸ ︷︷ ︸

G

d + BTFNn′︸ ︷︷ ︸
n

, (3.1)

and the permutation is reverted ys = PTy, in order to get a sorted receive vector

ys = PTBTFNHcF
−1
N BP︸ ︷︷ ︸

H̃s

[
I
T

]
︸︷︷︸
Gs

d + PTBTFNn′︸ ︷︷ ︸
ns

. (3.2)

This also yields sorted versions of the channel matrix H̃s (which is diagonal, just as

H̃) and the generator matrix Gs. This sorted version places the data subcarriers at
the first Nd and the redundant subcarriers at the following Nr positions, instead of
an order of the subcarrier positions as formulated by P. This yields again a linear
model

ys = H̃sGsd + ns. (3.3)

The advantage of the sorted notation becomes apparent, when the complexity optimized
versions of the equalizers are introduced and their complexities compared. For the data
estimates though, it does not matter at all if (2.37) or (3.3) is used. As the definition
of G for non-systematic UW-OFDM is different, this approach cannot benefit from the
sorting, and thus the complexity optimization shown later in this chapter is not feasible.
For non-systematic UW-OFDM systems, (2.37) applies and H̃, G and y need to be used

instead of H̃s, Gs and ys for the remainder of this chapter.
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For now, linear data estimators of the form

d̃ = Eys (3.4)

are considered, where E ∈ CNd×(Nd+Nr) is the estimator matrix. These estimators are
derived with the help of classical estimation theory in Section 3.1 and Bayesian estima-
tion theory in Section 3.2. In case of a complex valued transmit alphabet that does
not show first and second order statistics being invariant with respect to rotation within
the complex plane, a so-called improper constellation [NM93], an even better performing
Bayesian estimator exists. This estimator and a definition to ‘properness’ will be intro-
duced in Section 3.2.3. Additionally, the computational complexity will be analyzed in
Section 3.3, for most linear receivers. A performance comparison follows in Section 3.4,
before summarizing the chapter in Section 3.5.

3.1. Classical Data Estimators – Zero Forcing Solutions

Note, that in classical estimation, the data vector is assumed to be deterministic but un-
known. In order for the estimator to be unbiased, it is required that

E
{

d̃
}

= E {Eys} = EH̃sGsd = d. (3.5)

Consequently, the unbiased constraint takes on the form

EH̃sGs = I, (3.6)

which is equivalent to the zero forcing (ZF) criterion for linear equalizers. The solution

to (3.6) is ambiguous, though. To show this, a singular value decomposition of H̃sGs ∈
C(Nd+Nr)×Nd is considered, as

H̃sGs = U

[
Σ
0

]
VH, (3.7)

with unitary matrices U ∈ C(Nd+Nr)×(Nd+Nr) and V ∈ CNd×Nd , and with the di-
agonal matrix Σ ∈ RNd×Nd having the singular values of H̃sGs on its main diago-
nal. With (3.7) the postulation for the absence of a bias (also: ZF criterion) (3.6) be-
comes

EU

[
Σ
0

]
VH = I. (3.8)

It is easy to see that (3.8) and therefore also (3.6) is fulfilled by every equalizer of the
form

E = V
[
Σ−1 A

]
UH (3.9)

with arbitrary A ∈ CNd×Nr . Due to this fact, the ZF solution is ambiguous, which dis-
tinguishes UW-OFDM from competing block oriented single input single output (SISO)
approaches like CP-OFDM and CP-SC/FDE. For CP-OFDM the channel inversion re-

ceiver E = H̃−1 represents the unambiguous ZF solution, which also corresponds to the
optimum data estimator, see [NP00]. For CP-SC/FDE the ZF solution is also unambigu-
ous, as soon as the receiver filter (for example a matched filter) preceding the equalizer is
specified. It is given by the inverse of the diagonal symbol spaced channel matrix which
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3.1. Classical Data Estimators – Zero Forcing Solutions

contains the influence of the transmit pulse shaping filter, the multipath channel and the
receiver filter [HKWR03]. As the solution to the unbiased constraint is not unambiguous,
it makes sense to look for the optimum solution which is commonly known as the best
linear unbiased estimator.

3.1.1. Best Linear Unbiased Estimator

By applying the Gauss-Markov theorem [Kay93] to (3.3) and with the noise covariance
matrix Cnn = E

{
nsnH

s

}
= Nσ2

nI, the best linear unbiased estimator (BLUE) and conse-
quently the optimum ZF equalizer follows to

EBLUE =
(
GH
s H̃H

s H̃sGs

)−1
GH
s H̃H

s . (3.10)

EBLUE as given in (3.10) represents the pseudo-inverse of H̃sGs. Since the noise in (3.3) is
assumed to be Gaussian, (3.10) is also the minimum variance unbiased (MVU) estimator.
The covariance matrix of d̃ = EBLUEys, or equivalently the covariance matrix of the
error e = d− d̃ is given by

Cee = Nσ2
n

(
GH
s H̃H

s H̃sGs

)−1
. (3.11)

With the singular value decomposition as in (3.7) and after some rearrangements using
standard matrix algebra, (3.10) can immediately be rewritten as

EBLUE = V
[
Σ−1 0

]
UH. (3.12)

By comparing this result with (3.9) it can be concluded that EBLUE corresponds to the
solution in (3.9) for the particular case A = 0. EBLUE is in general a full matrix, which
distinguishes UW-OFDM from CP-OFDM and CP-SC/FDE, where the BLUE is given
by a diagonal matrix.

3.1.2. Complexity Optimized Version of the BLUE

One drawback of the BLUE represented as in (3.10) is the fact that an Nd × Nd matrix
has to be inverted to determine the equalizer. In this section, a significantly complexity
reduced version of the BLUE is derived by exploiting the simple structures of Gs and
H̃s, respectively. This structure however, is due to the re-sorting of the data and re-
dundant subcarriers. The complexity improvement does not apply to non-systematically
generated UW-OFDM, as the non-systematic G does not show a comparable simple struc-
ture.

For the complexity optimized BLUE, H̃s is decomposed as

H̃s =

[
H̃s,d 0

0 H̃s,r

]
, (3.13)

with the diagonal matrices H̃s,d ∈ CNd×Nd and H̃s,r ∈ CNr×Nr . With

Gs =

[
I
T

]
(3.14)
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from (3.3) it follows that

H̃sGs =

[
H̃s,d 0

0 H̃s,r

][
I
T

]
=

[
H̃s,d

H̃s,rT

]
, (3.15)

and the expression (GH
s H̃H

s H̃sGs)−1 appearing in (3.10) and (3.11) can be written as

(GH
s H̃H

s H̃sGs)
−1 = (H̃H

s,dH̃s,d + THH̃H
s,rH̃s,rT)−1. (3.16)

With the introduction of the real diagonal matrices

Dd = H̃H
s,dH̃s,d, Dd ∈ RNd×Nd , (3.17)

Dr = H̃H
s,rH̃s,r, Dr ∈ RNr×Nr , (3.18)

the matrix inversion lemma [Kay93] can be applied to the right hand side of (3.16) to
obtain

(GH
s H̃H

s H̃sGs)
−1 = D−1

d −D−1
d TH(TD−1

d TH + D−1
r )−1TD−1

d . (3.19)

The inversions of the real diagonal matrices Dd and Dr are trivial, and the additional
matrix (TD−1

d TH+D−1
r ) to be inverted is Hermitian and only has the dimension Nr×Nr.

Furthermore, the expression TD−1
d (and its Hermitian transpose) occurs repeatedly in

(3.19) which allows for further complexity reduction.

Summarizing the complexity reduction, the BLUE estimator becomes

EBLUE =
(
D−1
d −D−1

d TH(TD−1
d TH + D−1

r )−1TD−1
d

) [
H̃H
s,d THH̃H

s,r

]
. (3.20)

In Section 3.3, the complexity of the different representations of the BLUE is studied.
It should be pointed out that the derivation of the complexity reduced version of the
BLUE has mainly been made possible by the re-sorting (multiplication with PT) of the
data and redundant subcarrier symbols in (3.3). As this separation is nonexistent for
non-systematically generated UW-OFDM, the complexity optimized version of the BLUE
is not applicable for this UW-OFDM scheme.

3.1.3. Sub-Optimum ZF Receiver Structures

Any linear zero forcing equalizer has to fulfill (3.6) in order to be a valid estimator accord-
ing to (3.4). As already shown above, the ZF solution is ambiguous for the UW-OFDM
transmission model described in (2.37) or (3.3). Another quite intuitive and straightfor-
ward ZF solution is given by

ECI =
[
I 0

]
H̃−1
s . (3.21)

This equalizer inverts the channel H̃s first, and the data symbols are extracted sub-
sequently. Clearly this procedure fulfills (3.6). In the following, this equalizer will be

referred to as the channel inversion (CI) receiver. Using the decomposition of H̃s as in
(3.13), (3.21) can be simplified to

ECI = H̃−1
s,d

[
I 0

]
. (3.22)
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The channel inversion receiver represents a low complex solution since H̃s,d has a diagonal
structure, but it does not take advantage of the correlations introduced by Gs at the
transmitter side. The covariance matrix of d̃ = ECIys, or equivalently the covariance
matrix of the error e = d− d̃ can easily shown to be

Cee = Nσ2
n

(
H̃H
s,dH̃s,d

)−1
. (3.23)

Next, another quite intuitive equalizer is addressed, which exploits the a-priori knowledge
that the guard interval samples of an UW-OFDM symbol must be zero after the channel
inversion in the noiseless case. In the presence of noise, simply the guard interval samples
are forced to zero, which is achieved by the time domain windowing (TDW) equalizer of
the form

ETDW =
[
I 0

]
PTBTFNΘF−1

N BPH̃−1
s , (3.24)

where

Θ =

[
I 0
0 0

]
. (3.25)

The TDW equalizer starts with an inversion of the channel. The permutation is applied
next and the zero subcarrier symbols are added again in order to be able to transform
back to time domain with an IDFT of length N . Here, a windowing is performed by
Θ, where the guard interval samples are forced to zero. Next, a transformation back to
frequency domain is carried out, the zero subcarriers are excluded again, a re-sorting is
done, and finally the data symbols are extracted. It can easily be shown that ETDW

also fulfills (3.6). Note, that the TDW equalizer also represents a quite low complex
solution since none of the individual operations requires a full matrix multiplication, in
fact most of the steps apart from DFT and IDFT are trivial. The covariance matrix of
d̃ = ETDWys, or equivalently the covariance matrix of the estimation error e = d− d̃ is
given by

Cee = Nσ2
nETDWEH

TDW. (3.26)

The two receivers (3.21) and (3.24) need the actual data symbols visible in the frequency
domain code word c, and thus work fine if the system generates the UW-OFDM symbol
systematically. For non-systematic UW-OFDM however, this is not the case, and an
additional inversion of the potentially fully occupied A would be necessary. Hence, the
receivers for non-systematically generated UW-OFDM with CI or TDW data estimators
are not regarded in this work, as they are not feasible in this simplicity and perform
inferiorly.

3.2. Linear Bayesian Data Estimators — LMMSE Solutions

Now, the commonly used linear minimum mean square error (LMMSE) data estimator
is discussed, which is derived with the help of the Bayesian approach. In the Bayesian
approach, the data vector is assumed to be the realization of a random vector instead of a
deterministic and unknown vector as in classical estimation theory. In the following, the
LMMSE batch solution is derived, then a complexity optimized version of the LMMSE
batch solution is formulated. Furthermore, in [HOH11] a highly complexity optimized
version of the sequential LMMSE estimator is introduced. This work will exclude its
derivation; it is referred to [HOH11, Kay93].
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3.2.1. LMMSE Batch Solution

The LMMSE batch estimator is a linear estimator that is used as in (3.4), just like the es-
timators introduced up to now. The term “batch” indicates the fact that the equalizer can
be determined completely before the actual data estimation. The result of the estimator
determination is a batch of instructions (one row of matrix E for every data value to be esti-
mated) in order to estimate the whole data vector at once. It also distinguishes this version
from the sequential LMMSE, which is omitted in this work.

By applying the Bayesian Gauss-Markov theorem [Kay93] to (3.3), where d is now assumed
to be the realization of a random vector, and by using Cdd = σ2

dI and Cnn = Nσ2
nI the

split LMMSE equalizer follows to

ELMMSE = WH̃−1
s , (3.27)

where W represents a Wiener smoothing matrix given by

W = GH
s

(
GsG

H
s +

Nσ2
n

σ2
d

(H̃H
s H̃s)

−1

)−1

. (3.28)

The following interpretation of the LMMSE estimator’s mode of operation is allowed for
(3.27): The LMMSE equalizer acts as a split composition of a simple channel inversion

stage (multiplication with H̃−1
s ) and a Wiener smoothing operation (multiplication with

W). The Wiener smoothing operation exploits the correlations between subcarrier sym-
bols which have been introduced by (2.24) at the transmitter and acts as a noise reduction
operation on the subcarriers.

For the split equalizer in (3.27), a rather large (Nd + Nr) × (Nd + Nr) matrix has to
be inverted. By applying the matrix inversion lemma, it can easily be shown that the
equalizer can equivalently be determined by

ELMMSE =

(
GH
s H̃H

s H̃sGs +
Nσ2

n

σ2
d

I

)−1

GH
s H̃H

s . (3.29)

Equation (3.29) shows strong similarities to the BLUE in (3.10). For σ2
n = 0 the expres-

sions for the LMMSE equalizer and the BLUE coincide. Note that by using (3.29) instead
of (3.27) for the LMMSE equalizer determination, the matrix to be inverted only has the
dimension Nd × Nd. The error e = d − d̃ has zero mean, and its covariance matrix is
given by

Cee = Nσ2
n

(
GH
s H̃H

s H̃sGs +
Nσ2

n

σ2
d

I

)−1

. (3.30)

3.2.2. Complexity Optimized LMMSE Batch Equalizer

For the LMMSE equalizer, a complexity reduced version can be derived similar as for the
BLUE in Section 3.1.2. Using (3.13) and (3.15), the expression in (3.29) to be inverted
can be written as(

GH
s H̃H

s H̃sGs +
Nσ2

n

σ2
d

I

)−1

=

(
H̃H
s,dH̃s,d + THH̃H

s,rH̃s,rT +
Nσ2

n

σ2
d

I

)−1

. (3.31)
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Now, defining

Dd = H̃H
s,dH̃s,d +

Nσ2
n

σ2
d

I, Dd ∈ CNd×Nd , (3.32)

Dr = H̃H
s,rH̃s,r, Dr ∈ CNr×Nr , (3.33)

and following the same steps as in Section 3.1.2, the equation for the complexity optimized
version of the LMMSE equalizer is obtained by

ELMMSE =
(
D−1
d −D−1

d TH(TD−1
d TH + D−1

r )−1TD−1
d

) [
H̃H
s,d THH̃H

s,r.
]
, (3.34)

which is exactly the same as (3.20) with just a slightly different definition of Dd. Again,
this version only applies to systematically generated UW-OFDM, the non-systematic ap-
proach does not allow this optimization.

3.2.3. Widely Linear MMSE Estimation

The BLUE and LMMSE estimator are optimal only for a special case that was implic-
itly assumed: They assume a data symbol constellation A that has proper statistics
[NM93]. Properness is a property of complex random variables or vectors, which requires
that

E
{

(x− E {x}) (x− E {x})T
}

= 0. (3.35)

In the scalar case, this is equivalent with the fact that the real and imaginary part of the
stochastic variable have the same variance and are uncorrelated to each other. Proper-
ness of course applies to most practical QAM constellations (assuming iid. binary input
symbols). However, not always a proper alphabet is used for communication. For ex-
ample, small ASK constellations defining only real valued data symbols are used in some
standards as a simple “fallback” constellation, if communication otherwise fails. ASK
constellations do not utilize the imaginary part at all, thus ASK is an improper constel-
lation.

When the data symbol alphabet is improper, this can be taken into account when deriving
a linear Bayesian estimator. For ASK data symbol alphabets, the so-called widely linear
MMSE estimator is able to achieve better performance results compared to the LMMSE
estimator [PC95, GSL03]. The derivation of the WLMMSE data estimator is straight-
forward and shown in [ASS11]. In this work the theory will not be elaborated and only
the final results are shown. The ‘unsorted’ linear model (2.37) is used in this section, as
the sorting does not offer any possibilities for complexity optimization. For widely linear
estimators, the equalizing equation (3.4) is altered to1

d̃ = E1y + E2y∗, (3.36)

with the two equalizer matrices defined as

E1 =
(
Cdy −Cdy∗C

−∗
yy C∗yy∗

)
P−1
yy ,

E2 =
(
Cdy∗ −CdyC

−1
yy Cyy∗

)
P−∗yy ,

(3.37)

1As the operation order of the complex conjugate and the inversion does not matter, that is(
C∗yy

)−1
=
(
C−1
yy

)∗
, it is written as C−∗yy .
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and the Schur complement

Pyy = Cyy −Cyy∗C
−∗
yy C∗yy∗ . (3.38)

These equations make use of a covariance matrix of two zero mean vectors a and b, which
is defined as

Cab = E
{

abH
}
,

Cab∗ = E
{

a (b∗)H
}

= E
{

abT
}
.

(3.39)

The matrix Cab∗ is sometimes also referred to as complementary or pseudo-covariance
matrix.

For the special case of proper transmit data vectors, Cdy∗ = 0 and Cyy∗ = 0, reducing
the WLMMSE to the LMMSE equalizer, such that E1 = ELMMSE and E2 = 0, as shown
in [Tra13]. For ASK constellations, d is a vector of real data symbols. Then Cdy∗ = C∗dy
and subsequently E2 = E∗1, which results in the WLMMSE data estimation of the form
[Tra13]

d̃ = E1y + E∗1y∗ = 2<{EWLMMSEy} , (3.40)

EWLMMSE = E1 =
(
Cdy −C∗dyC

−∗
yy C∗yy∗

)
P−1
yy . (3.41)

With the covariance matrices defined as in (3.39), the necessary parts of the WLMMSE es-
timator for UW-OFDM in combination with real data vectors can be identified as

Cdy = σ2
dG

HH̃H,

Cyy = σ2
dH̃GGHH̃H +Nσ2

nI,

Cyy∗ = σ2
dH̃GGTH̃T,

(3.42)

and the Schur complement Pyy is composed as in (3.38).

The error covariance matrix can be determined by [ASS11]

Cee = Cdd −
(
Cdy −Cdy∗C

−∗
yy C∗yy∗

)
P−1
yy CH

dy

−
(
Cdy∗ −CdyC

−1
yy Cyy∗

)
P−∗yy CH

dy∗ ,
(3.43)

which, in the context of UW-OFDM with a real valued transmit vector, becomes

Cee = σ2
dI−EWLMMSECH

dy −
(
EWLMMSECH

dy

)∗
= σ2

dI− 2<
{

EWLMMSECH
dy

}
,

(3.44)

with EWLMMSE as in (3.41).
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3.2.4. Linear MMSE Estimation with Symbol Scaling Compensation

In Section 3.1 several ZF estimators E were introduced, which are unbiased as a prereq-
uisite, such that

E
{

d̃
}

= E {Ey} = d (3.45)

In classical estimation, the parameter to be estimated d is assumed to be deterministic.
Then, it follows

E {Ey} = E
{

EH̃Gd + En
}

= EH̃Gd

and, according to (3.6), the ZF estimators need to fulfill EH̃G = I.

The LMMSE as well as the WLMMSE data estimators as introduced in Section 3.2, are
unbiased in the Bayesian sense. However, as they do not imply (3.6), they are biased
when regarding them in the classical sense [Hay96, Fis02]: While using ELMMSE as data
estimator, the estimates are given by

d̃ = ELMMSEH̃Gd + ELMMSEn. (3.46)

Defining M = ELMMSEH̃G and treating the whole vector d in the classical sense as
deterministic, the expectation of a single data estimate d̃k, k = 0, . . . , Nd−1 can be found
as

E
{
d̃k

}
=

Nd−1∑
l=0

[M]k,l E {dl}+

Nd+Nr−1∑
l=0

[ELMMSE]k,l E {nl}

=

Nd−1∑
l=0,l 6=k

[M]k,l dl︸ ︷︷ ︸
inter-symbol interference

+ [M]k,k︸ ︷︷ ︸
symbol scaling

dk, (3.47)

where E {nl} vanishes for noise with zero mean. A bias, according to classical estimation
theory, can be identified as

bk = E
{
d̃k

}
− dk =

Nd−1∑
l=0,l 6=k

[M]k,l dl + [M]k,k dk − dk

=

Nd−1∑
l=0,l 6=k

[M]k,l dl +
(

[M]k,k − 1
)
dk.

(3.48)

For the LMMSE data estimator, clearly two effects can be identified that make up the
bias:

• an inter-symbol interference that depends on the actual values of the other transmit
symbols excluding number k

• a symbol scaling effect with a factor that is apparent on the main diagonal of
ELMMSEH̃G, whose magnitude depends on the transmit symbol number k
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It is worth mentioning that the BLUE does neither show inter-symbol interference, nor
the scaling effect, as it is constructed in agreement with (3.6). As the LMMSE estimator
becomes the BLUE with Eb/N0 → ∞, all the stronger becomes the difference between

ELMMSEH̃G and EBLUEH̃G = I, and thus ISI and scaling effect at low SNR. While
the ISI has noise-like impact on the decision of the data symbol, the scaling effect has
a systematic influence: For a 4-QAM or 2-ASK data constellation, the scaling effect has
no impact at all on the bit error probability, as the decision is not affected by scaling.
For higher order constellations, however, the impact on the BER may be severe. When
16-QAM, 4-ASK or 8-ASK is used, it is possible that the symbol scaling effect alone causes
systematic false decisions.

In this case, the LMMSE estimator can be provided with symbol scaling compensa-
tion (scc). The estimator matrix of the linear MMSE estimator with symbol scaling
compensation (LMMSE,ssc) is defined by

ELMMSE,ssc = diag
{

1/ [M]0,0 , 1/ [M]1,1 , . . . , 1/ [M]Nd−1,Nd−1

}
ELMMSE (3.49)

with ELMMSE as in (3.29) and

M = ELMMSEH̃G.

Using this new LMMSE estimator with ssc according to (3.49) causes the expectation of
the estimate of the k-th symbol and its bias to become

E
{
d̃k

}
=

1

[M]k,k

Nd−1∑
l=0

[M]k,l dl

=
1

[M]k,k

Nd−1∑
l=0,l 6=k

[M]k,l dl︸ ︷︷ ︸
bias bk

+dk.
(3.50)

Especially at low Eb/N0-ratios, where the LMMSE estimator shows a stronger scal-
ing effect, a benefit of the LMMSE estimation with ssc can be expected. This makes
the method very valuable for coded transmission. When using this receiver, the co-
variance matrix of the remaining error e = d − d̃ is determined in the Bayesian sense
by

Cee = E

{(
d− d̃

)(
d− d̃

)H}
= E

{(
d−ELMMSE,sscH̃Gd−ELMMSE,sscn

)(
d−ELMMSE,sscH̃Gd−ELMMSE,sscn

)H}
= σ2

d

(
I + ELMMSE,sscH̃GGHH̃HEH

LMMSE,ssc −ELMMSE,sscH̃G−GHH̃HEH
LMMSE,ssc

)
+

+Nσ2
nELMMSE,sscE

H
LMMSE,ssc. (3.51)

Although for the simulations in this work mainly 4-QAM is considered, in order to show
the impact of the LMMSE scaling, a 16-QAM constellation is employed. The scaling
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effect can be observed in Figure 3.1, which shows a scatter plot of data estimates af-
ter regular LMMSE estimation and again after the symbol scaling compensation [RH13]
in exemplary UW-OFDM system B and exemplary multipath channel A. The estimator
is designed for an Eb/N0-ratio of 6 dB, but additive noise is omitted for this presenta-
tion. Therefore, the plot only shows the scaling effect and inter-symbol interference. The
cloud of receive symbols from the LMMSE with ssc around each constellation point is
only due to ISI and not from noise, while the regular LMMSE prominently displays the
scaling, additionally. The valid 16-QAM transmit symbols at the positions {−3,−1, 1, 3}
on the real axis and the same positions on the imaginary axis are plotted as a refer-
ence.

−4 −2 0 2 4
−4

−2

0

2

4

<
{
d̃
}

=
{ d̃
}

LMMSE

LMMSE with ssc

16-QAM

Figure 3.1.: Scatter plot of estimated data symbols after regular LMMSE estimation and
LMMSE estimation with symbol scaling compensation in exemplary UW-
OFDM system B and exemplary multipath channel A with the estimator
designed for an Eb/N0-ratio of 6 dB.

In case of the WLMMSE and possibly higher order n-ASK constellations with n ≥ 4, the
same considerations apply, too. Here, the data estimation process is

d̃ = 2<{EWLMMSEy}

= EWLMMSE

(
H̃Gd + n

)
+ E∗WLMMSE

(
H̃Gd + n

)∗
.

(3.52)

Analogous to (3.47) and now with M = EWLMMSEH̃G, the expectation of the estimated
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symbol number k is

E
{
d̃k

}
=

Nd−1∑
l=0

[M]k,l dl +

Nd−1∑
l=0

[M∗]k,l d
∗
l

=

Nd−1∑
l=0,l 6=k

[M]k,l dl + [M]k,k dk +

Nd−1∑
l=0,l 6=k

[M∗]k,l d
∗
l + [M∗]k,k d

∗
k

=

Nd−1∑
l=0,l 6=k

2<
{

[M]k,l dl

}
+ 2<

{
[M]k,k dk

}
.

(3.53)

As the transmit symbol alphabet is real when the WLMMSE estimator is used, this can
be put into

E
{
d̃k

}
=

Nd−1∑
l=0,l 6=k

2<
{

[M]k,l

}
dl + 2<

{
[M]k,k

}
dk, (3.54)

Thus a WLMMSE estimator with symbol scaling compensation can be suggested in the
form

EWLMMSE,ssc = diag
{

1/<
{

2 [M]0,0

}
, . . . , 1/<

{
2 [M]Nd−1,Nd−1

}}
EWLMMSE (3.55)

now with

M = EWLMMSEH̃G.

After some calculations, also the error covariance matrix can be evaluated as

Cee = σ2
dI + 2<

{
EWLMMSE,sscCyyE

H
WLMMSE,ssc

}
+

+ 2<
{
EWLMMSE,sscCyy∗E

T
WLMMSE,ssc

}
−

− 2<
{
EWLMMSE,sscC

H
dy

}
− 2<

{
CdyE

H
WLMMSE,ssc

}
(3.56)

with Cdy , Cyy and Cyy∗ as in (3.42) and EWLMMSE,ssc as in (3.55).

Note that the symbol scaling compensated estimators, introduced in this section, are
definitely inferior to the regular LMMSE and WLMMSE regarding the Bayesian MSE
criterion. In terms of the bit error rate however, they can be expected to perform better,
which is proven in Section 3.4.3.

3.3. Complexity Analysis of the Linear Estimators

In this section, the computational complexity of the derived equalizers will be analyzed
on the one hand, and of the corresponding data estimation procedures on the other hand.
These investigations will clearly show the benefits of the complexity reduced versions.
In practice, the equalizers need to be determined each time the channel estimate is up-
dated.
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3.3. Complexity Analysis of the Linear Estimators

The potentially very complex WLMMSE receiver from Section 3.2.3 is excluded from this
analysis. Also, the symbol scaling compensated versions of the LMMSE and WLMMSE
are not regarded in this section, but a slight complexity increase can be expected in order to
determine the compensating weights, while utilizing any previously calculations. It needs
to be noted that non-systematically generated UW-OFDM presents a different situation,
as it is not distinguished between data and redundant subcarriers anymore and G is fully
occupied, as well as the sorted version Gs.

3.3.1. Prerequisites

It should be pointed out that it is difficult or even impossible to declare an equitable
measure of complexity, since the complexity of an implementation strongly depends on
the choice of the hardware and software architecture and of many implementation details.
Some operations can even be implemented in many different ways, which might have
advantages on certain architectures as well. To simplify things, the number of complex
multiplication equivalents (CME) for each individual equalizer and for the correspond-
ing data estimation procedure is counted. Additions are ignored. Complex division are
counted as 1 CME. Since the number of required divisions is negligible, this simplification
does not effect the final complexity considerably. Real multiplications and real divisions
are counted as 1

4
CME.

For many of the derived equalizer implementations, matrix products of the form A−1B
with a positive definite Hermitian matrix A ∈ Cm×m and with B ∈ Cm×nc need to
be considered. Calculating X = A−1B is equivalent to solving the set of linear equa-
tions

AX = B (3.57)

for X. For the complexity calculations, it is assumed that (3.57) is solved with the help
of a Cholesky decomposition of A given by A = LLH, where L is a lower triangular
matrix having real and positive values on its main diagonal. AX = B can be rewritten
as L(LHX) = B. To obtain X one can solve LY = B for Y with the help of a forward
substitution, and subsequently solve LHX = Y for X by backward substitution. The
Cholesky decomposition requires 1

6
m3 complex multiplications/divisions and m square

roots [GL96, Sch]. By neglecting square roots, this ends up with 1
6
m3 CME. A single

forward or backward substitution requires 1
2
m2 + 1

2
m CME. In order to solve (3.57) with

the aid of a Cholesky decomposition, finally a total count of 1
6
m3 + m2nc + mnc CME

can be assumed.

Whenever possible, any simplification that a special matrix structure (for example a diag-
onal, a real or a Hermitian matrix) could offer is taken into account. Exemplarily, if the
result of a matrix product is Hermitian as in X = AHA, then only the main diagonal and
the lower triangular part needs to be computed.

3.3.2. Complexity of the Investigated Data Estimation Procedures

Before performing the data estimation with the help of one of the investigated equalizers,
an OFDM symbol has to be transformed to frequency domain with an FFT (fast Fourier
transform) of length N , which requires 1

2
N log2(N) CME. Furthermore, as one of the

preparatory steps the influence of the UW has to be subtracted as described in (2.36).
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3. Linear Receivers for Unique Word OFDM

Since additions/subtractions are not counted in these complexity considerations this step
does not increase the CME count for the data estimation procedure.

In the following, the complexity of the equalizers investigated above is considered. The
investigations begin with the simplest equalizer ECI as given in (3.22). To determine

ECI only Nd CME (namely complex divisions to invert H̃s,d) are required. The data
estimation procedure for an OFDM symbol in frequency domain need Nd CME (namely
complex multiplications). So the number of CMEs needed for equalizer determination and
the actual equalization for the CI estimator is given by

nCI,det = Nd,

nCI,eq = Nd.
(3.58)

To estimate the data part of an OFDM symbol with the help of ETDW, one could first
determine its matrix representation as in (3.24) and then estimate the data vector by
performing the full matrix-vector product d̃ = ETDWys which requires Nd(Nd + Nr)
operations. However, most of the individual operations needed to perform the data esti-
mation are trivial. The procedure starts with the multiplication H̃−1

s ys (Nd +Nr CME),
next the permutation is applied and the zero subcarrier symbols are added (zero CME) in
order to be able to transform back to time domain with an IFFT of length N (N

2
log2(N)

CME). In time domain a windowing takes place, where the guard interval samples are
forced to zero (zero CME). Next a transformation back to frequency domain is performed
(N

2
log2(N) CME), the zero subcarriers are excluded again, a re-sorting is done, and

finally the data symbols are extracted (zero CME). So in total, the data estimation pro-
cedure per OFDM symbol requires N log2(N) + Nd + Nr CME. For the equalizer deter-

mination only H̃s needs to be inverted which requires Nd + Nr CME (namely complex
divisions).

nTDW,det = Nd +Nr,

nTDW,eq = N log2(N) +Nd +Nr.
(3.59)

The complexity of the different BLUE and LMMSE estimator batch representations is
investigated. For all implementations the data vector estimation for one OFDM symbol
requires a full matrix vector product d̃ = Eys with

nLMMSE,eq = Nd(Nd +Nr) CME. (3.60)

The CME count for the equalizer determination differs significantly for the different im-
plementations. At first the standard representation of the BLUE as in (3.10) and of the
LMMSE estimator as in (3.29) is handled. These two expressions merely differ in the reg-
ularization term which only adds a single arithmetic operation. This single operation is
neglected, and (3.10) and (3.29) are treated as equally complex. Using (3.15) it is easy to

see that the matrix multiplication X1 = H̃sGs only leads to NdNr CME. For the product
X2 = XH

1 X1 the findings from (3.16) can be used, which is

X2 = H̃H
s,dH̃s,d + THH̃H

s,rH̃s,rT.
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3.3. Complexity Analysis of the Linear Estimators

By additionally exploiting the fact that X2 is Hermitian, one can easily find that the
matrix product X2 = XH

1 X1 requires 1
2
N2
dNr + NdNr + Nd + Nr CME. Finally the

operation (X2)−1XH
1 takes up

7
6
N3
d +N2

dNr +N2
d +NdNr

CME by using the Cholesky decomposition together with the forward and backward sub-
stitutions as mentioned above. The overall CME count for the BLUE in (3.10) and the
LMMSE estimator in (3.29) therefore adds up to

nLMMSE,det = 7
6
N3
d + 3

2
N2
dNr + 3NdNr +N2

d +Nd +Nr CME. (3.61)

Using similar considerations it can be shown that the LMMSE equalizer, which is split
regarding its functionality into channel inversion part and Wiener smoothing filter as
expressed in (3.27), requires

nLMMSEsplit,det = 7
6
N3
d + 5

2
N2
dNr + 2NdN

2
r + 1

6
N3
r

+N2
d + 3

2
NdNr + 5

2
Nd + 5

2
Nr CME. (3.62)

For the complexity optimized batch representations of the BLUE and the LMMSE esti-
mator one has to determine the expressions in (3.20) and (3.34), respectively. The simple
inverses D−1

d and D−1
r need 5

4
Nd+ 5

4
Nr CME, to determine D−1

d TH another 1
2
NdNr, and

for T[D−1
d TH] additional 1

2
NdN

2
r + 1

2
NdNr CME are required. The operation (·)−1TD−1

d

demands 1
6
N3
r + NdN

2
r + NdNr CME, and the multiplication with D−1

d TH adds N2
dNr

CME. The determination of GH
s H̃H

s and the final multiplication add NdNr +N2
dNr +N2

d
CME (see (3.15)), which totals to

nLMMSEopt,det = 1
6
N3
r + 2N2

dNr + 3
2
NdN

2
r +N2

d + 3NdNr + 5
4
Nd + 5

4
Nr CME. (3.63)

Considering the fully occupied matrix G for the non-systematic UW-OFDM approach, the
two LMMSE equalizers are determined with the following complexities:

n
LMMSE

non-syst
split

,det
= 8

3
N3
d + 3

2
N2
d + 11

2
N2
dNr + 3

2
NdNr + 3NdN

2
r + 1

6
N3
r CME,

nLMMSEnon-syst,det = 5
3
N3
d + 5

2
N2
d + 3

2
N2
dNr + 5

2
NdNr CME.

(3.64)

The complexity optimized version of the BLUE/LMMSE is not applicable for non-system-

atically generated UW-OFDM, as in this case GH
s H̃H

s H̃sGs is not separable into a sum
as in (3.16). Therefore, no comparable complexity improvement can be expected. The
equalization complexity resembles that of a full matrix multiplication and is identical
to the complexity of the UW-OFDM system generating symbols systematically, as in
(3.60).

In order to summarize these results, all CME counts are put in Table 3.1 for reference.
The estimators shown there are

• CI (3.22), systematic

• TDW (3.24), systematic

• split LMMSE (3.27), systematic and non-systematic

• standard BLUE (3.10) and LMMSE (3.29), systematic and non-systematic

• optimized BLUE (3.20) and LMMSE (3.34), systematic.
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3. Linear Receivers for Unique Word OFDM

3.3.3. Numerical Example

In the simulation part in Section 3.4, results for a particular parameter setup will be
shown. For the complexity considerations only Nd, Nr and N are important. In Table 3.2
the complexities of the different equalizer representations and data estimation procedures
for exemplary UW-OFDM systems A, B and SD (for system parameters see Appendix A)
are compared. The candidate estimators under comparison are the same as summarized
at the end of the last section.

For each equalizer, the number of CMEs needed for equalizer determination, as well as
for the data estimation process is given. In the last two columns the number of CMEs in
relation to the systematic standard LMMSE estimator is given. Note that the contribution
of the FFT (N

2
log2(N) CME) per OFDM symbol is counted for the data estimation, which

is required in all cases, along with the additional effort contributed by the particular
equalization procedure.

It can be observed that the simple equalizers ECI and ETDW show a significantly lower
complexity for the equalizer determination as well as for the data estimation per OFDM
symbol. For the BLUE and LMMSE estimator, it can be stated that the complexity
optimized batch solutions reduce the equalizer determination complexity by at least 25%
compared to the straightforward implementations in (3.10) and (3.29) for the examined
UW-OFDM systems. The split version of the LMMSE according to (3.27) is at least
one third more complex than the standard version and can be therefore excluded from
considerations.

The standard version of the BLUE/LMMSE estimator for non-systematically generated
UW-OFDM requires approximately 30% additional CMEs, compared to the systematic
version, as many simplifications cannot be used with this approach. The non-systematic
split estimator requiring three times as many CMEs, compared to the standard systematic
version, disqualifies itself again from consideration.
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estimator type CME counts for
CME counts for estimator determination equalizing operation

CI, systematic
Nd Nd
TDW, systematic
Nd +Nr N log2(N) +Nd +Nr
split LMMSE, systematic
7
6
N3
d + 5

2
N2
dNr + 2NdN

2
r + 1

6
N3
r +N2

d + 3
2
NdNr + 5

2
Nd + 5

2
Nr N2

d +NdNr
standard BLUE/LMMSE, systematic
7
6
N3
d + 3

2
N2
dNr + 3NdNr +N2

d +Nd +Nr N2
d +NdNr

optimized BLUE/LMMSE, systematic
1
6
N3
r + 2N2

dNr + 3
2
NdN

2
r +N2

d + 3NdNr + 5
4
Nd + 5

4
Nr N2

d +NdNr
split LMMSE, non-systematic
8
3
N3
d + 3

2
N2
d + 11

2
N2
dNr + 3

2
NdNr + 3NdN

2
r + 1

6
N3
r N2

d +NdNr
standard BLUE/LMMSE, non-systematic
5
3
N3
d + 5

2
N2
d + 3

2
N2
dNr + 5

2
NdNr N2

d +NdNr

Table 3.1.: CME counts for determination and equalizing operation of the introduced linear data estimators.
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Equalization method CME for relative CME for
system A eq. determination data estimation eq. determination data estimation
CI, systematic 36 228 0.04% 11%
TDW, systematic 52 628 0.06% 30%
split LMMSE, systematic 127677 2064 144% 100%
std. BLUE/LMMSE, systematic 88612 2064 100% 100%
opt. BLUE/LMMSE, systematic 59068 2064 67% 100%
split BLUE/LMMSE, non-syst. 269603 2064 304% 100%
std. BLUE/LMMSE, non-syst. 113544 2064 128% 100%

system B
CI, systematic 48 240 0.03% 7%
TDW, systematic 64 640 0.03% 20%
split LMMSE, systematic 250059 3264 132% 100%
std. BLUE/LMMSE, systematic 188992 3264 100% 100%
opt. BLUE/LMMSE, systematic 97531 3264 52% 100%
split BLUE/LMMSE, non-syst. 539819 3264 286% 100%
std. BLUE/LMMSE, non-syst. 247296 3264 131% 100%

system SD
CI, systematic 16 71 0.19% 16%
TDW, systematic 24 189 0.28% 43%
split LMMSE, systematic 12540 439 147% 100%
std. BLUE/LMMSE, systematic 8515 439 100% 100%
opt. BLUE/LMMSE, systematic 6387 439 75% 100%
split BLUE/LMMSE, non-syst. 25920 439 304% 100%
std. BLUE/LMMSE, non-syst. 10859 439 128% 100%

Table 3.2.: CME counts of the introduced equalizers and data estimation procedures for exemplary UW-OFDM systems A, B
and SD, according to Table A.1.
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3.4. Performance Comparison

3.4. Performance Comparison

3.4.1. Simulation Results of the Linear Receivers

In this section, the introduced receiver concepts are evaluated in terms of their BER per-
formance. All derived variants of an estimator, that is the conventional form and the
complexity optimized version of the BLUE, as well as the split, batch and complexity
optimized version of the LMMSE, produce the same results and hence perform equiva-
lently. Different performance of distinct versions of an estimator would only be expected
if fixed point implementations were regarded, which is not the focus of the investigations
in this work. Results for the exemplary UW-OFDM setups A and B (see Table A.1)
will be shown, and the results of both setups will be discussed together, as far as pos-
sible. The results for systematic as well as non-systematic UW-OFDM are shown. For
non-systematic UW-OFDM the CI and TDW estimators are omitted due to the reasons
discussed earlier.

Clearly, OFDM is designed for data transmission in frequency selective environments.
Nevertheless, the comparison starts with simulation results in the AWGN channel, since
these results provide first interesting insights. In Figure 3.2 and 3.3, the BER performance
of the different data estimators is compared for the exemplary UW-OFDM systems A and
B (see Appendix A) under AWGN conditions.

The discussion starts with the uncoded case, shown in the sub-figures (a): As expected
the CI estimator shows the worst performance, since it completely ignores the information
present on the redundant subcarriers. Surprisingly, the very simple and intuitive TDW
data estimator performs almost as well as the BLUE and the LMMSE estimator in the
AWGN environment. At a BER of 10−5 these three estimators, which all make use of the
a-priori knowledge introduced by the zero UW, outperform the CI estimator by around
1.5 dB in both UW-OFDM setups A and B. The trend is similar for coded transmission.
However, the fact that the LMMSE estimator and the BLUE show a different performance
in an AWGN environment is completely in contrast to single-carrier systems [HOH11], for
example SC/FDE. Nevertheless, the performance gain of the LMMSE estimator is quite
small, and the BLUE approaches the LMMSE estimator performance for high Eb/N0, as
the term Nσ2

n/σ
2
d in (3.29) converges to zero.

Non-systematic UW-OFDM in combination with the BLUE/LMMSE estimator signifi-
cantly outperforms the systematic UW-OFDM counterparts by almost 2 dB. Both, the
BLUE and the LMMSE estimator however, show the exact same performance in the non-
systematic setup. Very similar observations can be made for coded transmission, with
equivalent performance for BLUE and LMMSE estimator.
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(a) UW-OFDM system A, uncoded, AWGN
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(b) UW-OFDM system A, coded, AWGN

Figure 3.2.: BER performance of linear data estimators for system A according to Table A.1 in the AWGN channel.
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(a) UW-OFDM system B, uncoded, AWGN
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(b) UW-OFDM system B, coded, AWGN

Figure 3.3.: BER performance of linear data estimators for system B according to Table A.1 in the AWGN channel.5
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3. Linear Receivers for Unique Word OFDM

When interpreting the results for the multipath environment in Figure 3.4 and 3.5 similar
trends as in the AWGN case can be observed, but now the LMMSE estimator and the
BLUE clearly outperform the other estimators. For uncoded transmission, the TDW
outperforms the CI estimator by more than 2 dB (again at a BER of 10−5, which is cut off
in the figures in order to increase the visibility for the other estimators). The BLUE and
LMMSE estimator show a significantly faster decay of the BER than the CI and TDW,
resulting in a more and more increasing gain of already more than 10 dB. This documents
some coding gain for the BLUE and the LMMSE estimator, which originates from the
exploitation of the RS code by means of the redundant subcarriers that were introduced
by the UW-OFDM symbol generation process. At a BER of 10−5, the LMMSE estimator
still shows a gain of about 0.4 dB over the BLUE in both systems A and B, which narrows
with increasing Eb/N0 as explained for the AWGN case.

For coded transmission, the CI, BLUE and LMMSE estimators perform with almost con-
stant gain of about 1.6 dB (BLUE over CI) and 1 dB (LMMSE over BLUE) for setup A
and 1.4 and 0.8 dB for setup B, respectively. Somewhat unexpected and in contrast to the
uncoded results and those in the AWGN channel, the TDW shows a very bad BER perfor-
mance. Judging from the uncoded results, where the TDW outperforms the CI estimator,
this should also be visible in the coded case. A deeper analysis reveals that the gain of
the TDW estimator in the uncoded case, especially at low Eb/N0-ratios that are relevant
for coded transmission, depends a lot on the channel realization. For certain channel con-
ditions, the TDW estimator even has to endure a performance loss, compared to the CI
estimator. As the BER degradation is only small for most channels, the TDW supersedes
the CI estimator in the uncoded case on average. However, a small degradation of the data
estimates at low Eb/N0-ratios is able to cause a quite big degradation of the BER, if mea-
sured after the channel decoder. Some ‘severe’ channels cause a small degradation of the
uncoded BER, but impair the coded BER severely. Those channels dominate the coded
BER performance and cause the unexpected loss of the coded TDW estimator against CI.
A more detailed explanation and analysis of why the TDW performs worse than the CI
estimator for some channels can be found in [HOH11].

The systems that generate the UW-OFDM symbols non-systematically show the best
overall performance. Besides spreading each data symbol over the whole OFDM sym-
bol duration, as with the systematic approach, the non-systematic systems also spread
each data symbol over the whole system bandwidth, making it robust against severe fad-
ing additionally. The non-systematic UW-OFDM systems outperform their systematic
counterparts by 1.6 dB for the BLUE and 1.5 dB for the LMMSE with uncoded trans-
mission and by 1.0 and 1.5 dB, respectively, with coded transmission in system A. For
system B these advantages stay in the same range at about 1.8 and 1.9 dB for uncoded
transmission and to 1.4 and 1.2 dB, respectively, for coded transmission. Other than
in the AWGN channel, BLUE and LMMSE are now clearly distinguishable from each
other.
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(a) UW-OFDM system A, uncoded, multipath

0 2 4 6 8 10 12 14 16
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

(b) UW-OFDM system A, coded, multipath

Figure 3.4.: BER performance of linear data estimators for system A according to Table A.1 in multipath environment.5
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(a) UW-OFDM system B, uncoded, multipath
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Figure 3.5.: BER performance of linear data estimators for system B according to Table A.1 in multipath environment.
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3.4.2. Simulation Results of the Widely Linear Receivers

As, for the WLMMSE estimator, an improvement of the BER results is only expected for
improper constellations, but 4-QAM is mainly utilized in this work, the simulation results
are discussed separated from the other linear data estimators. In Figure 3.6 and 3.7 the
bit error performance of the WLMMSE is compared to the CI and LMMSE estimators for
ASK constellations. Despite of losing the whole imaginary dimension with ASK compared
to QAM, what makes it mostly useless, 2-ASK is still worth to be considered from the im-
plementation perspective: When using adaptive modulation, the modulator for a very bad
subcarrier with very low SNR could switch from 4-QAM to 2-ASK. Then, besides gaining
3 dB in transmission quality, the very same filters can be utilized, while only the capability
to transmit one bit on that particular subcarrier is lost.

On the left side of the Figures 3.6 and 3.7, the uncoded results are shown for the AWGN
channel and multipath environment. For any ASK constellation, the WLMMSE super-
sedes the results of the LMMSE estimator by up to 0.9 and 4 dB in the AWGN chan-
nel and multipath environment, respectively. For the coded results on the right side,
gains vary between 0.2 and over 1.7 dB, but always in favor of the WLMMSE estima-
tor.

As a reference, the CI and LMMSE results for 4-QAM are included. In a BER-over-
Eb/N0 representation, ASK and 4-QAM feature similar performance. While for CP-
OFDM these two systems perform exactly the same, they perform only equivalently for
systematic UW-OFDM, if the CI estimator is used. For the LMMSE estimator, the 2-ASK
constellations shows a small gain over 4-QAM of about 0.5 dB uncoded and 0.6 dB coded
in the multipath environment. As the redundant subcarriers are still complex valued for
2-ASK, more redundancy is introduced on average per bit in the process of the UW-
OFDM symbol generation, compared to 4-QAM. As seen before, the LMMSE estimator
is quite good at utilizing this redundancy in order to recover the data symbols, and hence,
the 2-ASK estimates are a bit more accurate than those of the complex constellation.
The CI estimator ignores all redundancy and performs equally for 2-ASK and 4-QAM.
Together with the additional gain of the WLMMSE over the LMMSE estimator, this
makes transmission with 2-ASK compared to 4-QAM a much safer transmission mode for
systematic UW-OFDM.
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(a) uncoded, AWGN channel
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Figure 3.6.: WLMMSE performance compared to CI and LMMSE estimator for system B in the AWGN channel, according to
Appendix A.
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(a) uncoded, multipath environment
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Figure 3.7.: WLMMSE performance compared to CI and LMMSE estimator for system B in multipath environment, according
to Appendix A.5
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3. Linear Receivers for Unique Word OFDM

3.4.3. Simulation Results of the Bayesian Receivers with Symbol
Scaling Compensation

In this section, the performance of the Bayesian estimators with symbol scaling com-
pensation are compared to their regular counterparts, with relevant constellations. As
mentioned in Section 3.2.4, the scaling compensation only has an effect for higher order
transmit constellations, which are 4-ASK or higher for ASK constellations and 16-QAM or
higher for QAM constellations. In this work, in general 4-QAM is used for the simulations,
with the exception of some ASK constellations to show the potential of the widely linear
MMSE estimators. In order to show the potential of the scaling compensated Bayesian
receivers, the results for 16-QAM, 4- and 8-ASK are presented, in this section. The results
of the BLUE are included as a reference.

For uncoded transmission, only a very small gain of the estimators with symbol scal-
ing compensation can be observed. The gain even vanishes with increasing Eb/N0-ratio
and is only noticeable at low SNR, as predicted in Section 3.2.4. Figures as well as
a detailed discussion for uncoded transmission are skipped here, as the maximum gain
in multipath environment at a BER of 10−5 achieved by the scaling compensation for
WLMMSE does not exceed 0.1 dB for any constellation. Symbol scaling compensation for
the LMMSE is rewarded with up to 0.15 dB. In the AWGN channel the gains are even
less.

In coded transmission, however, the gain by introducing symbol scaling compensation
is quite remarkable. First of all it is noteworthy that the BLUE outperforms the regular
LMMSE for the considered higher order constellations. This is in accordance to the theory,
as the BLUE suffers neither from the symbol scaling effect, nor from ISI. When introducing
symbol scaling compensation, some nice gains can be achieved: As seen for transmission
in the AWGN channel in Figure 3.8, the scaling compensated LMMSE with 16-QAM
improves the regular LMMSE by up to 0.5 dB at low SNR. At a BER of 10−5, the symbol
scaling compensated LMMSE supersedes the regular one still by 0.4 dB, whereas the BLUE
only gains 0.1 dB over the LMMSE without ssc. With 4-ASK, the scaling compensation
improves the results by 0.74 dB at a BER of 10−5. The regular WLMMSE estimator
is another 0.5 dB better than the scaling compensated LMMSE, and superseded by the
scaling compensated WLMMSE by another 0.22 dB. The BLUE only gains 0.48 dB against
the regular LMMSE. Very similar results are observed using 8-ASK. While the BLUE
supersedes the regular LMMSE by 0.24 dB, the symbol scaling compensation achieves
0.3 dB gain for the LMMSE over the regular version and only 0.06 dB for the WLMMSE,
which is again by far better than both LMMSE estimators.

In the multipath environment, shown in Figure 3.9, the achievable gain by symbol scal-
ing compensation numbers to 0.4 dB for the LMMSE with 16-QAM, compared to the
BLUE superseding the LMMSE by only 0.1 dB. With 4-ASK, the gain increases to im-
pressive 1.4 dB, when regarding the LMMSE, and 0.7 dB for the BLUE. Still ahead by far
is the scaling compensated WLMMSE estimator, which outperforms its non-compensated
counterpart by 0.45 dB. With 8-ASK, the scaling compensation for the LMMSE per-
forms almost 0.6 dB better than the regular version, while the BLUE improves it by only
0.4 dB. Above that, the better performing regular WLMMSE is only outperformed by the
WLMMSE with scaling compensation by 0.1 dB.
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3.5. Summary of Linear Receivers

3.5. Summary of Linear Receivers

In this chapter, several linear data estimators specifically designed for UW-OFDM were
investigated. Data estimators following the principles of classical estimation theory were
introduced, which lead to ZF equalizers. Two simple and intuitive ZF equalizers and
the optimum ZF equalizer constituting the BLUE have been discussed. Following the
Bayesian estimation principle, the LMMSE estimator has been presented. Highly com-
plexity reduced versions of these estimators were derived and their complexity investigated
in terms of equivalent complex multiplication counts. The complexity optimized BLUE
and LMMSE estimator versions feature considerably reduced CME counts compared to
their straightforward counterparts, but still they show a significantly higher complexity
compared to the simple ZF solutions. Furthermore, the WLMMSE estimator was derived,
that poses a better performing alternative to the LMMSE for improper data symbol con-
stellations, such as ASK.

Simulations for the AWGN channel give an initial idea of the performance of the estima-
tors. Not unexpectedly, the more complex estimators BLUE and LMMSE perform best
and the TDW estimator supersedes the very simplistic CI estimator. The LMMSE yields
the best BER performance. The simulations in the multipath environment revealed that
the more complex estimators BLUE and LMMSE are able to exploit the correlations on
the redundant subcarriers effectively and yield a coding gain, outperforming CI and TDW
by far. The TDW estimator presents itself as a reasonable alternative to the CI estimator,
but only for the uncoded case. In coded transmission however, and on average over many
multipath channels, the TDW estimator is not able to compete with all other estimators.
This result is unexpected.

When using an ASK symbol alphabet, the WLMMSE receiver is able to further improve
upon the already very good results of the LMMSE estimator. While, for CP-OFDM as
well as for UW-OFDM in combination with the CI estimator, 2-ASK and 4-QAM perform
exactly the same in terms of a BER-over-Eb/N0 representation, 2-ASK outperforms 4-
QAM for systematic UW-OFDM using an LMMSE estimator. Together with the gain
due to WLMMSE estimation, 2-ASK proves to be a quite safe communication mode in
the framework of systematic UW-OFDM.

In general, Bayesian estimators show a scaling effect, which is due to a bias, when con-
sidering the estimators’ operation in the classical sense. If higher order constellations
are used, which is n-QAM with n ≥ 16 or n-ASK with n ≥ 4, the symbol scaling ef-
fect of the LMMSE and WLMMSE data estimators has a severe and observable impact
on the bit error performance. This is not the case for the BLUE, which is derived us-
ing classical estimation theory. Whenever higher order constellations are used it makes
sense to switch to the BLUE, or even better, to employ a symbol scaling compensation
for the LMMSE or WLMMSE estimators, in order to improve the bit error probability
considerably. For higher order ASK constellations however, switching from the LMMSE
to the WLMMSE yields a much higher gain than introducing the symbol scaling compen-
sation.

61





4. Nonlinear Receivers for Unique Word OFDM

In this chapter, several nonlinear receiver structures are discussed, which all base on
the linear UW-OFDM system model in (2.37). To simplify notation, the context to
UW-OFDM is dropped partially and the UW-OFDM symbol generator matrix G and
channel frequency response H̃ (zero subcarriers omitted) are treated together as one

matrix H = H̃G with the dimensions (Nd + Nr) × Nd. The same model then be-
comes

y = Hd + n. (4.1)

With this linear system model and the properties of the involved vectors and matrices,
it is possible to read this chapter independently from the general UW-OFDM system
description. The receive vector y ∈ C(Nd+Nr)×1 is calculated with a channel matrix
H = H̃G ∈ C(Nd+Nr)×Nd and the data vector d ∈ ANd×1 with elements from the
transmit alphabet A – most commonly QAM. The vector n ∼ NC

(
0;Nσ2

nI
)

of length
Nd + Nr is uncorrelated complex white Gaussian noise with zero mean and each value
with variance Nσ2

n, where N is the size of the DFT used for the UW-OFDM processing,
and σ2

n the actual noise variance in time domain.

This channel matrix H can now be interpreted as the channel matrix of a complex MIMO
channel with Nd transmit and Nd + Nr receive antennas, as the dimensions suggest.
However, the channel matrix H is not fully occupied like in a general MIMO model for
systematic UW-OFDM. The systematic UW-OFDM model implies a structure as outlined
in Figure 4.1a with the sorted Gs as in (3.3). Sub-figure (b) displays the same using
the altered G for non-systematic UW-OFDM and c as in (2.57), where all values carry
information and redundancy.

d d

r

Nd

Nr

Gs (Nd +Nr)×Nd

(a) systematically generated UW-OFDM

d

c

N
d

+
N
r

G (Nd +Nr)×Nd

(b) non-systematically generated UW-OFDM

Figure 4.1.: Interpretation of the UW-OFDM generator matrix as a MIMO system.
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4. Nonlinear Receivers for Unique Word OFDM

4.1. Noise Interpolation

For a linear data estimation, as a result from the last Chapter, a linear estimator matrix E
and the statistics of the remaining estimation error in form of its covariance matrix Cee are
at hand. An inspection of Cee reveals that its off-diagonals are generally non-zero, which
means that, after the linear estimation, the estimation error values e = d−d̃ are correlated,
which is also identified as colored error values. Their correlation indicates that, if an error
value is known, knowledge about other error values is gained as well. This knowledge is to
be exploited by a receiver called “noise filtering” in general. In this work the noise filtering
concept will be narrowed down to noise interpolation (NI).

Exploiting error statistics in receiver systems has been done for a long time. Regardless, if
it is called noise prediction, noise interpolation, noise whitening or precoding, in SC/FDE
and MIMO systems, it refers usually to similar techniques that are based on the Wiener
filter theory. Before applying it to the purposes of noise filtering for UW-OFDM, the
theory is recapitulated briefly.

4.1.1. Optimal Wiener Filter

In this section, the basics of general Wiener filtering are briefly recapitulated, in order
to offer the tools to derive the noise filters. Wiener filtering is covered in countless text
books, exemplarily [Wie49, Orf88, Kay93, Zak05, Hay96, Kam04]. While this technique is
referred to as Wiener or noise filtering as a general term, this work addresses the special
cases widely known as interpolation and smoothing.

In traditional Wiener filtering problems like prediction, interpolation or smoothing, signal
values are observed in a time based manner one after another. In this work, block process-
ing is employed, which means that a block of N observed values x = [x0, x1, . . . , xN−1]T

is considered for filtering. These observations x = s + u consist of additive noise u and
the desired signal s. However, neither the desired signal values in s, nor the noise values
in u can be considered white1, but their second-order and thus auto-correlation statistics
are known.

s +

noise

W +
-

u

x s̃
e

Figure 4.2.: Wiener filtering system model.

The task of Wiener filtering is to find a good estimate s̃k for a single value sk by linear com-

binations of the observed vector x with the coefficients w(k) =
[
w

(k)
0 , w

(k)
1 , . . . , w

(k)
N−1

]T
.

1If the values in a vector a are white, each of its values ak is uncorrelated to any other value al, l 6= k.
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4.1. Noise Interpolation

These weights need to be determined in an optimum way and are used to easily compute
the estimate number k by

s̃k =

N−1∑
n=0

w
(k)
n xn

= w(k)Tx.

(4.2)

Good coefficients in the Wiener sense are found, if the power of the estimation error E
{
|ek|2

}
=

E
{
eke
∗
k

}
with

ek = sk − s̃k = sk −w(k)Tx (4.3)

is minimized. This can be determined by setting the Wirtinger derivative (that is its

derivative with respect to all w
(k)∗
l ) [Fis02] to zero

∂

∂w
(k)∗
l

E {eke∗k} = E

ek ∂

∂w
(k)∗
l

(
sk −

N−1∑
n=0

w
(k)
n xn

)∗ (4.4)

= −E {ekx∗l }
!
= 0, ∀l = 0, 1, . . . , N − 1, (4.5)

which is known as the orthogonality principle. From this, it can be noted that the observa-
tions and the estimation error are forced to be orthogonal and uncorrelated, which further-
more yields exactlyN of the so-called normal equations by expanding ek

E
{(
sk −w(k)Tx

)
x∗l

}
= 0,

E {skx∗l } = w(k)TE {xx∗l } ,
∀l = 0, 1, . . . , N − 1.

(4.6)

This can be formulated for allN observations at once in vector notation as

E
{
skx

H
}

= w(k)TE
{

xxH
}
, (4.7)

which yields

w(k)T = E
{
skx

H
}

E
{

xxH
}−1

. (4.8)

Now, the cross-correlation vector between the desired signal sample and the observation
vector and the autocorrelation2 matrix of the observations can be identified as

r
(k)
sx

T
= E

{
skx

H
}
, r

(k)
sx

T
∈ C1×N

Rxx = E
{

xxH
}
, Rxx ∈ CN×N ,

(4.9)

2Correlation and covariance statistics are equivalent, when the random variables are considered zero
mean, which is the case here.
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4. Nonlinear Receivers for Unique Word OFDM

such that

w(k)T = r
(k)
sx

T
R−1
xx . (4.10)

These statistical properties need to be known in order to determine the optimal Wiener
coefficients for the estimation of signal value sk. Now, after all N Wiener filters are
computed, all of them can be put into an estimator matrix

W =
[
w(0),w(1), . . . ,w(N−1)

]T
(4.11)

of size (N × N), which is used to produce the whole vector of estimates in one equation
by

s̃ = Wx. (4.12)

The vector r
(k)
sx

T
can be also obtained by extracting the k-th row of Rsx = E

{
sxH

}
,

which further simplifies the determination of the whole filter matrix at once to W =
RsxR−1

xx .

With the Wiener filter matrix W, the power of each value of the estimation error vec-
tor e = s − s̃ is minimized, as apparent on the main diagonal of the error covariance
matrix Cee = E

{
eeH

}
. Being aware of the fact that Rxs = RH

sx, it can be determined
as

Cee = E
{

eeH
}

= E
{

esH
}
−

(4.5)
= 0︷ ︸︸ ︷

E
{

exH
}

WH

= E
{

ssH
}
−WE

{
xsH

}
= Rss −WRH

sx.

(4.13)

It needs to be noted that this is the approach to estimate all values sk, k = 0, . . . , N − 1,
by using the set of all N observations. However, it might be reasonable not to utilize
all N observations for the estimation of the desired sample sk, but only a selected set of
samples, whose indices are gathered in Sk. Then, for the derivation of the Wiener filters, it
is necessary to diminish the participating vectors and matrices in size, such that only the
filter weights with indices in Sk are being calculated. The Wiener filter is derived exactly
the same way as above and becomes analogous to (4.10)[

w(k)T
]
Sk

= [Rsx]k,Sk

(
[Rxx]Sk,Sk

)−1
, (4.14)

where the filter vector w(k)T is filled only at the positions indicated by Sk. All other
positions are set to zero, such that the batch processing of the whole vector as in (4.12)
is still possible. w(k)T is determined from [Rsx]k,Sk , the k-th row of Rsx with the

columns indicated by Sk, and [Rxx]Sk,Sk , the submatrix of Rxx with only the rows in
Sk and the columns in Sk. One might also choose not to do Wiener filtering for every
sample sk, but only those with indices given in the set T . In that case, all previous
observations apply; only the estimator matrix W has zero rows at the indices not in-
cluded in T . In any case, the error covariance matrix can be still determined as shown in
(4.13).
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4.1. Noise Interpolation

Depending on the specific application these equations may be further simplified. As stated
in the beginning of this section the vectors s and u are mutually uncorrelated, implying
E
{
sku
∗
l

}
= 0, ∀k, l. Also being aware that x = s + u the vector indicating the cross-

correlation between all desired signal values s and the observations x can be further
developed to

Rsx = E
{

sxH
}

= E
{

ssH
}

+ E
{

suH
}

= E
{

ssH
}

= Rss.
(4.15)

Furthermore, the autocorrelation matrix of the observations becomes

Rxx = E
{

xxH
}

= E
{

(s + u) (s + u)H
}

= Rss + Ruu. (4.16)

Finally, including these simplifications and considering the fact that RH
ss = Rss, this

section can be concluded with the summarizing results[
w(k)T

]
Sk

= [Rss]k,Sk

(
[Rss + Ruu]Sk,Sk

)−1
, k ∈ T

W =
[
w(0),w(1), . . . ,w(N−1)

]T
,

(4.17)

s̃ = Wx, (4.18)

Cee = Rss −WRss = (I−W) Rss. (4.19)

4.1.2. Wiener Noise Filtering

In this section, the results of Wiener filter theory from the last section are applied to
develop methods for noise filtering. As, due to the block processing in OFDM, there are
no causality problems as in time based filtering here, the filter can operate on any sample
of the received OFDM symbol and estimate any noise value.

Prerequisite to noise filtering is that noise values show correlations among each other and
their correlation statistics are known. This is the case after any linear data estimation, for
example all linear estimators shown in Chapter 3, with the exception of non-systematically
generated UW-OFDM in the AWGN channel, where the remaining noise vector is white.
As the best performing linear receiver, an LMMSE estimation is chosen prior to noise
filtering, according to (3.29)

d̃lin = ELMMSEy. (4.20)

The statistics of the actual error of the linear estimates

e = d̃lin − d, e ∈ CNd×1 (4.21)
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are given by the error covariance matrix Cee (3.30), while e itself is of course unknown
as the correct transmit vector cannot be known at the receiver. Despite the uncertainty
about d and hence e, here it is pretended to be able to recover the data symbols perfectly
by slicing without making a mistake. With this assumption, the estimate of the noise
vector

ẽ = d̃lin −
⌊
d̃lin

⌉
(4.22)

is treated as the actual correct error vector, and it is assumed that the error statistics in
Cee, as determined during the linear estimation, apply.

The slicing operation b·e in (4.22) of course, which is the main reason of the nonlinearity
of the noise filtering method, does not always detect the correct data symbols. In the
presence of noise there is the chance that slicing of the linear estimate yields a data
symbol other than the transmitted one, and a faulty error vector ẽ may result. Hence,
the observed error vector can be modeled as

ẽ︸︷︷︸
observed error ,x

= e︸︷︷︸
actual error ,s

+ v. (4.23)

If the slicing in (4.22) and thus the observed error values ẽ are correct, the remaining
noise v vanishes. In this case, the decoding does not produce any bit errors and an im-
provement cannot be expected from noise interpolation. Only if a false decision occurs, v
is non-zero, which is visualized for a binary alphabet in Figure 4.3, and the decoding result
has bit errors. This is the situation where the noise interpolation method is supposed to
improve the linear estimate, such that the linear data estimate is pushed beyond the deci-
sion boundary into the domain of the correct data symbol.

dk
⌊
d̃lin
k

⌉

decision boundary

d̃lin
k

ek
ẽ
k

vk

dmin

Figure 4.3.: Error values in (4.23) in case of a wrong decision.

At this point, the knowledge about the correlation of the error vector e, quantified by the
off-diagonal elements of Cee, can be exploited. In order to find a better noise estimate ẽNI

k
a Wiener filter can be applied, taking any observed error sample ẽl with l = 0, 1, . . . , Nd−1
into account. This noise estimate shall be subtracted from the initial linear estimate in
order to get a hopefully improved value

d̃NI
k = d̃lin

k − ẽ
NI
k . (4.24)
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4.1. Noise Interpolation

In this context, the vectors known from Wiener filter theory in Figure 4.2 can be identified
as follows: The desired signal s is in this case the correct noise vector e, the noisy measure-
ments x correspond to ẽ and the improved estimate s̃ corresponds to ẽNI.

Furthermore, some statistics for the remaining noise will be needed, denoted as u in
Figure 4.2 and as v in (4.23). The autocorrelation matrix Cvv = E

{
vvH

}
can be derived

quite intuitively. First, it is assumed that there is no correlation between a possible wrong
slicing of any linear estimate d̃lin

l and the decision of the k-th value, if l 6= k. This allows
to consider the samples of the remaining error v to be uncorrelated as well and all off-
diagonal entries of its autocorrelation matrix Rvv can be set to zero. Second, the main
diagonal indicates the mean power of the values of v, which can be approximated. The
mean power of noise value vk is given by

E
{
|vk|2

}
= σ2

vk
= (1− χk)|vcorrect|2 + χk|vwrong|2, (4.25)

with the probability, that slicing of the linear estimate yields an incorrect decision χk (also
called symbol error ratio, SER), and the contributing error values vcorrect and vwrong in
case of correct or wrong decision. In case of a correct decision, the remaining error is
zero, of course, and does not contribute to its power, thus vcorrect = 0. For a wrong
decision, however, the remaining error (vk in Figure 4.3) is simply the distance between
the two symbols, with the value vwrong = dmin = |a0 − a1| , an ∈ A, when using a
binary transmit symbol alphabet. In this case, the power of vk is then σ2

vk
= χkd

2
min.

For higher order transmit alphabets it is assumed that only errors occur which are in
minimum distance of the transmit symbols

vwrong = dmin = min
ak,al∈A
ak 6=al

|ak − al| .

In Appendix D it is reasoned that it is legitimate to neglect errors of higher distance, as the
probability is noneffectively small. Therefore, for higher order constellations σ2

vk
≈ χkd2

min
is only an approximation. The SER χk is the probability that slicing will yield an incor-
rect decision and can be approximated analytically, which is also explicated in Appendix D.
Therewith, the main diagonal of Rvv can be built from the values

σ2
vk
≈ χkd2

min

≈ NminQ

(√
d2

min

2σ2
ek

)
d2

min,

for k = 0, 1, . . . , Nd − 1,

(4.26)

for any QAM constellation, where dmin and Nmin depend on the used constellation size
and scaling, and with σ2

ek
= [Cee]k,k being the variance of the complex noise on receive

symbol d̃lin
k , which is apparent on the k-th entry of the main diagonal of Cee. With this,

the matrix
Rvv = diag

{
σ2
v0
, σ2
v1
, . . . , σ2

vNd−1

}
(4.27)

can be constructed. It needs to be noted that the mean and covariance statistics provide
all information that is to know about a random vector, if it is Gaussian distributed. The
vector v in this work, however, is far from Gaussian. The elements of v have a high
probability to be zero and only a small chance to take one of a few possible error values.
Hence, even if the determination of the covariance matrix Rvv is exact, Wiener filtering
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4. Nonlinear Receivers for Unique Word OFDM

is not exploiting the whole information about v. This poses quite an inaccuracy for noise
filtering.

After identifying the entities from Wiener filter theory in the noise filtering context and an
analytical expression for the remaining error statistics, it can be summarized:

s→ e

x→ ẽ

s̃→ ẽNI

u→ v

W→WNI

Rss → Cee

Ruu → Rvv .

Translating the orthogonality principle (4.5) into these terms yields

E
{(
ek − ẽNI

k

)
ẽ∗l

}
= 0, ∀k ∈ T , l ∈ Sk.

The difference of the estimated error after noise interpolation and the actual error ek−ẽNI
k ,

which should be preferably vanishing, is supposed to be orthogonal to any sample of
the observed error vector ẽl that is at hand after the linear estimation and the slic-
ing.

With these tools one should be able to optimally estimate error sample ẽNI
k . However, the

choice of the samples from which ẽNI
k is estimated is crucial; their selection will be dealt

with later. For now, the set Sk is introduced and contains the indices of all error samples
to be used for noise filtering of error sample ẽNI

k .

Elaborating the filter equations in order to determine the optimum Wiener filter for sample
number k according to (4.17) further yields the filter coefficients

[
w(k)T

]
Sk

= rTk (Rk)−1 , (4.28)

where rTk = [Cee]k,Sk is the k-th row of Cee with only the columns listed in Sk. Rk =

[Cee + Rvv ]Sk,Sk is extracted from the matrix sum Cee + Rvv by selecting all the rows
listed in Sk and all the columns listed in Sk.

After estimation, the linearly equalized version of the receive vector is updated

d̃NI = d̃lin − ẽNI, (4.29)

in order to get an improved vector of data estimates.
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4.1. Noise Interpolation

4.1.3. Selection of Noise Samples

The starting point of the noise filtering procedure is always an initial estimation, where
the remaining error is correlated, and the amount of the correlation is known. With a
linear data estimator, good estimates d̃lin and the correlation statistics of the remaining
error are obtained already. When applying noise filtering methods, those initial estimates
shall be improved.

As mentioned earlier, the choice of samples that shall be improved (set T ), as well as
the choice of samples that are used for their improvement (sets Sk), is crucial to the per-
formance of this method. A false decision when slicing d̃lin

l in (4.22) must be absolutely
avoided, thus the error value ẽl, l ∈ Sk has to be as certain as possible. On the other
hand the estimates shall be improved as good as possible before doing the final detec-
tion, in order to decrease the final BER. A very good initial estimate might not need
any improvement and can be left as it is, in order to reduce the computational complex-
ity. Then again a bad sample might even result in degradation of an estimate. What
makes up a good or bad sample remains to be defined and will be investigated in this
section.

In the end, one needs to be aware of the fact that the introduced Wiener filters are
optimum in the MSE (means squared error) sense. This is not directly linked to the bit
error probability, which is to be improved in the first place. A better MSE does not
ensure a better BER as well. This makes most considerations in this section unfeasible
to analyze analytically, and a more intuitive and rule-of-thumb-like approach becomes
applicable.

Some criteria shall be defined in order to decide, whether or not to pick a noise sample
to be estimated or to estimate from. First of all, the receiver can decide on sample-based
criteria, by looking at their actual values. This approach, however, demands very high
computational effort, as every single sample is examined. One sample-based method will
be explained later in this section that yields very good BER results, but shall be excluded
from further investigations in order to focus on stochastic rules that usually apply to a
wider range of samples and possibly for more OFDM symbols at once. Second, noise
samples can be picked for exceeding a defined threshold θ of any criterion, or because they
are among the n best samples according to that criterion. This question will also be dealt
with later.

Additionally, the optimal choice of values also depends on the current Eb/N0 ratio. A cou-
ple of criteria to apply for sample selection follow in Section 4.1.3.2.

4.1.3.1. Interpolation vs. Smoothing

A special issue is the question, whether or not to use a noise sample ẽk to estimate ẽNI
k , to

use intrinsic information. In Wiener filter theory the case where sample number k is not
used to improve itself, and only extrinsic information is used, is called interpolation. The
main diagonals of Cee and Rvv in (4.28) are excluded in this case. The other case, where
sample number k may be used for estimating ẽNI

k , is called smoothing [Kay93]. Smoothing
is not considered in this work which can be reasoned with the results shown Figure 4.4,
where the bit error performance for three noise filtering receivers in exemplary UW-OFDM
system B with 4-QAM in a multipath environment, as introduced in Appendix A, are
shown. For simplicity of this example, the receivers included in this simulation employ
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4. Nonlinear Receivers for Unique Word OFDM

the sample selection policy to estimate all Nd noise values. The noise filtering receiver
denoted as “smoothing” uses all samples in ẽ to estimate the full vector ẽNI, while for
the receiver called “interpolation”, symbol number k is excluded from the list of symbols
to be used for estimating ẽNI

k . For both, the approximation of Rvv according to (4.27)
is used. The two receivers denoted as “simplified” smoothing and interpolation assume
Rvv = 0 and safe the effort to compute the matrix.
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Figure 4.4.: BER performance for noise filtering receivers doing interpolation and smooth-
ing, in uncoded and coded UW-OFDM system B in multipath environment.

The uncoded results show that the smoothers utilizing the approximated Rvv yield slightly
better results than the smoother assuming Rvv = 0. At a BER of 10−4, this advantage
is about 0.8 dB, and the simplified interpolator is outperformed by both smoothers by
up to 2 dB. The presence of a gain tells that the smoothing approach is not wrong
at all. The interpolator using the approximated Rvv yields an additional 0.7 dB gain
over the smoother. Coded transmission relies on a correctly updated error covariance
matrix Cee after noise filtering, according to (4.19), which again depends on very accurate
error statistics beforehand. Figure 4.4 suggests that the approximated statistics are not
accurate enough for smoothing, as both coded smoothers fall far behind the interpolators,
operating more than 3.5 dB worse, at a BER of 10−5. From the definition in (4.26), the
determination of Rvv was only an approximation of the actual probabilities that are not
measurable. Surprisingly, if the sample to be estimated is excluded from the used noise
samples, the approximated Rvv yields a much better result in coded interpolation. The
interpolator with approximated Rvv supersedes the simplified interpolator by impressive
3 dB.

Although the interpolation method clearly achieves the best results for the given sample
selection mode, simplified noise interpolation will be employed for noise filtering in this
work, where no Rvv needs to be used at all. This decision removes the approximated Rvv ,
and thus a severe uncertainty from the equation, and causes the noise statistics to be less
sensible to errors and instabilities, due to multiple approximations. This issue is especially
significant for iterative noise interpolation, introduced in Section 4.1.5, where the error
statistics are used to update themselves multiple times and thus allow an approximation
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4.1. Noise Interpolation

error to propagate and amplify. Also, the investigations for this work showed that with the
appropriate sample selection policies, the simplified interpolator can catch up very easily
with the gain of the more accurate interpolation method. Only with the inferior sample
selection rule, used to produce Figure 4.4, the interpolator with approximated Rvv is able
to yield this impressive again. The assumption of Rvv = 0 simplifies the filter determina-
tion, reduces computational complexity, enhances the mathematical stability and, in the
end, has only to endure a very small performance loss.

4.1.3.2. Criteria for Noise Sample Selection

Up to now, it was discussed how to determine improved noise estimates, when the candi-
dates are already picked. Besides excluding value ẽk to estimate ẽNI

k , these can be selected
rather arbitrarily. In the following, some selection criteria are introduced.

Noise Variance Here, the variances of the actual error e (4.21) represent the qualifying
measure. These variances are known in advance and present on the main diagonal of the
error covariance matrix Cee after linear estimation. The idea is that samples with higher
variance are candidates to be estimated, while those with lower variance are safer and can
be used for the estimation of others.

A-Priori Probability of Wrong Decision Here, the probability that the slicing of a linear es-
timate yields a different symbol than the actually transmitted one⌊

d̃lin
k

⌉
6= dk

is taken as the selection criterion. In consideration of the computational complexity, the a-
priori probabilities before observing the linear data estimates should be determined using
the statistical information provided by the Cee matrix. The probability that the slicing
operation produces a wrong result is the analytical symbol error probability χ derived
in Appendix D. Hence, it is named “SER criterion”. The SER for symbol number k is
according to (D.12)

χk ≈ NminQ

(√
d2

min

2σ2
ek

)
,

with dmin representing the distance to the nearest neighbor symbol and depending on the
used QAM constellation and transmit power, Nmin being constellation dependent as well
and given in Table D.1, and σ2

ek
as the error variance, apparent on [Cee]k,k.

Because the Q-function is strictly convex (see Figure D.4), a sorted list of χk will be in
the exact same order as a list of the noise variances. Picking the n best or worst values
from this list would yield the exact same results. Hence, the two criteria will only differ in
performance when a threshold approach is chosen. Furthermore, the SER is a probability
and thus definitely a number in the interval [0; 1], which might be useful when selecting
thresholds.
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4. Nonlinear Receivers for Unique Word OFDM

Correlation Lastly, it could make sense to pick noise samples, when they show high cor-
relations to other samples, or are highly correlated to a sample selected for estimation.
This information is also known in advance and present in Cee excluding the main diago-
nal.

In Figure 4.5, the magnitude of the correlation coefficients in the Cee matrix excluding the
main diagonal of a typical UW-OFDM setup after LMMSE estimation is shown3.
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Figure 4.5.: |Cee| after LMMSE estimation without main diagonal.

In simulations it turned out that this method does not give good answers on the question,
how many samples or which thresholds to pick in order to achieve a good BER. Hence, it
is not further investigated in this work.

Sample-based: A-Posteriori Probability of Wrong Decision In contrast to the earlier shown
a-priori probabilities, also the a-posteriori probabilities of a wrong decision can be deter-
mined. This probability is determined under the knowledge of the linear data estimates
and needs to be calculated per sample.

The a-posteriori probability that the symbol an from the alphabet A was transmit-
ted as dk, if the value d̃lin

k was received, can be expressed as the conditional probabil-

ity Pr
(
dk = an

∣∣∣d̃lin
k

)
. Applying Bayes’ law yields

Pr
(
dk = an

∣∣∣d̃lin
k

)
=

p
(
d̃lin
k

∣∣∣dk = an
)

Pr (dk = an)∑|A|−1
l=0 p

(
d̃lin
k

∣∣∣dk = al

)
Pr (dk = al)

. (4.30)

3system B in exemplary multipath channel A
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4.1. Noise Interpolation

In the present case of equiprobable transmit symbols Pr (dk = an) = 1/|A| this becomes
furthermore

Pr
(
dk = an

∣∣∣d̃lin
k

)
=

p
(
d̃lin
k

∣∣∣dk = an
)

∑|A|−1
l=0 p

(
d̃lin
k

∣∣∣dk = al

) . (4.31)

Now, the probability of a wrong symbol decision can be determined as

pwrong = 1− Pr
(
dk =

⌊
d̃lin
k

⌉∣∣∣d̃lin
k

)
= 1−

p
(
d̃lin
k

∣∣∣dk =
⌊
d̃lin
k

⌉)
∑|A|−1
l=0 p

(
d̃lin
k

∣∣∣dk = al

) . (4.32)

For the estimation of other samples, very safe samples with low pwrong should be picked,
while samples with a high pwrong might be candidates for estimation from others.

By assuming that the true error d̃lin
k −dk = ek is normally distributed4 with the statistics

ek ∼ NC

(
0;σ2

ek

)
with σ2

ek
= [Cee]k,k, such that

p
(
d̃lin
k

∣∣∣dk = an
)

=
1

πσ2
ek

e
− |d̃

lin
k −an|2
σ2ek , (4.33)

these probabilities can now be evaluated as follows:

pwrong = 1−
exp

{
−
∣∣∣d̃link −⌊d̃link ⌉∣∣∣2

σ2
ek

}
∑|A|−1
l=0 exp

{
−|d̃

lin
k
−al|2
σ2
ek

} (4.34)

The application of the Gaussian pdf with mean an in (4.33), however, is only correct
for initial linear unbiased estimation like the BLUE, and also highly appropriate for
the LMMSE with symbol scaling compensation. However, for small transmit alphabets,
the assumption is also sufficiently accurate for the LMMSE estimator. Every received
value d̃lin

k of every OFDM symbol has to be examined, for this method, what makes it
computationally very complex. As it yields good results, this one is used as the only
sample-based method as a coarse orientation for how good the methods based on stochas-
tic measures perform in terms of the bit error probability. This will be shown in Sec-
tion 4.1.6.

4The (proper) scalar complex Gaussian pdf (probability density function) with mean µ and variance σ2

is given by p(x) = 1
πσ2

e
− |x−µ|

2

σ2 , see (4.76).
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4. Nonlinear Receivers for Unique Word OFDM

4.1.4. Batch Filtering

In the last section, criteria were shown for how to make a selection of samples that are
to be estimated and the samples that are used for estimation of those. In this section an
approach is shown that is used for construction of a set of noise filters to be applied in one
shot on the whole receive vector, hence its name “batch approach”. This filter set could
also be reused several times, if the channel statistics do not change quickly. The batch
processing as well as the re-usability are measures which potentially reduce computational
complexity.

The process is described in Algorithm 3, in which the set T contains the indices of all
values that are to be estimated, while the values to be used for the estimation of the k-th
value are gathered in the set Sk, k ∈ T .

Algorithm 3 Batch Noise Interpolation

1: function [d̃NI,CNI
ee ] = NI batch(d̃lin,Clin

ee )
2: WNI ← 0

3: ẽ← d̃lin −
⌊
d̃lin

⌉
4: for all k ∈ T do
5: determine Sk for the estimation of ẽk

6: [WNI]k,Sk ← [Cee]k,Sk

(
[Cee + Rvv ]Sk,Sk

)−1

7: end for
8: d̃NI ← d̃lin −WNIẽ
9: CNI

ee ← Clin
ee −WNIC

lin
ee

10: end function

The filter determination in line 6 uses the vector and matrix defined in Section 4.1.2:
[Cee]k,Sk is the k-th row of Cee with only the columns listed in Sk. [Cee + Rvv ]Sk,Sk is
extracted from the matrix sum Cee + Rvv by selecting all the rows listed in Sk and all
the columns listed in Sk. It needs to be emphasized that the error covariance matrix as
determined in line 9 is only exact, when no slicing error occurs. In practical situations,
this is just an approximation that is sufficiently accurate.

With this simple algorithm, one is ready to investigate the vast number of possible combi-
nations of criteria for the selection of values to be estimated (set T ) and to estimate from
(sets Sk), introduced in the previous section. However, all these possible combinations
and their BER dependency on the Eb/N0 ratio, make it very difficult to give a compre-
hensive research of all possibilities. Furthermore, no general rule became apparent that
allowed to break down all criteria to one optimum formula. Therefore, a few approaches
that proved to perform well and the way to come to these solutions are given exemplar-
ily. A final best candidate will be picked in the end that will be compared to the other
receivers.

All simulations will be done in a multipath environment to obtain significant results.
Also, a 4-QAM transmit symbol alphabet is used. It turned out that trying to improve
all available values (that is T = {0, 1, . . . , Nd − 1}) is a good approach. Then in order
to select Sk, the two most intuitive selection approaches are shown, along with the best
BER results.
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4.1. Noise Interpolation

4.1.4.1. Noise Variance Threshold for Sample Selection for Batch NI

In this section the criterion for the selection of the noise samples that are used for esti-
mating others is the variance of the noise on each data symbol after linear estimation.
The decision for selecting the set Sk is made upon a noise variance threshold that needs
to be defined:

Sk =
{
l
∣∣∣σ2
el
< θ(ρ), l = {0, . . . , Nd − 1}\k

}
(4.35)

When trying to find a suitable noise variance threshold θ, the dependence on the SNR ρ
needs to be taken into account. When determining the BER for different θ and Eb/N0-
ratios, the results can be visualized as in Figure 4.6, which shows the results of an exem-
plary UW-OFDM system B with 4-QAM and averaged over many multipath channels (see
Appendix A). The two horizontal axes show the Eb/N0 ratio in dB and the noise variance
threshold θ. On the vertical z-axis the deviation of the BER relative to the best achieved
BER at the given Eb/N0-ratio, is displayed, in dependence on θ and in a logarithmic scale.
Therefore, the best achieved ratio must be 1 for a given SNR and is visible as the deep
blue valley.

In sub-figure (b) the contour plot of the same BER plane is displayed, making it much eas-
ier to identify the exact location of the minimum BER valley that is to be achieved.

As prerequisite for this work the Eb/N0 ratio is assumed to be known at the receiver,
which then can be respected by selecting an appropriate threshold. In order to meet
the minimum BER as close as possible, the threshold can be selected by a function of
ρdB = 10 log10(Eb/N0), as shown by the red line. In Figure 4.7 and 4.8 the same plots
are shown for the exemplary UW-OFDM systems SD and ML, which are described in
Appendix A.

In each figure the red line was determined by a function that was found empirically by
fitting a straight line into the logarithmic scaling of the Eb/N0-axis and linear scaling
of the threshold. In order to accommodate for different UW-OFDM system setups the
function also depends on Nd:

θ(ρdB) = −0.015ρdB + log10(Nd)/7 + 0.48 (4.36)

4.1.4.2. SER Threshold for Sample Selection for Batch NI

As second criterion to be investigated for batch noise interpolation, the SER threshold is
chosen:

Sk = {l|χl < θ(ρ), l = {0, . . . , Nd − 1}\k} (4.37)

Following the same approach as for the noise variance threshold, an SER threshold function
in ρlin = Eb/N0 was found. Again, the function is a straight line, only in a logarithmic
representation of θ with linear display of Eb/N0. By adapting slope and offset to the
system size Nd the function was found empirically as

θ(ρlin) = 10

(
(−N−1.65

d
−0.002)·ρlin−Nd/80−0.7

)
. (4.38)

Again, the BER planes with the clearly visible minimum BER valley that shall be reached
is shown for UW-OFDM system setups B, SD and ML in Figure 4.9, 4.10 and 4.11, with
the red line being the evaluation of (4.38).
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Figure 4.6.: Impact of Eb/N0-ratio and noise variance threshold θ on the BER for batch
noise interpolation and system B, according to Table A.1.
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Figure 4.7.: Impact of Eb/N0-ratio and noise variance threshold θ on the BER for batch
noise interpolation and system SD, according to Table A.1.

79



4. Nonlinear Receivers for Unique Word OFDM

0

0.2

0.4

0.6

0.8

1

0

5

10

15

1

1.05

1.1

1.15

θ
10 log10 (Eb/N0)

lo
g

1
0

(m
in

(B
E

R
))
/

lo
g

1
0
(B

E
R

)

(a) BER deviation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

1.
00

5

1.005

1.
00

5

1.005

1.005

1.005

1.005

1.005

1.005

1
.1

2
4

θ

1
0

lo
g

1
0
(E

b
/
N

0
)

(b) Contour plot of 4.8a

Figure 4.8.: Impact of Eb/N0-ratio and noise variance threshold θ on the BER for batch
noise interpolation and system ML, according to Table A.1.
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Figure 4.9.: Impact of Eb/N0-ratio and SER threshold θ on the BER for batch noise
interpolation and system B, according to Table A.1.
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Figure 4.10.: Impact of Eb/N0-ratio and SER threshold θ on the BER for batch noise
interpolation and system SD, according to Table A.1.
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Figure 4.11.: Impact of Eb/N0-ratio and SER threshold θ on the BER for batch noise
interpolation and system ML, according to Table A.1.
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4.1.5. Iterative Filtering

After describing batch filtering in the last section, which resulted in a simple matrix multi-
plication in the end, now an approach is introduced that is called iterative filtering. Instead
of determining the whole Wiener filter at once, only one noise value is estimated here within
one iteration. After updating the error statistics, the same procedure can be applied again.
A brief outline is given in Algorithm 4, where the function NI iterative is called with
the results from the linear estimation d̃lin and Clin

ee .

Algorithm 4 Iterative Noise Interpolation

1: function [d̃,Cee] = NI iterative(d̃,Cee)
2: repeat
3: wT ← 0
4: ẽ← d̃−

⌊
d̃
⌉

5: k ← argmax
l

[Cee]l,l . Pick noisiest sample

6: determine Sk for the estimation of ẽk

7:
[
wT
]
Sk
← [Cee]k,Sk

(
[Cee + Rvv ]Sk,Sk

)−1

8: d̃k ← d̃k −wTẽ
9: [Cee]k,∗ ← [Cee]k,∗ −wTCee

10: [Cee]∗,k ← [Cee]∗,k −Ceew∗

11: until iterated nI times
12: end function

In line 5 the k-th sample with highest variance and thus highest prior error probability
is selected for improvement. Then a set Sk needs to be found, from which ẽk shall
be estimated. Here, the same criteria as formulated in Section 4.1.3.2 can be applied
again. The filter determination in line 7 uses the same notation as for the batch noise
interpolation. The statistics of the error are updated according to (4.19). However, as
only one noise sample is estimated, the k-th row and column of Cee need to be updated
separately.

This procedure can be repeated as many times as an improvement is expected. How often
this is can be easily answered for a simple sample selection method: A receiver employing
a rather ‘dumb’ noise interpolation strategy by simply interpolating the current sample
to be estimated from all available noise values except the current in each iteration k, such
that

Sk = {0, . . . , Nd − 1}\k.

Using this type of receiver, Figure 4.12 shows for different Eb/N0-ratios the average number
of bit errors added, compared to the number of errors in the previous iteration step. Thus,
at iteration step n the number of bit errors that were introduced from step n−1 to step n is
displayed. This number is normalized to the number of errors in step 0, which is after the
linear estimation. Thus, the z-value of the plot at the position of iteration step number n
and ρdB = 10 log10 (Eb/N0) is determined by

z(ρdB, n) =
avg

(
ε
(ρdB)
n − ε(ρdB)

n−1

)
avg

(
ε
(ρdB)
0

) ,
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where ε
(ρdB)
n is the number of bit errors after iteration step n at an logarithmic Eb/N0-ratio

of ρdB. All these counts are considered per OFDM symbol and averaged over 1 000 channel
snapshots. For the simulation, an uncoded exemplary UW-OFDM system B (according
to Table A.1) using 4-QAM was used.
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Figure 4.12.: Average bit error difference after an iteration for ‘dumb’ iterative NI in ex-
emplary UW-OFDM system B.

For an effective receiver, this measure should always be negative, as positive values indicate
added bit errors and thus pose a degradation. Above an SNR of about 13 dB the used
noise interpolator proves to be effective. More interestingly, below that SNR the used noise
interpolation actually increases the number of bit errors. This shows the importance of a
careful selection of samples to estimate from. In Figure 4.12, a black line indicates the zero
level at iteration step 1, to emphasize the error generation in this Eb/N0-range. Anyway,
after 7 iterations at the latest, another iteration does not yield any change in the number
of bit errors on average. This number suffices in a system with Nd = 48 data values to
exploit the whole potential of the noise interpolator.

Anticipating the study of threshold selection for iterative noise interpolation in the follow-
ing, the effect of a carefully chosen sample selection criterion can be shown. Figure 4.13
shows the same graphic as before for the receiver with a noise variance threshold that will
be introduced in Section 4.1.5.1 in exemplary system B. Here it can be seen that the noise
interpolation method is effective over the whole Eb/N0 range, most effective at 14 dB. At
this SNR 6 iterations allow the NI to develop its whole potential, while at very high and
low SNR no more than 2 iterations might be needed.

The results for exemplary system SD in Figure 4.14 prove the finding, that for the sys-
tems in this work in general not more than 8 iterations are needed to achieve the optimum
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Figure 4.13.: Average bit error difference after an iteration for the noise variance thresh-
olding NI in exemplary UW-OFDM system B.

NI performance. The parameters of all exemplary UW-OFDM systems are listed in Ap-
pendix A.

Investigating the sample selection topic again reveals that the values in Sk for estima-
tion of the k-th value can be selected in the same way as it was done for the batch
processing in Section 4.1.4. In the following, the same two selection approaches are inves-
tigated.

4.1.5.1. Noise Variance Threshold for Sample Selection for Iterative NI

When choosing a noise variance threshold for picking the samples to be used for estimation,
such that

Sk =
{
l
∣∣∣σ2
el
< θ(ρ), l = {0, . . . , Nd − 1}\k

}
, (4.39)

a nice situation is found for the iterative noise filtering: A constant noise variance threshold
of

θ = 0.55 (4.40)

yields very good results for all investigated UW-OFDM system setups. In Figure 4.15, the
BER achieved by a receiver designed for system B with different noise variance thresholds θ
over the SNR, in relation to the minimum achieved BER per SNR is shown, in order to
prove this. The minimum BER valley is met pretty well by the red line representing
θ = 0.55 = 10−0.26. Very similar results can be seen for UW-OFDM systems SD and ML
in Figure 4.16 and 4.17. Due to the simple threshold, this is an interesting low complexity
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Figure 4.14.: Average bit error difference after an iteration for the noise variance thresh-
olding NI in exemplary UW-OFDM system SD.

iterative noise interpolation method, where the receiver parameters need no tuning at all
in order to achieve satisfying results.
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Figure 4.15.: Impact of Eb/N0-ratio and noise variance threshold θ on the BER for itera-
tive noise interpolation and system B, according to Table A.1.
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Figure 4.16.: Impact of Eb/N0-ratio and noise variance threshold θ on the BER for itera-
tive noise interpolation and system SD, according to Table A.1.
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Figure 4.17.: Impact of Eb/N0-ratio and noise variance threshold θ on the BER for itera-
tive noise interpolation and system ML, according to Table A.1.
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4.1.5.2. SER Threshold for Sample Selection for Iterative NI

Using an SER threshold for iterative noise interpolation, such that the set of selected value
indices to be used for estimation is

Sk = {l|χl < θ(ρ), l = {0, . . . , Nd − 1}\k} , (4.41)

yields BER results as shown in Figure 4.18, 4.19 and 4.20 for UW-OFDM system setups B,
SD and ML, respectively. The red line approximating the minimum BER achieving thresh-
old is determined by the empirically found SER threshold function

θ(ρdB) =

(
−0.0123 +

Nd − 16

10000

)
ρdB + 0.405−

(Nd − 29)2

3000
. (4.42)

Again, it still needs to be shown, if the computational effort is justified by the achieved
BER gains, which is done in Section 4.1.6.
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(b) Contour plot of 4.18a

Figure 4.18.: Impact of Eb/N0-ratio and SER threshold θ on the BER for iterative noise
interpolation and system B, according to Table A.1.
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(b) Contour plot of 4.19a

Figure 4.19.: Impact of Eb/N0-ratio and SER threshold θ on the BER for iterative noise
interpolation and system SD, according to Table A.1.
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(b) Contour plot of 4.20a

Figure 4.20.: Impact of Eb/N0-ratio and SER threshold θ on the BER for iterative noise
interpolation and system ML, according to Table A.1.
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4.1.6. Performance Evaluation

The noise filtering problem has two main parameters: The samples which are to be esti-
mated and the samples, from which those shall be estimated. In Section 4.1.3.2, criteria
were introduced to select these samples. These criteria could be applied in order to pick
the n best values or the samples obeying a threshold θ. This left a vast set of possibilities
open, hard to be covered comprehensively.

First, the k-th sample to be estimated was excluded from the set of candidates Sk to
be used for estimation, which narrowed down the noise filtering to a noise interpolation
procedure. When introducing the actual algorithms for noise interpolation in Section 4.1.4
and 4.1.5 the alternatives could be finally narrowed down by choosing all samples to be
estimated for the batch approach, and picking at each iteration that sample with the
highest noise variance for the iterative noise interpolation approach. Furthermore, noise
and SER thresholding were picked as the criteria to select Sk and arrive with only a few
different NI methods, that are possible to be surveyed.

Unfortunately, also a dependency of the thresholds on the SNR was discovered. As a con-
sequence the thresholds could be approximated as a function of the Eb/N0-ratio. Finally,
all these possibilities were broken down to two candidates each, batch and iterative noise
interpolation.

In this section, simulation results are shown for systematically generated UW-OFDM, as
introduced in Section 2.2, in order to pick one final noise interpolation method that arises
from this section to compete with the other UW-OFDM receivers. These findings are
also correct for non-systematically generated UW-OFDM, as introduced in Section 2.4,
as the final comparison of the nonlinear methods in Section 4.5 will show. As a refer-
ence, the best linear receiver known so far, the LMMSE estimator, as well as the noise
interpolator which decides on a per-symbol basis is included in the comparison. For
the latter, it turned out that a probability threshold of θ = 0.04, selecting the sam-
ples

Sk = {k|pwrong(k) < θ} (4.43)

to be used for the estimation, yields very good results. All these receivers are applied to
exemplary system B, as described in Appendix A.

Thus, six methods are compared in Figure 4.21a and 4.22a in terms of bit error probabil-
ity:

• LMMSE estimator, according to (3.29) (LMMSE)

• sample-based NI according to (4.43), with a probability threshold for a wrong deci-
sion of θ = 0.04 (NI per-symbol)

• batch NI using a noise variance threshold according to Section 4.1.4.1 (NI batch
noise)

• batch NI using an SER threshold according to Section 4.1.4.2 (NI batch SER)

• iterative NI using a noise variance threshold according to Section 4.1.5.1 (NI iter.
noise)

• iterative NI using an SER threshold according to Section 4.1.5.2 (NI iter. SER)

95



4. Nonlinear Receivers for Unique Word OFDM

None of the four NI candidates can be easily identified as the best performing one. For this
reason, Figure 4.21b and 4.22b show the BER relative to the BER achieved by the LMMSE
receiver, in order to identify the better performing variants.
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Figure 4.21.: BER results for uncoded noise interpolation receivers with system B according to Table A.1 in multipath environ-
ment.9
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Figure 4.22.: BER results for coded noise interpolation receivers with system B according to Table A.1 in multipath environment.
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4.1. Noise Interpolation

Due to the statistical imprecision, the latter presentation seems very rough and inaccu-
rate. Although it is almost impossible to draw a quantitative conclusion from it, it is
easier to make a qualitative observation than in the first plot. From this follows that
NI methods perform well on higher SNR in uncoded transmission, but do not necessar-
ily show the same advantage in coded transmission. However, the batch NI with SER
thresholding is a good compromise that performs very well in uncoded and at least as
good as the LMMSE estimator in coded transmission. Therefore, this candidate is picked
as the NI representative that will be used for comparison with the nonlinear receivers to
be introduced below.

The highly complex NI with per-symbol selections performs best, but not far from the other
introduced NI methods. Considering the huge computational effort and the small gain, this
method is excluded from further examinations, as discussed before.
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4. Nonlinear Receivers for Unique Word OFDM

4.2. Decision Feedback Equalization

The decision feedback equalization (DFE) detection scheme is a nonlinear method that
detects symbols iteratively. In each step, it performs an operation where one data sym-
bol is decided, which is also the part that incorporates the nonlinearity. The decided
symbol is used in a feedback to help equalize the remaining values of the OFDM sym-
bol, hence the name. Another name for the same method is successive interference can-
cellation (SIC), where the portion of each data symbol on the receive vector is consid-
ered as interference, which is canceled out successively. The BLAST architecture also
coincides with DFE, while V-BLAST (Vertical Bell Labs Layered Space-Time) [Fos96,
WFGV98] is the most prominent version. This method is described in Algorithm 5, as
outlined in [WFGV98, Jan04, Win04] and many more, and as applied for UW-OFDM in
[Ret10].

The data symbol estimate d̃k is obtained from the receive vector y by a linear estimation
by

d̃k = wH
ky, (4.44)

where wk is the linear estimator for symbol number k, which is also called nulling vector
[Fos96], in this context. Then the symbol is decided (also called slicing)

d̂k =
⌊
d̃k

⌉
, (4.45)

which represents the non-linear operation. As, according to the linear system model
(4.1)

y = Hd + n = h0d0 + h1d1 + · · ·+ hNd−1dNd−1 + n,

the anticipated impact of the decided symbol on the receive vector is subtracted in the
following step:

y′ = y − d̂khk (4.46)

The nulling vector acts as an estimator for the k-th symbol and can be obtained in many
ways, most commonly according to the ZF or MMSE criterion. Both ways to retrieve the
nulling vector wk will be elaborated in the Unique Word OFDM context in the next sec-
tions. After determination of the nulling vector for symbol k, decision of the data estimate
and removal of its influence, the linear model is reduced in size, as if the transmission of
data symbol number k never happened. Then, these steps are repeated all over again,
until all data symbols of d̂ are determined.

It is implied that each decision is assumed to be correct; when wrong, a faulty part is
subtracted from the receive vector, causing actually more interference for the detection
of all following symbols. Just as for noise filtering, this is called error propagation and
needs to be avoided. The probability of an error can be greatly reduced by changing
the order, in which data symbols are decided. The best strategy is to work on those
data symbols first which can be decided with lowest error probability. It is shown in
Section 4.1.3.2 that the lowest symbol error ratio is achieved by the symbol with the
lowest noise variance.
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4.2.1. DFE with Zero Forcing Criterion

In ZF DFE the nulling vectors are determined by following the ZF principle that is al-
ready known from linear receivers: The BLUE. In order to get the nulling vector for
symbol number k, only the k-th row of the BLUE, executed in (3.10), needs to be ex-
tracted:

DZF = H+ = EBLUE (4.47)

wH
k = [DZF]k,∗ (4.48)

In order to determine the symbol with the lowest symbol error probability, a look at the
data estimates after a supposed ZF equalization should be taken. According to the linear
model these are

d̃ = H+y = d + H+n, (4.49)

with independent noise samples and equal noise variances in n ∼ NC

(
0;Nσ2

nI
)
. For the

k-th data estimate this means

d̃k = dk + wH
kn, (4.50)

and the noise power after optimum ZF estimation becomes

E
{(
d̃k − dk

)(
d̃k − dk

)∗}
= E

{
wH
knnHwk

}
= Nσ2

n ‖wk‖22 .
(4.51)

This implies that the noise on each data symbol is amplified according to the row norms
of H+ during the equalization process, and the data symbol to decide most reliably is the
one corresponding to the row of H+ with smallest norm. An equivalent way to formulate
this is used in line 8 of Algorithm 5. The most reliable symbol is the one corresponding
to the smallest element of the main diagonal of the error covariance matrix that is to be
expected from a linear estimation, in this case

CBLUE
ee = Nσ2

n

(
HHH

)−1
,

according to (3.11). Beyond that, it is easy to show that[
CBLUE
ee

]
k,k

= Nσ2
n ‖wk‖22 .

The next step is important and distinguishes a linear detection from DFE: The decision
in (4.45) is made, and it is assumed to be correct and no errors occur in this step. Not
only the symbol’s impact is removed from the receive vector according to (4.46) in line 13,
but also from future considerations. This is done by deleting the corresponding column
of the channel matrix H and reducing its size, as shown in line 14. In Algorithm 5, in
contrast to other versions of the algorithm, the equalized value d̃ is returned rather than

the detected data symbol
⌊
d̃
⌉

in order to provide for soft information, as detailed in

Section 4.2.3.
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Algorithm 5 Decision Feedback Equalization

1: function [d̃,Cee] =DFE(y,H, σ2
n)

2: Cee ← 0
3: M← H
4: i← {0, 1, . . . , Nd − 1}
5: for l = 0, . . . , Nd − 1 do
6: D←M+ . pseudo-inverse

7: Clin
ee ← Nσ2

n

(
MHM

)−1
. error cov. matrix after linear estimation

8: r ← argmin
m

[
Clin
ee

]
m,m

. find minimum row norm

9: k ← ir; remove element r from i . determine affected symbol number
10: wH

k ← [D]r,∗ . nulling vector

11: [Cee]k,k ←
[
Clin
ee

]
r,r

. store soft information

12: d̃k ← wH
ky . estimate symbol k

13: y← y − [H]∗,r

⌊
d̃k

⌉
. cancel interference

14: remove column r from M
15: end for
16: end function

4.2.2. DFE with Minimum Mean Square Error Criterion

As mentioned earlier, not only the ZF criterion can be applied in the determination of
the nulling vectors. In the ZF version, the nulling vectors were determined from the
BLUE

DZF = H+

=
(
HHH

)−1
HH.

(4.52)

While the ZF nulling vectors extracted from the BLUE are the result when applying
classical estimation theory, also Bayesian theory and thus the LMMSE estimator (3.29)
can be used to determine the nulling vectors wk. Then

ELMMSE =

(
HHH +

Nσ2
n

σ2
d

I

)−1

HH (4.53)

substitutes the instruction to determine D in line 6, which yields the MMSE version of the
DFE and supposedly a better performance. With the definition of an extended channel
matrix

H̆ =

 H√
Nσ2

n

σ2
d

I

 , (4.54)

H̆HH̆ =

[
HH

√
Nσ2

n

σ2
d

I

] H√
Nσ2

n

σ2
d

I

 (4.55)

= HHH +
Nσ2

n

σ2
d

I, (4.56)
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an equivalent MMSE DFE receiver can also be determined by

DMMSE = H̆+ =
(
H̆HH̆

)−1
H̆H

=

(
HHH +

Nσ2
n

σ2
d

I

)−1 [
HH

√
Nσ2

n

σ2
d

I

]
.

(4.57)

This matrix yields longer nulling vectors, with length 2Nd + Nr instead of Nd + Nr.
Therefore, also the receive vector has to be extended [WBKK03] by an appropriate amount
of zeros to

y̆ =

[
y
0

]
, (4.58)

in order to be used in line 12 and 13. Thus, executing Algorithm 5 with H̆ and y̆ yields
the MMSE version of the DFE [Has00], which is also the way it is implemented for the
simulations in this work.

4.2.3. Soft Information from DFE

An optimum DFE for coded UW-OFDM transmission would require to join channel de-
coding and the DFE operation by incorporating the decoding into the feedback loop. Due
to the restrictions of the UW-OFDM system considered in this work according to Fig-
ure 2.9, the DFE needs to be realized as in Figure 4.23, where no link between the channel
decoding and the DFE is present.

Due to the nonlinear nature of the DFE processing, it is not possible to provide a full

post-detection error covariance matrix for the error e = d −
⌊
d̃
⌉
, as it was derived for

the linear receivers. There have been efforts to determine soft information for the DFE
procedure [CCC00, WNH+06, CWK06]. However, these methods are computationally
very complex and especially for the Nd dimensions spanned by the UW-OFDM signaling
scheme practically not realizable.

As soft information for the Viterbi decoder, the variances of the remaining error after
each linear equalization step and therefore the corresponding main diagonal element of
the error covariance matrix Cee suffice for satisfying results. These error variances can be
easily calculated [WFGV98]. By expanding (4.44) to

d̃k = wH
ky

= wH
kHd + wH

kn

= dk + wH
kn,

the amplification of the noise n for ZF DFE induced by the k-th nulling vector wk can be
quantified by its l2-norm, as shown in (4.51). Hence, the post-detection error variance on
data symbol k, which is also on position k of the diagonal of the error covariance matrix,
is determined by

[Cee]k,k = Nσ2
n ‖wk‖22 , (4.59)

or by reusing the error variances that are used to determine the symbol processing order,
as it is done in line 11 in Algorithm 5.
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4. Nonlinear Receivers for Unique Word OFDM

As the extended versions in (4.54) and (4.58) along with the pseudo-inverse are used for
the MMSE realization, (4.59) applies also for MMSE, not only in the ZF case. Therefore,
the noise amplification as the nulling vector’s row norm yields the same error statistics, as
the evaluation of the main diagonal of the appropriate error covariance matrices in each
iteration would do. However, if an extended receive vector according to (4.58) is used,
also an extended noise vector

n̆ =

[
n
0

]
needs to be introduced, for these considerations to be consistent.

It needs to be noted that these error variances are determined under the assumption of
correct decisions in each DFE iteration. They do not cover the possibility of error propa-
gation and can be considered as an approximation only.

4.2.4. DFE – Other Interpretations

Separated DFE In the version of Algorithm 5, the nulling vectors wk are computed during
the procedure in an iterative manner. However, if the channel conditions and thus H do
not change, neither the order, nor the nulling vectors themselves change. This suggests
a separation of a pre-computation of the nulling vectors and the data decision parts as
presented in Algorithm 6. The permutation matrix Π that is built in line 10 documents
the order, in which the data symbols need to be detected. Since the index k assigns the
data symbols in linear order, the data vector needs to be re-sorted after the detection loop

(line 22). By putting all nulling vectors into a matrix WDFE =
[
w0,w1, . . . ,wNd−1

]H
, a

matrix

K = WDFEHΠ (4.60)

can be assembled. One can show that this K has a unit-diagonal and an upper triangular
structure. Both matrices are shaped such that the algorithm can be expressed in the simple
block diagram for DFE [Fis02], which is shown in Figure 4.23.

d H +

n

WDFE + Π d̃

K− I b·e

−

d̃′y

DFE receiver

Figure 4.23.: Decision feedback equalization receiver.

Furthermore, it can be observed that all rows and thus all nulling vectors are mutually
orthogonal, which is a direct consequence of the creation process of wk. Setting M = H,
this can be shown as follows:
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4.2. Decision Feedback Equalization

Algorithm 6 Separated DFE

1: WDFE ← 0; Π← 0; Cee ← 0
2: M← H
3: i← {0, 1, . . . , Nd − 1}
4: for l = Nd − 1, . . . , 0 do
5: D←M+

6: Clin
ee ← Nσ2

n

(
MHM

)−1

7: r ← argmin
m

[
Clin
ee

]
m,m

8: k ← ir; remove element r from i
9: wH

l ← [D]r,∗
10: [Π]k,l ← 1 . update permutation matrix

11: [Cee]k,k ←
[
Clin
ee

]
r,r

12: remove column r from M
13: end for
14:

15: d̃′ ←WDFEy . WDFE = [w0,w1, . . . ,wNd−1]H

16: K←WDFEHΠ
17: K′ ← K− I
18: for k = Nd − 1, . . . , 0 do

19: d̃′ ← d̃′ − k′k

⌊
d̃′k

⌉
. cancel interference

20: end for
21:

22: d̃← Πd̃′ . re-sort data vector
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4. Nonlinear Receivers for Unique Word OFDM

1. Per definition, DM = I for both D according to (4.47) and (4.57), which results to

wH
k ·ml =

{
1 for l = k,

0 else,
(4.61)

for the nulling vector wk determined in the current iteration. This means wk is
orthonormal to any column vector in M, but the k-th.

2. The column space of M corresponds to the Hermitian transpose of the row space of
M+. This is true, as the row space of M+ = (MHM)−1 ·MH is basically determined
by MH, as the multiplication with an invertible matrix (MHM)−1 does not change
the subspace5 spanned by the rows of MH.

3. Because of 2., the removal of the k-th column of M ensures orthogonality of wk with
the next nulling vector.

The complete induction concludes the proof that the current nulling vector is also orthog-
onal to all nulling vectors determined in future iterations, and finally that the rows of
WDFE form an orthonormal basis.

Similarly, the triangular structure of K = WDFEHΠ can be proven. In the first iteration,
the nulling vector wH

Nd−1 is defined in order to be orthogonal to all column vectors in

M, except the selected with minimum noise amplification. Hence, only a single one is in
the (Nd − 1)-th row of K. In the next iterations, the nulling vector is defined only to be
orthogonal to all remaining columns of M = H. It is not orthogonal to any previously
selected columns, as they were removed from M after being processed. Hence, the product
of the new nulling vector and H has non-zero values for previously removed column vectors,
a one for the currently processes column and zeros for all other columns still present in M.
The permutation by Π is needed to meet the algorithms’ way of ordering and produces
finally the upper triangular structure of K.

It needs to be noted that this does not apply for MMSE DFE using (4.53), rather
than (4.57) to determine DMMSE. In case D = ELMMSE, (4.61) does not hold and
thus neither orthonormality of the resulting WDFE, nor the triangular structure of K
are true. Algorithm 6 and the later introduced Algorithm 7 depend on these struc-
tures.

DFE by QR Decomposition These particular properties of WDFE and K suggest the two
definitions

Q =
(
Γ−1WDFE

)H
, (4.62)

R = Γ−1K, (4.63)

with the diagonal matrix

[Γ]k,k , ‖wk‖2 =
∥∥∥[WDFE]k,∗

∥∥∥
2

=

√√√√Nd−1∑
l=0

∣∣∣[WDFE]k,l

∣∣∣2, (4.64)

5The matrix multiplication is just a linear combination of the base vectors, hence no dimensions can
be added. The invertibility ensures full rank, hence no dimensions are lost.
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4.2. Decision Feedback Equalization

indicating the l2-norm of each row vector of WDFE, its Euclidean length. Then, the error
covariance matrix is simply Cee = Γ2. This allows for a different viewpoint: It introduces
the matrices Q with orthonormal column vectors and an appropriate upper triangular R,
as they could have been produced by any QR decomposition. This topic will be dealt
with in detail in Chapter 5. The DFE procedure based on a QR decomposed channel
matrix is equivalent to the processing in Figure 4.23 (see [WBR+01, WRB+02]). For
now, another adaption of the algorithm in Algorithm 7 is presented, which defines the
functions vblast qr and QR detection.

Algorithm 7 Separated DFE and QR detection

1: [Q,R,Π,Cee]← VBLAST QR(H)
2: d̃← Π ·QR detection(y,Q,R)
3:

4: function [Q,R,Π] =VBLAST QR(H)
5: W← 0; Π← 0; Cee ← 0
6: M← H
7: i← {0, 1, . . . , Nd − 1}
8: for l = Nd − 1, . . . , 0 do
9: D←M+

10: Clin
ee ← Nσ2

n

(
MHM

)−1

11: r ← argmin
m

[
Clin
ee

]
m,m

12: k ← ir; remove element r from i

13: wH
l ← [D]r,∗ /

√[
Clin
ee

]
r,r

. normalized nulling vector

14: [Π]k,l ← 1

15: [Cee]k,k ←
[
Clin
ee

]
r,r

16: remove column r from M
17: end for
18: Q←WH . W = [w0,w1, . . . ,wNd−1]H

19: R←WHΠ
20: end function
21:

22: function d̃′ =QR detection(y,Q,R)
23: d̃′ ← QHy
24: for k = Nd, . . . , 1 do
25: d̃′k ← d̃′k/ [R]k,k

26: d̃′l ← d̃′l − [R]l,k

⌊
d̃′k/ [R]k,k

⌉
, l = 0, . . . , k − 1

27: end for
28: end function

The matrix W is a variant of WDFE, where the column vectors are normalized. It is
used to produce the same matrices Q,R and Π, as they would be generated by the
sorted QR decomposition [WBKK03], shown in Section 5.2. The changes that distinguish
Algorithm 7 from the initial DFE in Algorithm 5 shall be pointed out in the follow-
ing:

• the determination of the nulling matrix W and the permutation matrix Π to describe
the order of processing is separated from the actual decision feedback loop and needs
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4. Nonlinear Receivers for Unique Word OFDM

to be calculated only once per channel update

• the iterator k descends from Nd−1 in order to receive a matrix R with upper instead
of lower triangular structure

• the nulling vectors wk are normalized, thus W consists of orthonormal column
vectors

• in order not to affect the current data estimate d̃′k, the decision feedback has to be
omitted for symbol k explicitly in line 26 (iterator l excluding k), as it cannot be
removed as simple as in Algorithm 6, where K− I sufficed

• the detection function QR detection works with any matrix Q that fulfills QHQ =
I and an R with upper triangular structure, both satisfying QR = HΠ

From this context, a QR decomposition (see Chapter 5) of the channel matrix

H = QRΠT (4.65)

is introduced, with the matrix Q ∈ C(Nd+Nr)×Nd , consisting of orthonormal column
vectors, so that with QHQ = I partial unitarity6 is fulfilled, and a matrix R ∈ CNd×Nd
of upper triangular structure.

Rewriting the channel model (2.37)

y = Hd + n = QR ·

d′︷ ︸︸ ︷
ΠTd +n (4.66)

y′ = QHy = Rd′ + QHn︸ ︷︷ ︸
n′

, (4.67)

helps to understand the DFE and in particular the function QR detection better. The
multiplication of QH, which is executed in line 23, can be interpreted as a rotation
into the Nd-dimensional subspace, spanned by H. It neither has impact on the length
of receive or noise vectors, nor does it introduce correlation, hence the noise statistics
QHn = n′ ∼ NC

(
0;Nσ2

nI
)

are maintained. Furthermore, it reorders the dimensions in
the way necessary for the correct ordering of the QR detection algorithm, as it was de-
termined in VBLAST QR. Moreover, due to the triangular structure of R, it can be said
that the channel is transformed into a spatially causal one [Win04], considering the MIMO
interpretation of the UW-OFDM system model introduced earlier. Of course, for UW-
OFDM the spatial interpretation is incorrect as the diversity is achieved by some kind of
coding, but the conclusions remain same.

Elaborating the k-th receive symbol yields

y′k = [R]kk d
′
k +

Nd∑
l=k+1

[R]kl d
′
l + n′k. (4.68)

6Actual unitarity is fulfilled only if both QHQ = I and QQH = I hold; the latter is not the case here.
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4.2. Decision Feedback Equalization

In this representation the data symbol with the number Nd − 1 can be immediately
estimated

d̃′Nd−1 = y′Nd−1/ [R]Nd−1,Nd−1

= d′Nd−1 + n′Nd−1/ [R]Nd−1,Nd−1 .
(4.69)

Subtracting the decision’s influence on the remaining receive values yields

y′′k = y′k − [R]k,Nd−1

⌊
d̃′Nd−1

⌉
, for k = 1, . . . , Nd − 1. (4.70)

This step is called the decision feedback, hence the term “decision feedback equaliza-
tion”.

After repeating these steps accordingly for the following Nd−1 symbols, the fully processed
receive symbol vector d̃′ is present. As a last step the vector of detected symbols needs
to be re-sorted

d̃ = Πd̃′, (4.71)

in order to restore the correct order of the detected symbols, which was destroyed due to
the algorithmic processing.

Note, that if the quantizer in the feedback loop is bypassed, the cascade of QH and feedback
loop R−1, or equivalently WDFE and K, is equal to H+: Omitting the slicing operation,
the output in Figure 4.23 can be expressed as

d̃′ = WDFEy − (K− I)d̃′

(I + K− I)d̃′ = WDFEy

WDFEHΠd̃′ = WDFEy

Hd̃ = y

d̃ = H+y

Thus, only the nonlinear quantizing operation distinguishes DFE from a linear equal-
ization using the Moore-Penrose pseudo-inverse, which corresponds to the BLUE, as in
Section 3.1.1. This quantization along with the feedback implies an equalization that does
not amplify the noise.

4.2.5. On the Equivalence of DFE and NI

For non-block-based processing, it is well known that DFE and NI can be converted into
each other [HM84, Fis02] quite easily, and both variants perform equivalently. For the
block-based operation with UW-OFDM, the situation is a bit different.

In this section, this equivalence is tried to be recreated for UW-OFDM, with a slightly
altered version of the iterative noise interpolator in Algorithm 4. Only uncoded trans-
mission is considered in this section, and the determination of soft information neglected.
Furthermore, the NI shall be performed with an initial linear data estimation using the
BLUE, according to (3.10), and the ZF DFE according to (4.47) is employed, in order to
have common statistical measures to start with. Algorithm 8 differs from the more general
form in the following points:
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4. Nonlinear Receivers for Unique Word OFDM

• the loop is iterated Nd times, in order to do one noise interpolation for each data
symbol (line 3)

• the noise interpolators are gathered in the rows of matrix WNI in line 7, their
execution is done in line 16

• a permutation matrix Π in line 8 documents the order in which to do the noise
interpolation

Algorithm 8 Separated Iterative Noise Interpolation

1: Cee ← Clin
ee

2: Π← 0
3: for l = 0, 1, . . . , Nd − 1 do
4: k ← argmax

m
[Cee]m,m . Pick noisiest sample

5: Sk ← {0, 1, . . . , Nd − 1}\k
6: wT = rTk (Rk)−1

7: [WNI]l,∗ ← wT

8: [Π]k,l ← 1

9: [Cee]k,∗ ← [Cee]k,∗ −wTCH
ee

10: [Cee]∗,k ← [Cee]∗,k −Ceew∗

11: end for
12:

13: d̃′ ← ΠTd̃lin

14: KNI ←WNIΠ
15: for n = 0, 1, . . . , Nd − 1 do

16: d̃′n ← d̃′n − [KNI]n,∗

(
d̃′ −

⌊
d̃′
⌉)

17: end for
18:

19: d̃← Πd̃′

Starting point is again an estimate of a linear data estimation d̃lin and the error statis-
tics Clin

ee . This resembles the same separation of filter determination that does not depend
on the received data and filter operation as introduced for the DFE in Algorithm 6. The
samples to be used to for estimation are now chosen as Sk = {0, 1, . . . , Nd − 1}\k. Along
with the notation used earlier, in line 6, rTk = [Cee]k,Sk is the k-th row of the current Cee

with only the columns listed in Sk. Rk = [Cee]Sk,Sk is extracted from the matrix Cee

by selecting all the rows and all the columns listed in Sk.

After bringing the linear estimates into the correct detection order in line 13, and adapting
the columns of WNI accordingly (line 14), the noise interpolation can be performed one
after another, iterating n = 0, 1, . . . , Nd − 1. Another permutation in the end in line 19
re-sorts the data symbols to the correct order. Now, this can be expressed as the block
diagram shown in Figure 4.24a, where the linear data estimation is represented by the
block E.

With a little modification [Fis02], the block diagram can be brought into an equivalent
one with two filter loops, as shown in Figure 4.24b. Furthermore, the matrix WNIΠ can be
identified as an upper triangular matrix with a zero main diagonal.
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4.2. Decision Feedback Equalization

In a last step, the first loop can be replaced with a matrix multiplication with

K = I−WNIΠ,

and the filter in the second loop gets a minus, such that

K′ = −WNIΠ = K− I,

as shown in Figure 4.24c. As in the second loop, the definition of K agrees with Figure 4.23,
it also suggests to apply the definition in (4.60), K = WDFEHΠ. Now, this is the exact
same as the DFE block diagram in Figure 4.23, as evaluating y′ just before the addition
in Figure 4.24c yields

y′ = KΠTEy

= WDFEHΠΠTEy.

Since Π is orthogonal ΠΠT = I. Also remembering that E is the BLUE, and thus
it resembles the Moore-Penrose pseudo-inverse of the channel, and HE = I, this be-
comes

y′ = WDFEy.

This proves the equivalence to Figure 4.23 and Algorithm 6, with

WNI = I−WDFEHΠ,

WDFE = (I−WNI) ΠTE.

All those representations (a) to (c) in Figure 4.24 are equivalent in terms of a block diagram
[Fis02]. Even though performing the filter determination parts in Algorithm 6 and 8
yield almost equal permutation matrices Π (only minor differences not affecting the final
outcome could be observed in simulations), DFE and NI do not perform equally. It has not
been mentioned yet that with the evolution to Figure (b) a switch in the order of operation
has to take place, exactly in between the two loops: While the first forward loop needs to
be executed in the order n = 0, 1, . . . , Nd−1, the second feedback loop needs to operate in
reverse order n = Nd−1, Nd−2, . . . , 0. Then, DFE performance is achieved, even with filter
matrices generated with the separated iterative NI Algorithm 8. In this single step lies the
difference between the NI and the DFE in this setup. Also, these considerations are valid
up to some very limited extent only, as many restrictions had to be made for Algorithm 8.
Any deviation from this algorithm prevents the creation of an upper triangular K, which
is a prerequisite for this DFE interpretation.
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y E ΠT +

b·e

Π d̃

WNIΠ

+

−

−

d̃′d̃lin

⌊
d̃′
⌉

ẽNI

ẽ

(a) noise interpolation

y E ΠT + + Π d̃

WNIΠ WNIΠ b·e

−

(b) intermediate step

y E ΠT K + Π d̃

K′ b·e

−

y′

WDFE

(c) decision feedback equalization

Figure 4.24.: Conversion of noise interpolation to decision feedback equalization receiver.
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4.2.6. Performance Evaluation

For the evaluation of the bit error performance of the DFE receivers, the ZF and the
MMSE version of the DFE are compared against the LMMSE data estimator. As usual,
the results for uncoded and coded transmission are shown in the AWGN channel and mul-
tipath environment. Systematically as well as non-systematically generated UW-OFDM
transmission is shown.

For uncoded transmission of systematically generated UW-OFDM symbols in the AWGN
channel, the DFE receivers achieve a gain of up to 0.6 dB over the LMMSE estimator
at high Eb/N0-ratios. Then, the regularization term Nσ2

n/σ
2
d in (4.53) becomes very

small and the MMSE DFE and the ZF DFE coincide, as visible in the figures. At low
SNR the MMSE DFE is slightly ahead of both, the LMMSE and the ZF DFE. For coded
transmission, the DFE receivers unfortunately fall behind the LMMSE performance. Only
the MMSE DFE can still supersede the LMMSE estimator in the simulated range: Above
an Eb/N0-ratio of about 5.3 dB and a BER of 1.5 · 10−5 the MMSE DFE becomes the
better data detector. For the non-systematic generation approach, the DFE performances
concur with the LMMSE results completely and perform exactly the same, with a gain of
1.1 dB for uncoded and 1.4 dB for coded transmission, compared to the best performing
receiver for systematically generated UW-OFDM, which is the MMSE DFE. This means
that the DFE receivers are not able to beat the LMMSE estimator for non-systematic
UW-OFDM in AWGN.

In multipath environment, a bigger advantage for the DFE receivers can be recognized.
For uncoded transmission, the DFE variants have a big gain over the LMMSE, increasing
with the SNR, of up to 3 dB for the systematically generated system and even up to 5.5 dB
for non-systematically generated UW-OFDM. Furthermore, the MMSE version supersedes
the ZF version relatively constant over the whole SNR range by 0.2 dB for non-systematic
UW-OFDM. Surprisingly, for the systematic systems the MMSE DFE shows an advance
of up to 0.5 dB, which is increasing with the SNR.

For coded transmission in multipath environment using the systematic approach, the
MMSE DFE performs very close to the LMMSE. The ZF DFE, however, is not able to
compete with the other two receivers and performs about 0.7 dB worse than the LMMSE
estimator. For the non-systematically generating UW-OFDM system the ZF DFE is
also not able to outperform the LMMSE, with a loss of 0.15 dB. The MMSE DFE
supersedes the LMMSE estimator by 0.16 dB. Due to its overall good performance in
coded and uncoded transmission, the MMSE DFE receiver will be used in later compar-
isons.
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Figure 4.25.: BER performance of the DFE estimators for system B in AWGN according to Appendix A.
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Figure 4.26.: BER performance of the DFE estimators for system B in multipath environment according to Appendix A.1
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4. Nonlinear Receivers for Unique Word OFDM

4.3. Maximum Likelihood Sequence Estimation

The best detection performance can be achieved by a maximum a-posteriori (MAP) de-
tection [Pro00]. The MAP detector seeks for the data vector that is most likely to be
sent, once the receive vector y is known. In other words, it maximizes the a-posteriori
probability of the transmit vector after receiving y, which is the conditional probability
of the data vector d under the knowledge of y

d̂ = argmax
d∈ANd

Pr (d|y) , (4.72)

where ANd is the set of all possible data vectors. Using Bayes’ theorem this a-posteriori
probability can be rewritten as

Pr (d|y) =
py|d (y|d) Pr (d)

py (y)

=
py|d (y|d) Pr (d)∑

d′∈ANd py|d (y|d′) Pr (d′)
. (4.73)

Equiprobable and iid. binary source symbols and thus independent and uniformly dis-
tributed transmit symbols are assumed. Hence, the probability of any data vector is
Pr (d) = |A|−Nd , and the term can be reduced to

Pr (d|y) =
py|d (y|d)∑

d′∈ANd py|d (y|d′)
. (4.74)

The summation term in the denominator is constant for a given receive vector y and can be
excluded in the maximization, transforming the MAP problem into a maximum-likelihood
sequence estimation (MLSE)

d̂ = argmax
d∈ANd

py|d (y|d) . (4.75)

4.3.1. MLSE Processing

The channel model (4.1) in mind, the covariance matrix of the additive noise is known
as Cnn = Nσ2

nI. With the multivariate complex Gaussian distribution [Kam04] the
probability in (4.75) can be written as

py|d (y|d) =
1

πNd det Cnn
exp

{
− (Hd− y)H C−1

nn (Hd− y)
}

(4.76)

=
1

(πNσ2
n)Nd

exp

{
−
‖Hd− y‖22

Nσ2
n

}
. (4.77)
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4.3. Maximum Likelihood Sequence Estimation

The constant factor in front of the exponential function can be disregarded for the maxi-
mization. It is also allowed to search for the maximum of the logarithm of the expression, as
the logarithm is a strictly monotonic function, which yields

d̂ = argmax
d∈ANd

−
‖Hd− y‖22

Nσ2
n

. (4.78)

The denominator is constant and can be disregarded again, and the minus turns the
maximization into a minimization. The remaining MLSE problem is to search for the
minimizer of the distance between any valid transmit vector after channel propagation
and the received vector:

d̂ = argmin
d∈ANd

||Hd− y||22, (4.79)

with the channel matrix H including the UW-OFDM generator matrix and the multipath
channel, according to (4.1). In other words, this is the search for the closest point for all Hd
out of theNd-dimensional QAM gridANd to the receive vector y.

Both equations (4.72) and (4.75) are equivalent in case of equiprobable data symbols.
Both expressions suggest to check every possible data vector of length Nd with symbols
from the alphabet A, also in the evolved form (4.79). For practical UW-OFDM setups
this is an impossible task, since there are |A|Nd valid data vectors, which is about 1029

possible data vectors7 for the exemplary system B (see Appendix A) and a quaternary
alphabet, respectively. In Section 4.4 an efficient algorithm is presented that yields the
same results in a practical amount of time. For this reason, MLSE simulation results are
omitted here.

4.3.2. Reliability Information for MLSE Results

For the MLSE, reliability information can be directly determined without the detour
over the error statistics. Every data vector d ∈ A(Nd×1) can also be represented by its
binary equivalent b ∈ {0, 1}(Ndnb×1), when nb binary symbols form each data symbol,
such that nb = ld|A|. As already suggested in Section 2.5, the probability for bl = 0
is used as reliability information under the knowledge of the receive vector y, as well
as the probability for bl = 1. These probabilities are usually very close to zero or one,
what suggests the use of a presentation that has a better resolution near these borders.
Therefore, a log-likelihood ratio (LLR) [Hub02] is the common choice that accomplishes
these needs and shall be defined in this work as

L (Pr (x = 1|· · ·)) , ln
Pr (x = 1|· · ·)
Pr (x = 0|· · ·)

. (4.80)

For the UW-OFDM purpose here, the LLR Ll is specific for each symbol of b̂, which is the
binary representation of the detected MLSE data vector d̂, and introduced as

Ll = L (Pr (bl = 1|y)) = ln
Pr (bl = 1|y)

Pr (bl = 0|y)
. (4.81)

7Assuming generous 10 billion data vectors to be checked per second, it would still take more than
250 billion years to do a brute-force MLSE on a single OFDM symbol in system B with 4-QAM.
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Due to its definition, an LLR value close to zero indicates a probability of around 1/2,
which poses a high uncertainty regarding its decision for a one or a zero. Higher magnitudes
indicate higher certainty. The sign of the LLRs on the other hand, indicate the tendency.
This means negative values indicate a higher probability for a zero symbol, while positive
values stand for a one.

With Bayes’ theorem and the knowledge of equiprobable input symbols the derivation as in
(4.73) is followed and the probabilities can be changed to probability densities

Ll = ln
py|b=1 (y|bl = 1)

py|b=0 (y|bl = 0)
= ln

∑
b∈B(1)

l

py|b (y|b)

∑
b∈B(0)

l

py|b (y|b)
, (4.82)

where B(β)
l is the set of all binary symbol vectors {0, 1}(Ndnb×1), with the symbol at

position l fixed to β. Using the equivalent representation of the binary symbol vector as
a data symbol vector b→ d(b) and the findings in (4.77), these probability densities are
given as

py|b (y|b) =
1

(πNσ2
n)Nd

exp

{
−
‖Hd(b)− y‖22

Nσ2
n

}
. (4.83)

and the LLR becomes

Ll = ln

∑
b∈B(1)

l

exp

{
− ‖Hd(b)−y‖22

Nσ2
n

}
∑

b∈B(0)
l

exp

{
− ‖Hd(b)−y‖22

Nσ2
n

} (4.84)

= ln
∑

b∈B(1)
l

exp

{
−
‖Hd(b)− y‖22

Nσ2
n

}
− ln

∑
b∈B(0)

l

exp

{
−
‖Hd(b)− y‖22

Nσ2
n

}
.

(4.85)

Again, the unpractical situation is at hand that in order to compute the LLR values for one
OFDM symbol, the probabilities of all possible data vectors need to be checked. An imple-
mentation for determining the exact LLRs is shown in Algorithm 9. The actual computa-
tion is only feasible for very small UW-OFDM systems, though.

This algorithm is able to retrieve the maximum-likelihood sequence estimate b̂ in its bi-
nary symbol representation from y, and additionally provides the associated log-likelihood
ratios L = [L0, L1, . . . , LNd−1]T for every symbol. The value p, as calculated in line 6,
is not a real probability, but represents one term of any sum in (4.85). Then, in the
lines 8 and 9 this p contributes to the sum of LLR number l, depending on the value of
the binary representation bl of the current data vector d. The final LLR vector is deter-
mined in line 11. Then, the binary representation of the most likely sequence is finally
determined in line 12. The operations ln · and sign(·) work element-wise on the argument
vectors.
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4.3. Maximum Likelihood Sequence Estimation

Algorithm 9 Maximum-Likelihood Sequence Estimator with Soft-Output

1: function [b̂,L] = MLSO(y,H, σ2
n,A)

2: p(0) ← 0
3: p(1) ← 0
4: repeat
5: d← next valid data vector

6: p← exp

{
− ‖Hd−y‖22

Nσ2
n

}
7: b← binary representation of d

8: p
(0)
l ← p

(0)
l + p, ∀l with bl = 0

9: p
(1)
l ← p

(1)
l + p, ∀l with bl = 1

10: until all valid d tried
11: L← ln p1 − ln p0

12: b̂← sign(L)+1
2

13: end function

However, the same restrictions as in determining the binary symbol vector with the
MLSE apply here: In practical UW-OFDM systems the problem is not solvable due
the vast number of valid OFDM symbols. Therefore, it makes sense to consider the
brute-force MLSE method for small UW-OFDM systems only. For this reason the ex-
emplary system ML (see Appendix A) was introduced, which reduces the computation
effort with a 4-ary alphabet to 48 = 65 536 possible data vectors. BER results of the
MLSE will be shown as reference, together with the results of the sphere decoder, and
in particular to quantify the sphere decoder’s loss due to the max-log approximation in
Section 4.4.2.
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4. Nonlinear Receivers for Unique Word OFDM

4.4. Sphere Decoding

In Section 4.3, the optimum way to decode UW-OFDM symbols is shown. However, for a
brute-force MLSE according to (4.79) every possible data vector d needs to be considered
in the minimization

d̂ = argmin
d∈ANd

||Hd− y||22,

which is an impossible task for practical UW-OFDM systems due to its enormous complex-
ity. For this kind of problem the sphere decoding (SD) algorithm is an attractive method,
as it is able to solve (4.79) in a tractable amount of time.

As the data vector can only adopt discrete values and the UW-OFDM generator matrix
can be considered as a lattice basis, the product Hd can be interpreted as a mathematical
lattice. In contrast to most lattice descriptions it is finite, as the coefficients in d can
only take values from a finite transmit symbol alphabet, and it is complex in value, as
coefficients and basis are defined on C.

The initial concept as search for short vectors in lattices was shown in [Poh81, FP85].
An improved interpretation was given in [SE94]. Amongst others, the evolution of the
algorithm for data detection was shown in [Mow94], until [VB99] impressed the term
“sphere decoding”, which became very popular from then. In many publications the con-
cept was adapted for different applications [DCB00, BBW+05], its possibilities further
improved [AEVZ02, DGC03] and its potentially exponential complexity eased [HV05].
While sphere decoding became very popular for MIMO signal processing (for exam-
ple [BBW+05, AA08]), it is dealt with the sphere decoder in the UW-OFDM context,
here.

4.4.1. Sphere Decoding for Unique Word OFDM

In this section, an adapted version of the algorithm in [AEVZ02] for Unique Word OFDM
is presented [OH11b]. To allow for sphere decoding, a QR decomposition of the channel
matrix

H =
[
Q Q0

]︸ ︷︷ ︸
Q′

[
R
0

]
(4.86)

enables the required simplifications, where Q′ ∈ C(Nd+Nr)×(Nd+Nr) is a unitary matrix
and R ∈ CNd×Nd is upper triangular. The parts of Q′ can be interpreted as follows: The
submatrix Q corresponds to the co-image of H – similar to the Q for DFE in (4.65) –
while Q0 represents the left null space of H, which extends Q to be unitary. The order
of the QR decomposition has great impact on the execution of the SD. As the SD always
yields the MLSE solution (exception is soft-output SD), here the execution time is affected,
rather than the bit error performance as for the DFE. The sorted QR decomposition (see
Section 5.2) is selected for the SD receivers. Thus, for the bit error analysis, the QR
decomposition has no importance, unless the number of node visits or sphere radii are
restricted. By restricting sphere radii, execution time can be further influenced, which is
not covered in this work.
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4.4. Sphere Decoding

Inserting the decomposed channel matrix into (4.79), the term to be minimized becomes
[OH11b]

‖Hd− y‖22 =

∥∥∥∥Q′ [R0
]

d− y

∥∥∥∥2

2

=

∥∥∥∥Q′HQ′
[
R
0

]
d−Q′Hy

∥∥∥∥2

2

(4.87)

=

∥∥∥∥[R0
]

d−
[
QH

QH
0

]
y

∥∥∥∥2

2

=
∥∥∥Rd−QHy

∥∥∥2

2
+
∥∥∥QH

0 y
∥∥∥2

2
. (4.88)

In the step to (4.87), the multiplication with the unitary Q′H can be geometrically inter-
preted as a rotation in the Nd-dimensional vector space and does not affect the norm at
all. The matrix R on the other hand stretches the transmit vector, altering its norm. As
the second term in (4.88) is independent of d, it can be dropped and the minimization
problem (4.79) transforms into

d̂ = argmin
d∈ANd

∥∥Rd− y′
∥∥2

2
, (4.89)

using

y′ = QHy

= Rd + QHn.
(4.90)

Note that the unitary transformation QHn does not change the noise statistics of n at all.
Due to the triangular structure of R, (4.89) can be solved in an iterative fashion using the
sphere decoder algorithm [VB99, AEVZ02]. This procedure is shown in Algorithm 10 in
an adapted form to deal with a finite and complex valued transmit alphabet, and hence
suited for UW-OFDM transmission.

In the following, some aspects of Algorithm 10 are explained: For the sphere decoding
procedure, an inversion of R will be necessary, which is a simple and straightforward
procedure due to its triangular structure. The matrix

F = R−1 (4.91)

will be of good use from here and has an upper triangular structure as well. Likewise
it can be shown that the diagonal elements of F correspond to the reciprocal diagonal
elements of R such that

[F]k,k = 1/ [R]k,k . (4.92)

In order to get a better understanding of the operation method of the SD, three operating
domains shall be identified that is switched in between:

• receive domain, with the unaltered receive vector: y = QRd + n

• rotated receive domain or stretched domain, where the receive vector is de-rotated
by QH, but is left with the stretching influence by R: y′ = Rd + QHn
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4. Nonlinear Receivers for Unique Word OFDM

• equalized domain, where additionally the stretching by R is removed, and thus all
channel influence is canceled; here the transmit symbols are directly visible, up to
the AWGN: ỹ = d + FQHn

In which domain the calculatory steps are performed is selected in order to optimize
computational performance.

At first in line 4, the de-rotated receive vector is equalized regarding the matrix R, in
order to switch to the equalized domain model

ỹ = Fy′
(4.90)

= FQHy = FR︸︷︷︸
(4.91)

= I

d + FQHn, (4.93)

which changes the minimization problem (4.89) to

d̂ = argmin
d∈ANd

‖d− ỹ‖22 . (4.94)

Now, the operation of the algorithm is followed until the first decoding hypothesis is found.
The detection process starts at the last symbol of the data vector d with number k =
Nd−1. The symbol number k is also called the level, indicating that Nd−k data symbols
are preliminarily decided and fixed after the processing for the given level k. A decrease of
the level corresponds to deciding for another data symbol, while an increase is accompanied
by giving up the decision of a symbol and reverting to an earlier state in order to consider
other possibilities. Therefore, a version of ỹ specific to each level needs to be stored, hence
the superscript in Algorithm 10.

In the beginning, the initList function is called for the root level k = Nd−1. This function
creates a list Ak, which is specific for each level k, with all elements of the transmit symbol
alphabet A together with their additive metric δ. The additive metric δ is the weight a
particular symbol would add to the overall Euclidean distance of the decoding hypothesis
to the receive vector. As it is the easiest way to determine this distance in the equalized
domain, but the additive metric applies in the stretched domain8, the de-stretching by F
needs to be reversed:

δ = [R]k,k dk − y
′
k

= [R]k,k dk − [F]−1
k,k ỹk

=
dk − ỹk
[F]k,k

(4.95)

This is performed in line 31 with a division by the diagonal element of F, with a being
the vector of elements from A. The list Ak is sorted by this additive metric in ascending
order, which also gives the testing order.

Due to the upper triangular structure of R and F = R−1 all other symbols of the data
vector d are not regarded yet and do not influence the cumulative metric ∆k, at this
point. This is why it is possible to consider symbol dNd−1 alone and determine an additive
metric δ like that. The vectors and matrices are visualized in Figure 4.27, where the dark

8The metric is actually only valid in the receive domain, but metrics do not change when switching
between receive and stretched domain, due to the unitarity of Q.
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4.4. Sphere Decoding

Algorithm 10 Sphere Decoder

1: function d̂ =SD(y′,F,A)
2: ∆Nd ← 0; λML ←∞
3: k ← Nd − 1
4: ỹ(k) ← Fy′

5: Ak ←initList(k, ỹ
(k)
k , [F]k,k ,A)

6: while k < Nd do . termination criterion
7: [dk, δ,Ak]← getNextSymbol(Ak)
8: if isempty(dk) then . all symbols from A tried
9: k ← k + 1

10: else
11: ∆k ← ∆k+1 + |δ|2 . update cumulative metric
12: if ∆k < λML then
13: if k > 0 then . not at a leaf yet

14: ỹ
(k−1)
l ← ỹ

(k)
l − δ [F]l,k , l = 0, . . . , k − 1

15: k ← k − 1

16: Ak ← initList(k, ỹ
(k)
k , [F]k,k ,A)

17: else . new ML hypothesis found
18: d̂← d
19: λML ← ∆k

20: k ← k + 1
21: end if
22: else
23: k ← k + 1
24: end if
25: end if
26: end while
27: end function
28:

29: function Ak =initList(k, ỹ, f,A)
30: a← all elements of A
31: δ ← (a− ỹ)/f
32: Ak ←

[
a δ

]
33: sort rows of Ak according to the second column in ascending order
34: end function
35:

36: function [d, δ,Ak] =getNextSymbol(Ak)
37: d← [Ak]1,1
38: δ ← [Ak]1,2
39: remove first row of Ak

40: end function
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4. Nonlinear Receivers for Unique Word OFDM

orange outlined parts participate in the calculation of the additive metric δ at level k =
Nd − 1. On a side note, deciding for the symbol with minimum additive metric, which is
done here by sorting with respect to δ, is the equivalent to the slicing operation for the
DFE Algorithm 7 in line 26.

Then, the iteration loop performs on each level k the following steps: First it retrieves the
next symbol dk and its additive metric δ from list Ak via getNextSymbol and removes
the entry (line 39). In line 11, the cumulative metric ∆k for level k is calculated by adding
the metric from one level above and the current additive metric. If this cumulative metric
is smaller than the overall metric of the decoding hypothesis λML, the current symbol is
stored for the levels below and its influence from the equalized receive vector ỹ(k−1) is
removed (line 14). As ỹ is the equalized receive vector, the additive metric needs to be
translated to the equalized domain as well. This operation is described in column Nd − 1
in the rows 0, . . . , k − 1 of F or in the dark blue outline in Figure 4.27. This operation
is the corresponding version of the interference cancellation step in line 13 of the DFE
Algorithm 5 and is also present in the other DFE versions.

After k is decreased and the list Ak is created for the new level, the loop starts over, and
the level is decreased with each iteration, until k = 0 is reached. Having worked level k =
0 means a complete valid data symbol vector is present, which is stored as decoding
hypothesis d̂ along with the metric λML this vector yields.

d y′δ

Figure 4.27.: Visualization of the dimensions of Rd− y′.

Assuming the same QR decomposition as for the DFE in (4.65) and comparing with the
QR detection function in Algorithm 7, the very same operations were done, up to this
point. And in fact, if the SD stopped here, the exact same decoding hypothesis d̂ is
found. By deciding for the symbols adding the least amount to the cumulative metric ∆k

however, the possibility of a lower overall metric is ignored, which could have been found
after walking a branch that is not the minimizer of the current additive metric. This is
what the SD ensures by considering the other symbols at the levels k > 0 as well. After
finding an ML hypothesis and moving up one level, the next-best symbol is picked from
Ak together with its additive metric (line 7). If the list is empty (line 8), all possibilities on
this level are exhausted and the level needs to be increased.
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4.4. Sphere Decoding

If the cumulative metric ∆k exceeds a previously found best metric λML, it does not
make any sense to hold on to the current partial data vector under test, as the additive
metric only increases the result. Hence, it is moved up one level (line 23). On the other
hand, if the current cumulative metric is smaller than the currently best metric λML,
there is still the chance to find a better overall solution and two cases can be distin-
guished:

• If the current level is k = 0 a new best decoding hypothesis is reached (line 17) and
stored. Next, the algorithm has to move up a level.

• If k > 0 (line 13), the level is decreased and the new symbol list Ak is prepared.
Before that, the equalized receive vector for the new level is determined by removing
the portion of the data symbol that was decided for before, from the receive vector.

As soon as k is increased beyond the root level Nd − 1, no more symbols worth checking
are left and the sphere detection is finished. The decoding hypothesis d̂ now holds the
MLSE solution.

The SD algorithm can also be sketched as a tree search of depth Nd. The root is at
level k = Nd−1, and the leaves representing a full decoding hypothesis are on level k = 0.
An example for the processing of such a sphere decoding tree is shown in Figure 4.28. This
very useful representation is enabled by the upper triangular structure of R and inherently
visualizes the separable decision for individual data symbols.

root

· · · · · ·

...

0

Nd − 1
k

leavesd̂

Figure 4.28.: Schematic SD tree for a 4-ary constellation and a depth of Nd.

4.4.2. Determination of Soft Information in Sphere Decoding

Analog to the MLSE as shown in Section 4.3, no remaining error statistics are known after
sphere decoding. The soft information for the channel decoder needs to be determined in
a similar way, using LLRs [OSHH12]. For the determination of the soft information for SD,
(4.85) is rewritten in order to fit the derivations from before as

Ll = ln
∑

b∈B(1)
l

exp

{
−
‖Rd(b)− y′‖22

Nσ2
n

}
− ln

∑
b∈B(0)

l

exp

{
−
‖Rd(b)− y′‖22

Nσ2
n

}
, (4.96)

with the same index sets of the sum as in (4.82).
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An exemplary sum of two sum elements ea1 and ea2 in the log-domain can be expressed
as [Hub02]

ln (ea1 + ea2 ) = max {a1, a2}+ fc (|a1 − a2|) , (4.97)

using a correctional function

fc(x) = ln
(
1 + e−x

)
(4.98)

that is plotted in Figure 4.29. The max-log approximation [HtB03, RVH95] states

ln (ea1 + ea2 ) ≈ max {a1, a2} . (4.99)

This approximation is quite accurate, if the correctional function fc(x) is small, which
is the case for a big difference |a1 − a2|. Extending the max-log approximation to the
whole sums in (4.96), the correctional function part is small if there is one particular
big exponent and otherwise small sum values, which happens usually in safe decisions
when only little noise is present. Thus, the max-log approximation is very accurate in
a high-SNR regime and expected to become more and more inaccurate with decreasing
Eb/N0-ratio.

−2 0 2 4
0

0.5

1

1.5

2

x

f
c
(x

)

Figure 4.29.: Correctional function fc(x) as used in (4.97).

Therewith, the calculation is greatly simplified, as most of the addends of the sums in
(4.96) can be omitted and only the largest one, coinciding with the minimum distance vec-
tor, is considered. Additionally, the noise variance term Nσ2

n can be factored out for each
LLR and even omitted for the channel decoding, as it is constant for the whole OFDM sym-
bol. After turning the maximization to a minimization due to the minus in the exponent,
the LLR determination problem (4.96) becomes [SBB08]

Ll = min
b∈B(1)

l

∥∥Rd(b)− y′
∥∥2

2
− min

b∈B(0)
l

∥∥Rd(b)− y′
∥∥2

2
. (4.100)
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For each symbol, one of the two minima is given by λML. The other one is the best
solution, where the current symbol bl, whose reliability is investigated, is flipped, such

that bl = b̂l. This results to the metric

λML
l = min

b∈B(b̂l)

l

∥∥Rd(b)− y′
∥∥2

2
, (4.101)

and finally the LLRs

Ll =

{
λML − λML

l if b̂l = 0,

λML
l − λML if b̂l = 1,

(4.102)

with the metric of the ML solution λML =
∥∥∥Rd̂− y′

∥∥∥2

2
and the metric of the counter-

hypothesis

λML
l = min

d∈A

(
b̂l

)
l

∥∥Rd− y′
∥∥2

2
. (4.103)

The metric of the counter-hypothesis is specific to each binary symbol and determined by
fixing the l-th symbol of the data vector d under test to the complement of the MLSE

solution b̂. The flipped symbol number l is denoted as b̂l and A(β)
l is the set of all valid

data vectors d with the l-th symbol equal to β.

Now, simply these two values need to be found, which is the main problem of the soft-
output sphere decoder. Besides finding the ML solution and metric, calculating the LLRs
resorts to finding the Ndnb “next-best” minima of (4.103) for each symbol [SF10]. This
interpretation can be sketched by a decoding tree of depth 3 for a 4-ary alphabet in
Figure 4.30, where the ML solution is indicated by the red path, delivering the ML met-
ric λML. In order to find the metrics of the counter-hypotheses, the respective binary
symbol of the ML solution needs to be flipped and fixed, what corresponds to pruning the
SD tree by the appropriate branches and reducing the number of leaves by one half. For

example, to determine the counter-hypothesis λML
0 with respect to the first symbol b0 (1

in the given example), the best solution with the first symbol fixed to b0 = 0 is sought and
indicated in green. Fixing the first symbol to 0 conforms with fixing the MSB and remov-
ing the right half of the SD tree from the search process. Fixing symbol b1 to the opposite
of the ML solution (fixing to 1), conforms with removing the first and the third branch
from the root of the SD tree, as it represents the LSB.

One could solve these minimization problems subsequently by re-running the SD for each
counter-hypothesis with correspondingly restricted search space, that is performing a so-
called repeated tree search. This however requires to run the SD Ndnb+1 times per OFDM
symbol, and hence, imposes a high complexity burden.

To alleviate this, the initial Algorithm 10 published in [AEVZ02, OH11b] is extended
in order to provide soft information according to the single tree search principle shown
in [JO05, SBB08], which ensures that one leaf of the SD tree is visited not more than

once and branches are only followed if there is the chance to update either d̂ (and thus

λML) or one of the Ndnb counter-hypotheses’ metrics λML
l . This single tree search was

implemented, while introducing the restriction to a finite, possibly complex valued trans-
mit symbol alphabet A, instead of the ability to operate on an infinite real lattice only.
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00

01 10

11

MSB

0 1

LSB

0 1

LSB

0 1

λML
0 λML

1λML
2λML

3 λML
4λML

5 λML

Figure 4.30.: Schematic SD tree for a 4-ary constellation and a depth of 3.

The implementation as published in [OSHH12] is outlined in Algorithm 11, following
the pseudo-code notation in [AEVZ02, SF10]. Only the additions and changes com-
pared to Algorithm 10 are highlighted, while accordant operations are displayed in faded
gray.

The functions initList and getNextSymbol remain the same as in the normal SD Algo-
rithm 10.

LLR clipping during the SD search is an effective means to speed up the search process
and hence reduce its computational complexity [SBB08]. This is achieved by limiting the
SD search radius ρ (line 13) to include only counter-hypotheses within the LLR clipping
level Lmax. LLR clipping is implemented in line 27. Of course, it affects the bit error
performance negatively. However, LLR clipping enables an efficient trade-off between
performance and complexity. In particular, the traditional hard-output SD algorithm can
be modeled by setting Lmax = 0.

Of course, the use of the max-log approximation induces a loss in accuracy. The soft
information found by the SOSD according to Algorithm 11 is less accurate than the one
found by the soft-output maximum-likelihood decoder in Algorithm 9, which is exact and
thus optimum. For a very small system this loss due to the approximation can be num-
bered. For the exemplary UW-OFDM system ML, according to Table A.1, with 4-QAM,
bit error results are shown in Figure 4.31 for the case of an AWGN channel and in multi-
path environment. Non-systematically generated UW-OFDM is omitted in this plot, as it
shows the very same max-log degradation as for systematic UW-OFDM. A comprehensive
performance comparison is given in Section 4.4.3.
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Algorithm 11 Soft-Output Sphere Decoder

1: function [b̂,L] = soft-output SD(y′,F,A)

2: ∆Nd ← 0; λML ←∞; λML ←∞
3: k ← Nd − 1
4: ỹ(k) ← Fy′

5: Ak ← initList(k, ỹ
(k)
k , [F]k,k ,A)

6: while k < Nd do
7: [dk, δ,Ak]← getNextSymbol(Ak)
8: update binary symbol representation b of d
9: if isempty(dk) then . all symbols from A tried

10: k ← k + 1
11: else
12: ∆k ← ∆k+1 + |δ|2

13: ρ← maxλML
l

∣∣∣
l=0,...,(k+1)nb−1 ∨ bl 6=b̂l

. tree pruning

14: if ∆k < ρ then
15: if k > 0 then
16: ỹ

(k−1)
l ← ỹ

(k)
l − δ [F]l,k , l = 0, . . . , k − 1

17: k ← k − 1

18: Ak ← initList(k, ỹ
(k)
k , [F]k,k ,A)

19: else
20: if ∆k < λML then

21: λML
l ← λML, ∀l with bl 6= b̂l

22: b̂← b
23: λML ← ∆k

24: else
25: λML

l ← min
{
λML
l ,∆k

}
, ∀l with bl 6= b̂l

26: end if
27: λML

l ← min
{
λML
l , λML + Lmax

}
. LLR clipping

28: end if
29: else
30: k ← k + 1
31: end if
32: end if
33: end while
34: Ll ← (λML − λML

l ) · (2b̂l − 1), ∀l = 0, . . . , Ndnb − 1
35: end function
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(a) BER results in the AWGN channel.
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(b) BER results in multipath environment.

Figure 4.31.: Performance loss in coded transmission due to the max-log approximation for soft-output SD in system ML ac-
cording to Table A.1 with 4-QAM.
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4.4. Sphere Decoding

Comparing the curves for the soft-output ML to the soft-output SD for coded transmission
with rate 1/2 at a BER of 10−5 reveals that the disadvantage due to the approximation
used for the SD amounts to less than 0.1 dB in the AWGN channel. For reference, the
LMMSE curve for the same system parameters are almost 0.4 dB behind the ML. The
tendencies are the same, but the distances larger for the multipath environment: The
SD and LMMSE are 0.45 dB respectively 0.75dB behind the soft-output ML detection,
posing a considerable degradation. Nevertheless, this small gap between coded SD and
ML detection can hardly be closed. Because of the high dimensionality and the vast
amount of terms to consider in the calculation in (4.85) for practically sized UW-OFDM
systems, the soft-output sphere decoder will constitute the practical implementation to
achieve near-ML performance.
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4. Nonlinear Receivers for Unique Word OFDM

4.4.3. Performance Evaluation

In order to evaluate especially the soft-output SD results in a reasonable amount of time,
the OFDM system had to be adapted, as the exemplary systems A and B took too long to
simulate. Therefore the exemplary system SD (see Appendix A) was introduced, featuring
only Nd = 16 data and Nr = 8 redundant subcarriers. The length of the channel impulse
response is set to 9 in order to have the maximum CIR length without having to endure
ISI. All channel realizations feature (on average) a root mean square delay spread of
50 ns.

Figure 4.32 depicts the bit error ratio of a transmission over the AWGN channel for un-
coded as well as coded transmission. In spite of the different parameter choices compared
to [HHOH12], the uncoded results show the very same tendencies. For systematically
coded UW-OFDM the SD achieves a gain of about 1.2 dB uncoded and 0.4 dB in coded
transmission. The non-systematically coded systems however clearly outperform all sys-
tematic UW-OFDM systems. Interestingly, in the AWGN channel both receiver types
achieve the same results and the simple LMMSE estimator already represents the opti-
mum data estimator for non-systematically generated UW-OFDM. Quite outstandingly,
the uncoded systematic SD achieves the same results asymptotically at high Eb/N0-ratios.
For coded transmission, systematic generation of the UW-OFDM symbol induces a loss
of approximately 0.5 dB over non-systematic generation for the SD. It needs to be noted
that due to the max-log approximation in the determination of the soft information the
soft-output SD is not optimal, but still performs better at higher Eb/N0-ratios than the
LMMSE, which uses exact statistics of the residual noise as soft information. Only at low
Eb/N0 for coded transmission, the approximation is not good enough, and the LMMSE
slightly outperforms the SD.

The more relevant results for OFDM transmission come from simulations over multipath
channels, that are shown in Figure 4.33. The uncoded SD shows a significant advan-
tage compared to the uncoded LMMSE with increasing tendency. At a BER of 10−5

the SD’s gain has grown already to 5.4 / 6.8 dB using systematic / non-systematic UW-
OFDM generation. This visualizes the enormous gap between the best linear estimator
and the best result possible. Additionally, the non-systematic SD has a 2.8 dB advan-
tage over the systematic SD. As expected, the gain for the coded transmission is much
smaller but the soft-output SD still considerably outperforms the LMMSE by about 0.4
and 0.3 dB for systematically and non-systematically generated UW-OFDM respectively.
Here, the non-systematic versions are by around 0.8 dB ahead of their systematic coun-
terparts.
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Figure 4.32.: BER performance of the SD for system SD according to Table A.1 in the AWGN channel.1
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Figure 4.33.: BER performance of the SD for system SD according to Table A.1 in multipath environment.
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4.4. Sphere Decoding

4.4.4. Complexity Evaluation

A comprehensive comparison of the presented detection schemes has to take the required
computational complexity into account. Similar to [HOH11], complex multiplication
equivalents (CMEs) are adopted as a measure for computational complexity. While the
complexity of the regular SD only becomes an issue on low Eb/N0-ratios, its limitation is
covered in [OH11a] and is excluded from this work in order to focus on the soft-output
sphere decoder.

In case of soft-output SD, the average number of CMEs per OFDM symbol depends
on the actual channel conditions and especially on the signal-to-noise ratio. It can be
stated that the complexities of systematic and non-systematic UW-OFDM symbol gen-
eration only differ slightly in the count of the CMEs, which is why only the systematic
results are shown. The LMMSE data estimation itself is performed by a matrix mul-
tiplication, thus requiring N2

d + NdNr CMEs per OFDM symbol (compare with Sec-
tion 3.3).

Note that both detectors require a pre-processing step per channel estimation update,
which is the computation of (3.29) for the LMMSE and the QR decomposition for the
soft-output SD. In this work, however, only the CMEs required for data detection per
bit of information (after channel decoding) are considered. A more detailed comparison
of the pre-processing steps of both detectors reveals that both have comparable com-
putational complexity. The number of CMEs for the matrix inversion for the LMMSE
(see (3.61)) and the post-sorting QR decomposition required for the soft-output SD
[WBKK03] is cubic in the number of subcarriers and will not be counted in this con-
sideration.

In Algorithm 11, CMEs only occur upon execution of the function initList in lines 5 and
18, and upon the ‘decision feedback’ in line 16. Figure 4.34 depicts the required CMEs per
bit of information for the multipath setting and exemplary UW-OFDM system SD with
4-QAM transmit symbol constellation (see Appendix A). For the unrestricted soft-output
SD without LLR clipping (Lmax = ∞), the plot shows the expected decreasing CME
behavior, as early found hypotheses become more likely to be the most probable ones for
increasing Eb/N0 values. The complexity of the hard-output SD (Algorithm 10), labeled
just SD, is included as a lower bound. Additionally, the CME count for the LMMSE
data estimation is included. As stated earlier this is a simple matrix multiplication using
(N2

d + NdNr)/(NdnbR) = 24 CMEs per bit of information for this setup9, with the
number of binary symbols per data symbol for 4-QAM being nb = 2 and the used coding
rate R = 1/2.

Using LLR clipping with clipping levels Lmax = 3 and 5, the complexity of the soft-
output SD is reduced significantly. For Lmax = 5, the effect of LLR clipping on the bit
error performance is almost negligible, as can be deduced from Figure 4.35. Only for
Lmax = 3 the BER is impaired significantly.

Counting the CMEs as a complexity benchmark is usually a good measure for a comparison
in highly integrated circuits with good optimization and parallelization. Anyhow, the huge
structural overhead which appears in Algorithm 11 is not taken into account. In order
to have a performance comparison on the other end of the implementation spectrum,
the execution time of the detection methods on an office PC was measured. The PC,

9Opposed to Table 3.2, the effort of the DFT is not considered here.
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Figure 4.34.: Complexity (in CME per bit of information) for soft-output detection of
UW-OFDM using the soft-output SD and the LMMSE estimator.

containing a Pentium D CPU with 2.8 GHz, was set up with Linux Mint 12 64-bit and
a 2011 version of Mathworks Matlab as simulation software. The CPU was constrained
in order to use one core only. The LMMSE data estimator is implemented in Matlab
only, while the soft-output SD as in Algorithm 11 is implemented in C and connected
to Matlab as MEX [Web12]. The preparatory steps for the soft-output SD (the QR
decomposition) are computed by Matlab as well. This comparison seems unfair at first
sight, as the Matlab execution is supposed to be much slower than the C implementation,
but can be reasoned. It is worked on an array of many OFDM symbols for each channel
at once. The LMMSE data estimation itself is one simple multiplication of the receive
vector with the LMMSE matrix (3.29) for each OFDM symbol. By putting many receive
vectors for one channel realization in the columns of a large receive matrix, this results
in a single matrix-matrix multiplication for all OFDM symbols, whose internal Matlab
implementation is very efficient using BLAS libraries and able to keep up with the soft-
output SD in C.

The results of the run-time comparison are shown in Figure 4.36, which shows the time
in seconds to detect one bit of information on average, in dependence on the Eb/N0-
ratio. The very same trends as before in Figure 4.34 can be observed, when the CMEs
were counted only. This suggests that the execution time is approximately linear in the
number of CMEs.

In comparison, it can be concluded that the LMMSE estimator represents a very com-
petitive low-complexity variant for soft-output detection of UW-OFDM compared to the
close-to-optimum sphere decoder with soft-output. Nevertheless, the SD represents the
best possible receiver for uncoded transmission and performs close to the theoretical opti-
mum MLSE, when soft information is desired, where it suffers from a very high complexity
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Figure 4.35.: BER results of coded UW-OFDM using the soft-output SD in multipath
environment for different LLR clipping levels Lmax, in exemplary system SD
according to Table A.1.

burden. However, with appropriate setting of the LLR clipping, a reasonable trade-off be-
tween complexity increase and performance gain over the LMMSE can be found. Still, it
has to be noted that especially in case of larger number of subcarriers, as well as larger
QAM alphabets compared to 4-QAM, the complexity of the SD may be prohibitively large
for hardware implementation. Furthermore, this comparison does not account for compu-
tational processing steps like list sorting and memory access, the latter occurring in vast
amounts for the SD algorithm.
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4.5. Performance Comparison

In this section, simulation results that give a reference overview over all nonlinear data
estimation methods introduced in this chapter are shown. As a basis, results for the best
linear data estimator from Chapter 3 are included, which is the LMMSE data estimator
(see Section 3.2). The exemplary UW-OFDM system setups used for the simulations are
described in Appendix A.

For the exemplary UW-OFDM system A the results in the AWGN channel are shown in
Figure 4.37 and in multipath environment in Figure 4.38. The same simulations have been
done for system B and the results are shown in Figure 4.39 and 4.40, respectively. Note
that for these system setups, simulation results for the coded soft-output sphere decoder
are not available, due to its computational complexity for systems of that size. In the
AWGN channel both systems perform almost equivalently for coded transmission (shown
in the respective sub-figures (b)) with a small advantage for system B, which is due to
its lower average OFDM symbol energy. The lines of the non-systematically generated
UW-OFDM systems even match exactly in both systems. In uncoded transmission (sub-
figures (a)) system B supersedes system A just by a little bit, and in multipath environment
still by not more than 1 dB. For this reason, only comments are made on the results for
system B, which mostly apply to system A as well.

In the AWGN channel results, the effect that all receivers in a non-systematic UW-OFDM
system perform equivalently with a gain of about 1.7 dB uncoded / 1.5 dB coded over
the LMMSE estimator in a systematic UW-OFDM system setup, is repeated. Thus,
the LMMSE is already the best receiver for non-systematically generated UW-OFDM,
and even sophisticated nonlinear receivers cannot improve the decoding result. The SD
for systematic UW-OFDM is able to achieve the performance of non-systematic UW-
OFDM asymptotically with increasing SNR, as shown in [HHOH12]. The other receivers
for systematic UW-OFDM show different performance in uncoded transmission: At a
BER of 10−5, the LMMSE is exceeded by the MMSE DFE by 0.6 dB. The NI even
achieves 1 dB gain over the LMMSE or 0.4 dB over the DFE, only superseded by the SD
achieving the 1.7 dB gain, as for the non-systematic setup. For coded transmission the
systematically generated systems operate far behind the non-systematic UW-OFDM. The
LMMSE receiver with its most accurate error statistics achieves the best results for most
Eb/N0-ratios. Only at high SNR the MMSE DFE and the NI receivers outperform the
LMMSE, which is barely visible in Figure 4.39b.

In the multipath environment, especially for uncoded transmission, the advantage of the
nonlinear receivers increases a lot. Most receivers for systematic UW-OFDM outperform
even the LMMSE for the non-systematic system above a medium Eb/N0-ratio. In the
systematic / non-systematic groups, a clear order of good performing UW-OFDM re-
ceivers can be identified: the SD, the MMSE DFE receivers, the NI, and the LMMSE
estimator. At the 10−5 BER point in uncoded transmission, this order is met, all sepa-
rated by between 1.3 and 2 dB. Only the LMMSE for non-systematic UW-OFDM per-
forms with 4.5 dB far behind the next non-systematic candidate, which is the NI. In
coded transmission, the receivers for non-systematic UW-OFDM perform about 1.2 dB
better than their systematic counterpart. However, the NI shows a better performance
than the MMSE DFE here, although the differences are only minor between 0.03 and
0.15 dB.
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4. Nonlinear Receivers for Unique Word OFDM

In order to be able to evaluate the coded performance of the SD with soft-output, the
AWGN and multipath simulation results for the system SD are included in Figure 4.41.
The qualitative characteristics as seen for system B remain the same here. The added curve
for the soft-output SD clearly marks the reference performance for UW-OFDM receivers
designed for systematically generated UW-OFDM. While the DFE and NI receivers barely
supersede the LMMSE performance in coded transmission and show a really distinctive
gain only on high SNR, the SD outperforms the LMMSE estimator by 0.31/0.41 dB in
AWGN/multipath environment for systematic UW-OFDM. As identified before, for the
non-systematic UW-OFDM system, all receivers perform equivalently in AWGN and show
a fine forking in multipath environment with the SD in lead, superseding the LMMSE
estimator by 0.26 dB.
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Figure 4.37.: BER performance for system A according to Table A.1 in the AWGN channel.1
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(a) UW-OFDM system A, uncoded, multipath
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Figure 4.38.: BER performance for system A according to Table A.1 in multipath environment.
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(a) UW-OFDM system B, uncoded, AWGN
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Figure 4.39.: BER performance for system B according to Table A.1 in the AWGN channel.1
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(a) UW-OFDM system B, uncoded, multipath
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Figure 4.40.: BER performance for system B according to Table A.1 in multipath environment.
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(a) UW-OFDM system SD, coded, AWGN
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Figure 4.41.: BER performance for coded system SD according to Table A.1 in the AWGN channel and in multipath environment.1
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4. Nonlinear Receivers for Unique Word OFDM

4.6. Summary of Nonlinear Receivers

In this chapter a few nonlinear receivers for UW-OFDM have been discussed and their
performance investigated. From Chapter 3 the LMMSE receiver emerged as a quite simple
and very well performing receiver in uncoded and coded transmission. In order to compete
well against the LMMSE receiver in coded transmission, it is necessary to retrieve reliable
soft information for the Viterbi channel decoder, which was investigated for all nonlinear
UW-OFDM receivers.

After revising the Wiener filter theory, a vast number of possibilities of how to operate the
noise interpolation technique is available: Besides several criteria of which noise values
to interpolate and which samples to pick to be used for interpolation, noise interpolation
can be performed in a batch or an iterative approach. Also the statistics, necessary to
compute the Wiener filters, can be derived in various ways. In a rather empirical way, a
small set of well performing operation modes was identified that are all able to outperform
the LMMSE estimator.

Second, decision feedback equalization was revised and shown in the ZF and the MMSE
version. This algorithm was reformulated, in order to offer different ways of interpreta-
tion.

The optimum decoding method, maximum likelihood sequence estimation, has been de-
rived. Due to its computational complexity, it is impractical for simulations. As a much
more practical realization producing the same results, the sphere decoding algorithm was
shown. However, in order to determine reliability information for the detected data, it has
to endure some loss over the MLSE solution, due to an approximation that is needed for a
complexity reduction. By introducing LLR clipping levels, the still very high complexity
can be reduced, at the cost of some detection performance. A complexity analysis and
a performance comparison of the soft-output SD with the LMMSE estimator proves the
relevance of the shown methods.

In a final evaluation, the performance of the investigated nonlinear receivers for UW-
OFDM was shown in terms of the achieved bit error ratio. All receivers are able to
outperform the LMMSE estimator, which is nevertheless a simple and very well performing
receiver. Especially in coded transmission, it is barely beaten by the nonlinear receivers.
But in uncoded transmission, in the AWGN channel or in a multipath environment, the
nonlinear receivers clearly show their advantages.
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5. Impact of different QR Decompositions on
DFE and SD for UW-OFDM

As described earlier, the QR decomposition of the channel matrix H in (4.1) is enabling
the highly efficient sphere decoder in the first place. It also plays an important role in
decision feedback equalization, where it yields the variant in Algorithm 7 to perform the
DFE. There are quite a few possibilities to compute such a QR decomposition, which
has indeed tremendous impact on either the run-time of the SD or the performance of
DFE. Hence, in this section the main features of a QR decomposition are shown as well
as several methods for its computation. By means of numerical simulation, good QR
decomposition methods for DFE and SD can be identified for UW-OFDM systems. A
variety of methods that apply to MIMO channels have been analyzed and compared
in the recent past, see for example [Fis10, Fis12, WRB+02]. In this work, only a few
are picked and taken into consideration. While a QR decomposition of the standard
model

y = Hd + n

yields the ZF DFE, the same can be done with the extended channel matrix and extended
vectors [

y
0

]
︸︷︷︸
y̆

=

[
H
0

]
︸︷︷ ︸
H̆

d +

[
n
0

]
︸︷︷︸
n̆

,

in order to yield the MMSE DFE, as shown in Section 4.2.2. The SD is always executed
with the QR decomposed standard channel matrix H.

In summary, a QR decomposition decomposes any matrix H into a quadratic unitary

matrix Q′ and a rectangular matrix of upper triangular structure R′. For this work, it is
focused on the case, where H has more rows than columns, as the Unique Word OFDM
symbol generation process yields channel matrices H ∈ C(Nd+Nr)×Nd with this property.
Thus, the dimensions of the components amount to

H = Q′R′ H ∈ C(Nd+Nr)×Nd

Q′ =
[
Q Q0

]
Q′ ∈ C(Nd+Nr)×(Nd+Nr), (5.1)

Q ∈ C(Nd+Nr)×Nd ,Q0 ∈ C(Nd+Nr)×Nr

R′ =

[
R
0

]
R′ ∈ C(Nd+Nr)×Nd ,R ∈ CNd×Nd .

Important parts of the matrices Q′ and R′, which play a special role, can be further
identified. This is detailed with the initial idea of the QR decomposition: Orthogonaliza-
tion.
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5. Impact of different QR Decompositions on DFE and SD for UW-OFDM

5.1. Gram-Schmidt Orthogonalization

In [WRB+02] a Modified Gram-Schmidt orthogonalization is described as a way to decom-
pose a complex flat-fading MIMO channel matrix H, which has the element hkl in the k-th
row and l-th column, representing the complex fading gain between transmit antenna l and
receive antenna k. However, the same system model applies for any UW-OFDM system,
although considering only single-antenna systems.

The Gram-Schmidt orthogonalization, outlined as pseudo-code in Algorithm 12, orthogo-
nalizes the base vectors describing the vector space spanned by H = [h0, . . . ,hNd−1] and
documents the necessary operations in R.

Algorithm 12 Gram-Schmidt Orthogonalization

1: function [Q,R] =mgs(H)
2: Q← H,R← 0
3: for l = 0, . . . , Nd − 1 do
4: [R]l,l ← ‖ql‖2
5: ql ← ql/ [R]l,l
6: for k = l + 1, . . . , Nd − 1 do
7: [R]l,k ← qH

l qk . part of qk in direction of ql
8: qk ← qk − [R]l,k ql . subtract projection of qk to ql
9: end for

10: end for
11: end function

It comprises of the following steps:

1. initialize Q = H, line 2

2. normalize the current base vector by its l2-norm ‖ql‖2 =
√∑Nd+Nr−1

k=0 |[Q]k,l|2,

line 5

3. remove from all remaining base vectors the part in direction of the current base
vector, line 8

4. pick next base vector and return to step 2, until the whole Q is orthogonalized

The modification that distinguishes the Modified Gram-Schmidt Orthogonalization (hence
MGS) from the original one is a simple adaption in order to increase the numerical sta-
bility. Instead of subtracting the parallel part of the current vector ql to all already
fixed base vectors, the parallel part is subtracted from the future base vectors iteratively
(line 8), causing parts of occurring numerical errors to be orthogonalized and removed
[HJ90].

The execution of Algorithm 12 yields the matrices Q and R, as characterized in (5.1).
While Q fulfills the property

QHQ = I, (5.2)

the right part Q0 of Q′ is missing for full unitarity. Q0 is a set of orthonormal base
vectors that represent the left null space or co-kernel of H, such that any multiplication
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5.2. Sorted QR Decomposition

with a vector v from the left null space yields zero

vHH = 0H,

v = Q0 [ν0, ν1, . . . , νNr−1]T ,

νk ∈ C.

(5.3)

This can also be observed in

R′ =

[
R
0

]
,

where the 0-matrix is the part that applies to Q0. On the other hand, Q is a set of
orthonormal base vectors representing the co-image of H.

A valid base vector set of the left null space Q0 can be determined easily one by one, by
choosing a random vector, subtracting the components in direction of all already fixed base
vectors of image and null space and final normalization, or by a singular value decomposi-
tion of H = UΣVH and extracting the lastNr columns of U.

5.2. Sorted QR Decomposition

From the description of the Gram-Schmidt Orthogonalization it is obvious that the order,
in which the base vectors are orthogonalized, is set by the order they appear in H. For the
purpose of DFE however, the order of the orthogonalization is crucial to the probability
of error propagation in DFE [BWKK03, WBKK03] and thus its BER performance. For
the SD the execution time can also be reduced tremendously by the right permutation of
the columns of H prior to computing the MGS.

For DFE it is beneficial to decide more reliable data symbols first. A data symbol with
high reliability is one with a low noise amplification and hence a high SNR, respectively.
As noticed in Section 4.2, the data value to be worked on first, corresponds to qNd−1,
which showed a large norm apparent by [R]Nd−1,Nd−1. Since H cannot be decomposed

backwards in order to maximize [R]Nd−1,Nd−1, it should be tried to minimize the vector

norm (line 5) in each step of the orthogonalization. The idea behind this is that the
DFE layers detected last (that are the first ones to result from the decomposition) affect
only a few other layers through error propagation and thus may suffer from higher noise,
while hoping to get lower noise conditions for later layers that affect the earlier DFE
iterations.

This is basically the step that needs to be done, to get from MGS to Sorted QR De-
composition: In each step l, process the vector qk that has minimum norm [HL89].
The concept is sketched in Algorithm 13 according to [WBKK03]; operations that are
also present in the MGS Algorithm 12 are grayed out, while new operations are in
black.
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5. Impact of different QR Decompositions on DFE and SD for UW-OFDM

Algorithm 13 Sorted QR Decomposition

1: function [Q,R,p] =sqrd(H)
2: Q← H,R← 0,p← (1, . . . , Nd)
3: λl ← ‖ql‖22, ∀l = 0, . . . , Nd − 1 . calculate norm of base vectors
4: for l = 0, . . . , Nd − 1 do
5: m = argmin

n=l,...,Nd−1
λn

6: exchange columns l and m in Q and R and elements l and m in p and λ
7: [R]l,l ←

√
λl

8: ql ← ql/ [R]l,l
9: for k = l + 1, . . . , Nd − 1 do

10: [R]l,k ← qH
l qk . projection of qk on ql

11: qk ← qk − [R]l,k ql . subtract component of qk parallel to ql
12: λk ← λk − |[R]l,k|2 . update vector norms
13: end for
14: end for
15: end function

5.3. SQRD with Post-Sorting

In [WBKK03] an extension of the SQRD with an extended channel matrix (hence the
MMSE SQRD) is introduced that is able to improve the initial QR decomposition using a
post-sorting algorithm (PSA). This algorithm uses Householder reflectors to restore the tri-
angular structure of a moreover sorted R-matrix and is shown in [WBKK03]. It is provided
with the Q-matrix from an initial QR decomposition, an MMSE SQRD, where the SQRD
of the extended channel matrix is recommended by the author.

A QR decomposition from the PSA will not yield the best results, but the degradation over
the best possible QR decomposition is very small, as shown in Section 5.4.

5.4. Impact of Different QR Decompositions on UW-OFDM
Detection

In order to evaluate the impact of all these QR decomposition methods, simulation results
are shown that display the achieved bit error performance of the uncoded ZF DFE and the
MMSE DFE receiver using the matrices Q and R, as well as the average number of node
visits needed per bit of information to find the MLSE solution with the hard-output SD
for the given decomposition. Also the simulation results of all QR decompositions that can
be achieved by differently permuted channel matrices and the MGS algorithm are shown,
to see how good they perform in the light of the best QR decompositions. Therefore, H is
permuted before execution of the MGS, to get a different order of the data symbols during
the DFE processing. All possible permutations of the base vectors in H are generated, in
order to get the full performance range that can be achieved.

In [Knu05, RH84] an algorithm is presented for lexicographic permutation generation. This
method, as described in Algorithm 14, generates all existing permutations, if executed
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5.4. Impact of Different QR Decompositions on UW-OFDM Detection

repeatedly and starting with a sequence p = [p0, p1, . . . , pn−1]T that is initially sorted
such that

p0 ≤ p1 ≤ · · · ≤ pn−1. (5.4)

Algorithm 14 Generate next permutation in lexicographic order

1: function p =next permutation(p)
2: k ← N − 1
3: while pk ≥ pk+1 ∧ k > 0 do
4: k ← k − 1
5: end while . 0 ≤ k ≤ N − 1 after this
6: l← N
7: while pk ≥ pl do
8: l← l − 1
9: end while

10: swap pk and pl
11: reverse sequence pk+1, . . . , pN
12: end function

With an initial permutation vector p = [0, 1, 2, . . . , Nd−1] the condition for this algorithm
is fulfilled, and it will generate all Nd! permutations. The resulting order vector can be
utilized by permuting the base vectors in H according to p and execute the MGS with
the reordered matrix.

To be able to handle the big number of possible permutations the UW-OFDM system
shall be restricted to the uncoded exemplary system ML (see Table A.1), with Nd = 8
and thus 40 320 permutations. These have an effect on the bit error probability for DFE
receivers and the number of node visits for the SD. Both are displayed in Figure 5.1. The
results are sorted for visualization. Additionally, the results of the modified Gram-Schmidt
Orthogonalization (MGS), the sorted QR decomposition (SQRD) and the SQRD using the
Post-Sort algorithm (PSA) are displayed as dashed lines. Both methods using the SQRD
are used with the extended channel matrix, while the MGS resembles an unsorted QR
decomposition of the regular channel matrix (corresponding to the permutation vector
p = [0, 1, . . . , Nd − 1]). The measurements were executed in the exemplary multipath
channel A (see Appendix A) at an Eb/N0-ratio of 6 and 13 dB in order to represent a low-
and a high-SNR environment.

In the low-SNR situation the BER is hardly affected by differently permuted QR de-
compositions. The MGS and SQRD yield an average bit error ratio here, which is a
negligible degradation over the best by permutation achievable BER. The PSA however
is able to achieve a very good result, that is only achieved by a few permutations with
an MMSE DFE and not at all by a ZF DFE. The reason for this is that the post-sorting
algorithm alters the base vectors in H more fundamentally, in order to determine the Q
and R matrices.

The number of node visits however, show a much broader range achievable by different
permutations at low SNR: The worst permutation needs more than four times longer than
the best performing permutation. Almost at the top performing end is the SQRD, which
is about 52% faster than with the MGS. The PSA again outperforms all possible permuted
QRDs with a gain of 5% over the SQRD. The term ‘faster ’ actually means that it is able to
find the MLSE solution with 5% less node visits on average.
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Figure 5.1.: Effect of differently permuted QR decompositions on the BER for a DFE
receiver and the average number of node visits per bit of information for the
SD in a low- and high-SNR scenario.
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5.5. Summary of QR Decompositions

For DFE in the high-SNR scenario, the BER of a bad performing permutation can be
improved by more than one and a half orders of magnitude. SQRD and PSA perform
equally, as good as the best permutations regarding both, BER and noise visits. However,
the dynamic range of the number of node visits has shrunk to the interval from about
0.938 to 1.095 node visits on average, which corresponds to only 14% of achievable gain
over the worst permutation. As mentioned several times in this work, ZF and MMSE
are equivalent for higher SNR, which is why the MMSE DFE does not yield a significant
advantage over the ZF version.

5.5. Summary of QR Decompositions

QR decompositions or detection orderings and their impact on MIMO detection have been
studied in many publications, for example [HV05, VH05, WFGV98, BWKK03, WRB+02,
WBKK03], while sticking to a few algorithms to decompose the channel matrix. In this
section fundamental algorithms were shown in order to analyze their performance for
UW-OFDM systems using DFE and SD receivers. Furthermore, all possible base vector
permutations of the channel matrix were considered, in order to evaluate their performance
to all easily achievable QR decompositions.

Unsurprisingly, the widely used sorted QR decomposition achieves very good results in
terms of the bit error probability for the DFE receivers and in terms of average number
of node visits per bit of information for the SD receiver. The SQRD with PSA achieves
even better results, but is by far more complex and numerically unstable. In a low-SNR
scenario, a ‘good’ QR decomposition method only pays off for the SD, as the average
number of node visits can be reduced tremendously. The DFE, however, does not benefit
strongly from a good QR decomposition. In the high-SNR scenario the effect is switched:
While the average number of node visits are not altered a lot with different decompositions,
the DFE is able to gain almost two orders of magnitude in BER. In any case, it should be
deliberated whether to employ a more or less complex QR decomposition, depending on
the resources, the SNR and the used receiver concept.
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6. Conclusion

In this work, Unique Word OFDM as an evolution of the conventional OFDM using cyclic
prefixes was considered. The UW-OFDM generation approach that introduces redundancy
in the OFDM symbols was introduced and analyzed in detail. The resulting mean OFDM
symbol energies exposed a potential pitfall: Based on the analytical as well as the nu-
merical results, the intuitively obvious direct approach of systematic UW-OFDM symbol
generation was excluded from further considerations, as it is always inferior compared to
the so-called two-step approach. An optimization method to determine good distributions
of redundant subcarriers, as they are needed in order to generate UW-OFDM symbols sys-
tematically, was introduced. Non-systematically generated UW-OFDM, where the data
symbols are no longer visible in frequency domain, was also discussed and its mean OFDM
symbol energy derived.

The potential superiority of UW-OFDM over CP-OFDM is shown in other publications
[HH12]. In this work, the focus was on linear and nonlinear receivers that are able to
exploit the introduced redundancy beneficially for recovery of the transmitted data. As
linear receivers, two rather intuitive estimators (CI and TDW) were shown, along with
two optimum estimators: From classical estimation theory emerged the BLUE, while con-
sidering the system model in the Bayesian sense produced an LMMSE data estimator. In
addition to their usual form, both were shown in a version with reduced complexity for
systematically generated UW-OFDM. All receivers were analyzed regarding their compu-
tational complexity, in terms of complex multiplication equivalents. A final performance
comparison in terms of their simulated BER showed that the by far least complex intu-
itive estimators cannot compete with the BLUE and the LMMSE estimator. Together
with reliability information of the estimated data symbols, which was extracted of the
statistical information of the remaining error after estimation, the BLUE showed a great
performance in coded transmission that was only superseded by the LMMSE estimator.
Non-systematically generated UW-OFDM performs in general better than the systematic
variant, at the price of higher complexity. When using real transmit symbol alphabets like
ASK, another variant, the WLMMSE estimator provides a gain over the plain LMMSE
receiver and poses the better choice for this case. It was shown that for higher order
QAM and ASK transmit constellations, a symbol scaling effect of the Bayesian estimators
applies severely. In these cases, the estimators yield better results, if a symbol scaling
compensation is employed. Simulation results proved the excellent performance of all
these improved versions and document their benefit.

The distinct system structure of the UW-OFDM signaling scheme also allows for non-linear
receivers that are especially known from the MIMO world. In contrast, these methods can
still be used for single-antenna UW-OFDM systems. In the linear estimation chapter, the
statistics of the remaining error after an LMMSE estimation revealed a correlation of the
error values. In the first nonlinear receiver, these correlations are exploited to improve
the data estimation. This so-called noise interpolation method was derived from Wiener
filter theory and two algorithms were introduced, that perform noise interpolation in a
batch approach and in an iterative manner. The main problem turned out to be the
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6. Conclusion

selection of the samples that are used for the estimation of others. Several possibilities,
like the noise variance, symbol error probability or correlation criterion, were shown for
how to do this selection. In the end, the batch noise interpolator with a well defined
selection criterion was picked that performed very well in coded and uncoded transmis-
sion.

In decision feedback equalization, the influence of safely decided data symbols is subtracted
from the receive vector. That way, following decisions of symbols can be made safer,
which results in better data estimates. Here, the processing order is crucial for the BER
performance. The algorithm was shown in its ZF and MMSE variant, and translated in a
version, where it could be expressed in terms of a QR decomposition and a final iterative
processing loop.

The best possible data estimates are obtained by an MLSE. The sphere decoding algo-
rithm is a practical implementation of the MLSE principle. The SD producing hard data
decisions was discussed in detail. For the simulation of an uncoded transmission with an
SD, this work reached for new records in the considered 48 dimensions. In order to obtain
reliability information, a soft-output SD was discussed, which is unfortunately not able to
obtain the optimum MLSE results, as it employs an approximation and a clipping thresh-
old to keep the execution time at a practical level. The BER performance as well as the
computational complexity in dependence of the SNR was analyzed for several thresholds.
Its loss against a soft-output MLSE could only be evaluated for a very small UW-OFDM
system.

Next, several ways to do a QR decomposition were discussed, as the realization has a strong
impact on the BER performance of DFE and the execution time of the SD. While a wide
range is covered by all possible permutations of the channel matrix and an MGS, it could be
shown that the SQRD is a quite simple algorithm that produces results near the optimum
in both BER performance or execution time, respectively.

A final BER comparison shows that in AWGN, non-systematically generated UW-OFDM
achieves the same BER for all discussed receivers. Hence, in this special case, the LMMSE
estimator poses already the optimum receiver. For all other situations, the SD has a
considerable gain over the LMMSE estimator, at the price of an increased complexity.
DFE and NI can be considered as a complexity trade-off, featuring a better performance
than the LMMSE estimator but worse than the SD.
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A. Parameters of Exemplary UW-OFDM Systems

For simulations, always one of the UW-OFDM systems with the parameters as shown
in Table A.1 is used. Bit error simulations are performed with a predetermined set of
10 000 multipath channels. In certain situations one exemplary multipath channel is picked
for analysis. The frequency response of this channel constitutes a quite severe fading envi-
ronment by its deep spectral notches and is displayed in Figure A.1.
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Figure A.1.: Frequency response of exemplary multipath channel A.

For the channel simulation the transmission over various time-invariant multipath channels
is realized by convolution of the transmit signal with a channel impulse response vector h
with a maximum length of NG+1 taps. In any case additive white Gaussian noise is added
after this. For the simulations of the multipath environment, channel impulse responses
(CIRs) are generated according to the model presented in [Fak97], which has also been
used during the IEEE 802.11a standardization process. A fixed set of 10 000 CIRs is
used as realization of the channel model. The CIR is assumed to be constant during
the transmission of many OFDM symbols. The BER values are the averaged results of
the transmissions over all these channel realizations. The choice of interleaving factors
(number of positions, neighboring code bits are spread apart) is given for each system
setup in Table A.1. For the special case, when the transmission over an AWGN channel
is simulated, the CIR is simply set to h = [1]. It is always assumed that the receiver
has perfect knowledge of the current channel statistics, which is the CIR and the Eb/N0-
ratio. Since the focus lies on data estimation procedures in this work rather than on
synchronization or channel estimation approaches, the zero UW is chosen for the BER
simulations.
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UW-OFDM system A B SD ML
DFT size N 64 64 24 12
data subcarriers Nd 36 48 16 8
redundant subcarriers Nr 16 16 8 4

red. subcarrier indices Ir
{2, 6, 10, 14, 17, 21

{1, 5, . . . , 61} {1, 4, . . . , 22} {1, 4, 7, 10}24, 26, 38, 40, 43,
47, 50, 54, 58, 62}

zero subcarriers Nz 12 0 0 0
zero subcarrier indices Iz {0, 27, 28, . . . , 37} {} {} {}
unique word length Nu 16 16 8 4
interleaving factor 15 15 9 9

Table A.1.: Parameters of exemplary UW-OFDM system.
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B. Proof of Cyclicity of UW-OFDM Symbols

One of the most important underlying properties of OFDM transmission is that the align-
ment creates some kind of cyclicity of the OFDM symbols. In this context, the cyclicity
property is synonymic to the transformation of the linear convolution, as it appears in
multipath channel propagation, to a cyclic convolution. Only then, the convolution in
time domain can be expressed as a multiplication in frequency domain after transforma-
tion with the DFT. Furthermore, this property also ensures that each OFDM symbol is
free of inter-symbol interference and can be regarded on its own and independent of any
previous transmission.

For CP-OFDM most text books about the topic show the cyclicity proof [NP00]. When
showing the cyclicity of a UW-OFDM transmission, the two succeeding UW-OFDM sym-
bols number l − 1 and l, as defined in (2.16), are given by

[
x′(l−1)

x′(l)

]
=


x

(l−1)
p

xu

x
(l)
p

xu

 ,
split in the payload part of length N − Nu and the unique word xu of length Nu. After
propagation over a multipath channel with a CIR not longer than Nu+1 and disregarding
AWGN, the payload of symbol l is clearly not affected by the payload of symbol l − 1,

such that x
(l−1)
p can be omitted. Then, the receive vector, omitting the channel transient

of the last UW, can be written as

y = Hc

 xu

x
(l)
p

xu

 , (B.1)

with the linear convolution matrix of size (N+Nu)×(N+Nu)

Hc =



h0 0
h1 h0

... h1

. . .

hNu

...
. . .

. . .

0 hNu · · · h1 h0


. (B.2)
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B. Proof of Cyclicity of UW-OFDM Symbols

The fact that xu is included twice in the transmit vector can be modeled by defining a
copy matrix

Θc =

[
0(Nu×(N−Nu)) I(Nu)

I(N)

]
. (B.3)

Furthermore, the part of the receive vector that is relevant for UW-OFDM receiver process-
ing for symbol number l can be extracted by an extraction matrix

Θx =
[
0(N×Nu) I(N)

]
. (B.4)

Then, the relevant receive vector can be expressed as

yx = ΘxHcΘc

[
x

(l)
p

xu

]
. (B.5)

It can be easily shown that the overall channel matrix

HO = ΘxHcΘc (B.6)

=



h0 0 hNu · · · h1

h1 h0

. . .
...

.

..
. . .

. . . hNu
hNu 0

. . .
. . .

0 hNu · · · h1 h0


(B.7)

is circulant, describing a cyclic convolution. Any circulant matrix is diagonalized by the
Fourier matrix. This way,

H̃ = FNHOF−1
N (B.8)

is a diagonal.
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C. Proof of Inequality (2.48)

In the following it will be shown that the OFDM symbol energy (2.41) is always smaller
or equal to (2.47), such that

1

N
xH

uM−H
22 M−1

22 xu ≥ xH
uxu (C.1)

holds.

As the zero UW clearly yields equality, only the case xu 6= 0 will be considered here. Some
prerequisites are stated in the following, which will be used throughout the proof:

• For any matrix C, the Gramian matrix D = CHC is a positive-semidefinite Hermi-
tian matrix, for which all eigenvalues λk are real and non-negative. Furthermore,
if C is invertible, then D is also invertible and positive-definite with all eigenvalues
λk > 0. The definition D = 1

N
M−H

22 M−1
22 fulfills all the stated properties.

• For any vector xu 6= 0 the Rayleigh quotient of a Hermitian matrix D is defined as

R(xu) =
xH

uDxu

xH
uxu

. (C.2)

The following inequalities hold for the Rayleigh quotient:

λmin(D) ≤ R(xu) ≤ λmax(D), (C.3)

where λmin(D) and λmax(D) denote the minimum and maximum eigenvalue of D,
respectively.

Considering (C.2) and (C.3), it can be stated that

xH
u

[
1

N
M−H

22 M−1
22

]
︸ ︷︷ ︸

D

xu ≥ λmin(D)xH
uxu︸ ︷︷ ︸

z

. (C.4)

In the following the right hand side of (C.4) comes into consideration, which can be written
as

z = λmin

(
1

N
M−H

22 M−1
22

)
xH

uxu

=
1

N
λmin

(
M−H

22 M−1
22

)
xH

uxu
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C. Proof of Inequality (2.48)

For any invertible matrix A with an eigenvector v and the associated eigenvalue λ, it holds
true that v is also an eigenvector of the inverse matrix A−1 to the associated eigenvalue
1
λ

. Hence, it can be written

z =
1

N

xH
uxu

λmax

([
M−H

22 M−1
22

]−1
)

=
1

N

xH
uxu

λmax
(
M22MH

22

)
=

1

N

xH
uxu∥∥MH
22

∥∥2

=
1

N

xH
uxu

‖M22‖2
(C.5)

Here, ‖·‖ denotes the spectral norm defined as ‖M22‖ =
√
λmax

(
MH

22M22

)
. For the

IDFT matrix F−1
N , the sprectral norm is

∥∥∥F−1
N

∥∥∥ = 1√
N

. The spectral norm of any sub-

matrix cannot exceed the spectral norm of the matrix it has been extracted from. Since
M22 is a submatrix of F−1

N , it can be stated that

‖M22‖ ≤
∥∥∥F−1

N

∥∥∥ =
1
√
N

or
1

‖M22‖
≥
√
N. (C.6)

Taking this into account, it immediately follows forN > 1 that

z ≥ xH
uxu. (C.7)

Linking this to (C.4), it can be further summarized as

xH
u

[
1

N
M−H

22 M−1
22

]
xu ≥ xH

uxu, (C.8)

which concludes the proof.
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D. Analytical Determination of the Symbol Error
Probability

For the case of zero-mean additive Gaussian noise v on a complex symbol d from a QAM
alphabet A

d̃ = d+ v,

d ∈ A,

v ∼ NC(0;σ2
v),

(D.1)

the probability of a false detection can be approximated analytically [Pro00]. For hard-
decision data detection, this symbol error probability is the important measure to indicate
the probability of slicing to the wrong data symbol. The assumption of zero-mean Gaussian
noise after linear data estimation is valid, for example, for the BLUE. However, it is only
an approximations for LMMSE estimation.

At first the symbol error probability (also symbol error ratio, SER) for the case of a
binary symbol alphabet A as apparent in Figure D.1 is derived. An incorrect decision
happens, if the added noise pushes the receive value over the decision boundary, which
is for equiprobable source bits in the middle between the two transmit symbols that are
separated by the distance dmin. This is the case, if the part of the noise v in direction of
the neighboring symbol is larger than dmin/2.

d
⌈
d̃
⌋

decision boundary

d̃

v

dmin

Figure D.1.: Binary transmit symbol alphabet with Gaussian noise.

As the statistical properties of the Gaussian random variable v are known, the exact
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symbol error probability can be determined as

χ = Pr
(⌈
d̃
⌋
6= d
)

(D.2)

= Pr (<{v} ≥ dmin/2) (D.3)

=
1√

2πσ2
v<

∞∫
dmin/2

e
− t2

2σ2v< dt. (D.4)

The variance of the real part only, assuming properness of the complex Gaussian noise, is
σ2
v< = σ2

v/2. This yields

χ =
1√
πσ2

v

∞∫
dmin/2

e
− t2

σ2v dt, (D.5)

and after introducing the substitution τ =
√

2t/σv and thus t = σvτ/
√

2

χ =
1
√

2π

∞∫
dmin√
2σv

e−
τ2

2 dτ, (D.6)

which can be easily evaluated numerically, for example using the Q-function or the com-
plementary error function

χ = Q

√d2
min

2σ2
v

 , (D.7)

Q (x) =
1
√

2π

∞∫
x

e−t
2/2dt =

1

2
erfc

(
x
√

2

)
. (D.8)

An interpretation of the Q-function is shown in Figure D.2, where the hatched area is the
result of Q (x).

t
x0 1−1

Figure D.2.: Interpretation of the Q-function.
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For higher order constellations and in particular QAM, however, a closer look needs to be
taken. Figure D.3 shows an extract of a big QAM constellation and identifies neighboring
detection candidates. A point not at an edge has two borders of the decision region at
distance dmin/2 in the real and imaginary part, respectively, which yield a symbol error
if exceeded. Then, the probability of these four events considered separately add up
to

χ ≈ Pr (<{v} ≥ dmin/2) + Pr (<{v} ≤ −dmin/2) + (D.9)

+ Pr (={v} ≥ dmin/2) + Pr (={v} ≤ −dmin/2) (D.10)

= 4Q

√d2
min

2σ2
v

 . (D.11)

Proceeding like this introduces the issue that this probability is too high for the follow-
ing reason: Considering the addition of the two probabilities Pr (<{v} ≥ dmin/2) and
Pr (={v} ≥ dmin/2), the respective other component is ignored, such that some possible
outcomes of v are counted twice. This corresponds to the hatched area in Figure D.3,
where the probabilities are doubly integrated.

dk
dmin

√ 2d
m

in

Figure D.3.: Error regions in QAM constellations.

However, the probability contribution at this distance has strongly decayed already and
only minor influence on the final result. In Figure D.4 the result of the Q-function is
displayed for rather high noise with variance σ2

v = 0.1, where the doubly charged part at√
2dmin is more than one order of magnitude smaller than the relevant probability and

can be neglected. Still this is a source of a small uncertainty about the actual symbol
error probability.
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Figure D.4.: Q-function for Gaussian noise with variance σ2
v = 0.1.

While this derivation is true for QAM constellation points with four direct neighbors only,
it is clear that practical QAM constellations have most points at an edge or corner. If
all constellation points are transmitted equally probable, the average number of direct
neighbors in minimum distance Nmin can be determined for every constellation. For
4-QAM this is clearly Nmin = 2, since all points are in corners, for other important
constellations this value is shown in Table D.1.

R M = 2R Nmin

1 2 1.0
2 4 2.0
4 16 3.0
6 64 3.5
8 256 3.75

10 1024 3.875
12 4096 3.9375

Table D.1.: Properties of constellations with M points and R bits per symbol.

Hence, this section can be concluded with the analytical expression for determining the
symbol error probability

χ = NminQ

√d2
min

2σ2
v

 . (D.12)
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List of Abbreviations

ASK amplitude shift keying

BER bit error ratio

BICM bit-interleaved coded modulation

BLUE best linear unbiased estimator

CI channel inversion

CIR channel impulse response

CME complex multiplication equivalents

CP cyclic prefix

DFE decision feedback equalization

DFT discrete Fourier transform

ECB equivalent complex baseband

FFT fast Fourier transform

IDFT inverse discrete Fourier transform

iid independent and identically distributed

ISI inter-symbol inteference

LLR log-likelihood ratio

LMMSE linear MMSE

MGS modified Gram-Schmidt orthogonalization

MIMO multiple input multiple output

ML maximum-likelihood

MLSE maximum-likelihood sequence estimation

MMSE minimum mean square error

MVU minimum variance unbiased

NI noise interpolation

OFDM orthogonal frequency division multiplexing

pdf probability density function

PSA post sorting algorithm

PSK phase shift keying
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QAM quadrature amplitude modulation

SD sphere decoding

SER symbol error ratio

SIC successive interference cancellation

SNR signal-to-noise ratio

SQRD sorted QR decomposition

ssc symbol scaling compensation

TDW time domain windowing

UW unique word

WLMMSE widely linear MMSE

ZF zero forcing
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[ASS11] Tülay Adalı, Peter J. Schreier, and Louis L. Scharf. Complex-Valued Signal
Processing: The Proper Way to Deal with Impropriety. IEEE Transactions
on Signal Processing, 59(11):5101–5125, November 2011.

[BBW+05] Andreas Burg, Moritz Borgmann, Markus Wenk, Martin Zellweger, Wolf-
gang Fichtner, and Helmut Bölcskei. VLSI Implementation of MIMO De-
tection using the Sphere Decoding Algorithm. IEEE Journal of Solid-State
Circuits, 40(7):1566–1577, July 2005.

[Bla03] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge
University Press, 1st edition, March 2003.
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Informations-/Kommunikationstechnik, Wiesbaden, Germany, 3rd edition,
November 2004.

[Kay93] Steven M. Kay. Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory (v. 1). Prentice Hall, 1st edition, April 1993.

[Knu05] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle
2: Generating All Tuples and Permutations. The Art of Computer Pro-
gramming. Addison-Wesley Professional, 1st edition, February 2005.

[LPV10] Yuan-Pei Lin, See-May Phoong, and P. P. Vaidyanathan. Filter Bank
Transceivers for OFDM and DMT Systems. Cambridge University Press,
2010.

[MdCD06] Markus Muck, Marc de Courville, and Pierre Duhamel. A Pseudorandom
Postfix OFDM Modulator—Semi-Blind Channel Estimation and Equaliza-
tion. IEEE Transactions on Signal Processing, 54(3):1005–1017, March 2006.

[MF04] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuris-
tics. Springer, enlarged 2nd edition, December 2004.

[MMM09] Geert Van Meerbergen, Marc Moonen, and Hugo De Man. Reed-Solomon
Codes Implementing a Coded Single-Carrier with Cyclic Prefix Scheme.
IEEE Transactions on Communications, 57(4):1031–1038, April 2009.

[Mow94] Wai-Ho Mow. Maximum Likelihood Sequence Estimation from the Lattice
Viewpoint. IEEE Transactions on Information Theory, 40(5):1591–1600,
September 1994.

[NM93] Fredy D. Neeser and James L. Massey. Proper Complex Random Processes
with Applications to Information Theory. IEEE Transactions on Informa-
tion Theory, 39(4):1293–1302, July 1993.

[NP00] Richard van Nee and Ramjee Prasad. OFDM for Wireless Multimedia Com-
munications. Artech House, Inc., Norwood, MA, USA, 1st edition, 2000.

[OH10] Alexander Onic and Mario Huemer. Direct vs. Two-Step Approach for
Unique Word Generation in UW-OFDM. In Proceedings of the 15th In-
ternational OFDM Workshop, pages 145–149, Hamburg, September 2010.

[OH11a] Alexander Onic and Mario Huemer. Limiting the Complexity of Sphere
Decoding for UW-OFDM. In Proceedings of the 16th International OFDM
Workshop, pages 135–139, Hamburg, September 2011.

[OH11b] Alexander Onic and Mario Huemer. Sphere Decoding for Unique Word
OFDM. In Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM), Houston, TX, USA, December 2011.

[Orf88] Sophocles J. Orfanidis. Optimum Signal Processing: An Introduction.
Macmillan, 1988.

174



Bibliography

[OSHH12] Alexander Onic, Andreas Schenk, Mario Huemer, and Johannes B. Huber.
Soft-Output Sphere Detection for Coded Unique Word OFDM. In Con-
ference Record of the 46th Asilomar Conference on Signals, Systems and
Computers, pages 138–142, Asilomar, CA, USA, November 2012.

[PC95] Bernard Picinbono and Pascal Chevalier. Widely Linear Estimation with
Complex Data. IEEE Transactions on Signal Processing, 43(8):2030–2033,
August 1995.

[Poh81] Michael Pohst. On the Computation of Lattice Vectors of Minimal Length,
Successive Minima and Reduced Bases with Applications. SIGSAM Bull.,
15(1):37–44, February 1981.

[Pop92] Branislav M. Popovic̀. Generalized Chirp-Like Polyphase Sequences with
Optimum Correlation Properties. IEEE Transactions on Information The-
ory, 38(4):1406–1409, July 1992.

[PR80] Abraham Peled and Antonio Ruiz. Frequency Domain Data Transmission
using Reduced Computational Complexity Algorithms. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 5, pages 964–967, Denver, CO, USA, April 1980.

[Pro00] John Proakis. Digital Communications. McGraw-Hill Sci-
ence/Engineering/Math, 4th edition, August 2000.

[RBH05] Steffen Reinhardt, Tufik Buzid, and Mario Huemer. MIMO Extensions for
SC/FDE Systems. In Proceedings of the European Conference on Wireless
Technology, pages 109–112, Paris, France, October 2005.

[Ret10] Jakob Rettelbach. Detektionsverfahren für Unique-Word OFDM. Stu-
dienarbeit, Lehrstuhl für Informationsübertragung, Friedrich-Alexander-
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