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Digital IIR filter implementations are important building blocks of most communication systems. The chosen number format
(fixed-point, floating-point; precision) has a major impact on achievable performance and implementation cost. Typically, filter
design for communication systems is based on filter specifications in the frequency domain. We consider IIR filter design as an
integral part of communication system optimisation with implicit filter specification in the time domain (via symbol/bit error rate).
We present a holistic design flow with the system’s bit error rate as the main objective. We consider a discrete search space spanned
by the quantised filter coefficients. Differential Evolution is used for efficient sampling of this huge finite design space. We present
communication system performance (based on bit-true simulations) and both measured and estimated receiver IIR chip areas.
The results show that very small number formats are acceptable for complex filters and that the choice between fixed-point and
floating-point number formats is nontrivial if precision is a free parameter.

1. Introduction

In signal processing, filters are building blocks removing
unwanted signal components (often, but not exclusively,
specified in the frequency domain). Design (i.e., identifica-
tion of suitable structures and coefficients) of digital filters
given some specification in the frequency domain (e.g., pass-
band ripple, cutoff frequency, stop-band frequency, or stop-
band attenuation) is a well-established field [1]. In many
advanced systems, however, the ultimate goal is rarely speci-
fiable in the frequency domain but is reflected in amore com-
plex measure. Examples include bit error rate, peak power
consumption, or power trace entropy. Designing efficient
systems therefore requires embedding of the filter design
process in a larger system design context. Implementation of
digital filters requires identification of arithmetic units to be
implemented, the choice of a specific number format for each
arithmetic unit, and quantisation of filter coefficients. These
actions alter the filter characteristics and, if not foreseen in
the design process, can have a severe impact on the system’s
performance.

There is a vast literature on digital filter design and
optimisation of resource usage under some constraints. All
design approaches we are aware of have in common that the
number format’s underlying error model has to be chosen
in advance; that is, the designer has to take the decision
if fixed-point or floating-point arithmetic is used prior to
optimisation. Optimisation then identifies acceptable filter
coefficients. Some systems allow for estimating minimally
required precision.

We hypothesise that both the choice of the best error
model (i.e., if fixed-point or floating-point arithmetic allows
for the most efficient implementation) and identification of
quantised filter coefficients are nontrivial and do not lend
themselves to direct specification. In contrast to current prac-
tice, identification of number format and filter coefficients
should be included in the communication system design
process which should be seen as an integrated optimisation
process. To verify our hypothesis, we developed a bit-true
time domain simulation of a prototypical communication
system including an IIR receiver filter.This simulation is used
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for cost function evaluation in a global optimisation algo-
rithm directly searching for quantised filter coefficients. The
central requirement of a communication system is considered
achieving some target bit error rate (BER) while minimising
implementation costs (like chip area and power consump-
tion). We employ Differential Evolution (DE) [2] as a direct
search method to identify the most efficient implementation
under varying constraints.

The scientific contributions of our work are

(i) considering IIR filter design in the context of com-
munication systems (i.e., BER-guided filter coefficient
identification);

(ii) providing a bit-accurate simulation framework allow-
ing for evaluation of the objective function;

(iii) employing DE to the previous process;
(iv) considering the previous process without prior choice

of number format (fixed- or floating-point; preci-
sion);

(v) identification of minimum required precision as a
function of system constraints;

(vi) extending the objective function by implementation
specific measures allowing for ASIC- or FPGA-
specific ranking of BER-equivalent filter realisations.

The paper is structured as follows. Section 2 reviews
related work. Section 3 introduces a prototypical commu-
nication system and related measures. Section 4 details the
general IIR filter design process. It recapitulates the idea of
formulating digital filter design as an optimisation problem.
Filter realisation is assumed to be a cascade of biquadratic
filter stages. Section 5 presents the DE algorithm as a means
to quickly sample a huge multimodal search space. Section 6
considers the problem of filter design under the objective
of optimising a communication system’s performance and
details the use of DE to directly search the resulting design
space. Section 7 describes in detail all implementation and
choices made for performing experiments. Section 8 reports
results of different experiments employing DE to search
directly for the most suitable IIR filter implementation
minimising BER of the communication system considered.
Giving an acceptable BER allows to search for the minimal
acceptable precision of floating-point and fixed-point imple-
mentations. Further experiments extend the objective func-
tion by measures relevant to the filter’s implementation cost.
Section 9 discusses the experiment’s results. Section 10 sum-
marises the work and discusses challenges ahead. Section 11
details possible future research directions.

2. Related Work

Many authors have described strategies to derive filter coef-
ficients for some given filter structure such that a given
frequency response is matched. Usually, quantisation of
coefficients is considered as a distinct and subsequent task.

Shyu and Lin [3] employ a variational approach to
identify quantised coefficients by trying to match an ideal

impulse response. After initial identification of continuous
coefficients, they are iteratively substituted by quantised ones
while the remaining coefficients are modified to compensate
for the resulting modification.

Alternatively, direct derivation of quantised filter coef-
ficients can be done by considering filter design a search
problem over a huge (yet finite) discrete space. Storn [4,
5] used differential evolution to search for realisable filter
coefficients using specifications in the frequency domain.
Ramos and López [6] combine a direct search method
with a heuristic parametric optimization to identify optimal
realisable filter coefficients of an equaliser structure for
loudspeakers implemented using biquadratic filter stages.

There are several optimisation algorithms available that
tackle this issue. Especially the use of population-based
computation algorithms such as genetic algorithms [7–9],
differential evolution [2, 9–12], particle swarm optimisation
[13], and the seeker optimization algorithm [14] is common.

Irrespective of the method employed, many different
objectives for guiding the filter design process are possible.
Typically, filters are specified in the frequency domain.
Consequently, most filter design methods employ an objec-
tive function derived from filter specifications in frequency
domain (like the integral over the frequency response mis-
match).

The matched filter theory readily provides optimal filter
specification in frequency domain relevant under commu-
nication system constraints. The matched filter theory relies
on linear system characteristics, though. This assumption
is violated many times for real-world systems. Stücke et al.
[15] investigate nonlinear effects in communication systems
and their impact on ZigBee transceiver systems in terms of
BER. To the best of our knowledge, our work is the first
one employing a BER objective function in a direct search
approach, basically solving the inverted problem compared
to the work of Stücke et al. A related approach for optimising
transmitter and receiver FIR filter specifications under BER
constraints in a MIMO setting is presented by Hjorungnes
et al. [16].

The DE algorithm was presented by Storn in 1995 in a
technical report followed by a paper authored by Storn and
Price in 1997 [2]. Design of digital filters was one of the
original motivations for the development of the algorithm.
In 2005, DE was presented in the IEEE Signal Processing
Magazine [4]. The up-to-date references for DE are the
books by Price et al. [17] and Chakraborty [18] as well as
the recent survey by Das and Suganthan [19]. Compared
to the original schemes suggested by Storn and Price [2],
many additional variants have been conceived and methods
for selecting parameters have been described. Notably, Zhu
et al. [20] propose a method to adapt the (usually static)
population size, while Pan [21] suggests a scheme where the
DE parameters 𝐹 and 𝜆 are adapted during optimisation.
Zaharie [22] investigates the effect of different crossover
schemes.

Pan [21] applies DE for pole-placement design, while Zhu
et al. [20] apply DE for IIR coefficient identification in the
context of system identification.
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Most current design methods do not perform a rigour
verification of the actual filter being implemented, that is,
taking all quantisation effects into account.

Widrow and Kollár [23] have suggested a generic method
for modeling the probability density functions of intermedi-
ate results yielded by limited-precision arithmetic and have
employed it to (both arithmetic and coefficient) error analysis
of IIRs. They point out, however, that the method becomes
more unreliable with decreasing precision. Cox et al. [24]
present bit-precise verification techniques and show cases
where reasoning on the bit level is necessary. Kar [25]
presents a stability criterion for digital filters considering both
quantisation and overflow effects.

While many methods derive filter coefficients in double-
precision floating point, this is a very costly number format
to be implemented in hardware. Hardware implementation
of digital filters typically resorts to low-precision fixed-point
arithmetic as the respective operations are considered less
expensive in terms of time-area product. Very few authors
have investigated low-precision floating-point number for-
mats for the implementation of digital filters.

To the best of our knowledge, our work is the first one
considering floating-point precision a free parameter on a
per-bit resolution in the IIR design process.

Our work is the first in-depth comparison between
respective implementation costs of fixed-point and floating-
point custom-precision IIR filter implementations.

3. System Model

This section presents the communication system which will
be used throughout the rest of this paper.The communication
system is a base-band transceiver concept as illustrated in
Figure 1. Without loss of generality, the system is modeled
in discrete-time. The signaling under consideration is a
one-dimensional pulse-amplitude modulation (PAM). We
assume absence of intersymbol interference (ISI). Therefore,
only a single symbol period of duration 𝑁sym needs to be
considered. The sent signal 𝑠[𝑛] is therefore given as

𝑠 [𝑛] = 𝑎 ∗ ℎT [𝑛] , (1)

where 𝑎 ∈ {𝑎𝑙} is the transmitted symbol, {𝑎𝑙} is the set of 𝐿
available complex valued symbols, ℎT[𝑛] is the pulse shape,
and ∗ denotes to the convolution operator.

For simplicity, the transmission channel is modeled using
additive white Gaussian noise (AWGN). The received signal
𝑟[𝑛] is therefore given as

𝑟 [𝑛] = 𝑠 [𝑛] + ] [𝑛] , (2)

where ][𝑛] is a white Gaussian noise process with a power
spectrum density of𝑁0/2.

To remove out-of-band noise at the receiving side, a
receiver filter with impulse response ℎR[𝑛] is required. The
receiver filter’s output is given as

𝑦 [𝑛] = ℎR [𝑛] ∗ 𝑠 [𝑛] + ℎR [𝑛] ∗ ] [𝑛] . (3)

It is known that the optimal (i.e., minimising detection
errors) receiver filter forAWGNchannels and linear signaling

𝑠[𝑛]

�[𝑛]

𝑟[𝑛] 𝑦[𝑛] 𝑧
DDℎR[𝑛]

�̃�

Figure 1: Discrete-time domain communication system model.

schemes is thematched filter [26].Therefore, ℎR[𝑛] = ℎ
∗

T[−𝑛],
where (⋅)∗ denotes the complex conjugate. It should be noted
that thematched filter gives a lower boundwith respect to the
bit error rate [26]. Any approximation of this matched filter
can only perform worse. As shown later, direct search (using
DE) can find a filter solution close to the theoretical matched
filter BER performance.

After filtering, the signal 𝑦[𝑛] is sampled, which results
into the decision variable 𝑧. The ideal sample time is at the
end of the symbol period; hence, the decision variable 𝑧 is
given as

𝑧 = 𝑦 [𝑁sym]

= 𝑠 + ],
(4)

where 𝑠 is the projection of the transmit pulse ℎT[𝑛] onto the
receiver filter ℎR[𝑛] scaled by the transmitted symbol 𝑠, and
thus

𝑠 = 𝑎

+∞

∑

𝑘=−∞

ℎT [𝑘] ℎR [𝑘] , (5)

and ] is a zero-mean Gaussian distributed random variable
with variance 𝜎2] = (𝑁0/2)∑

+∞

𝑘=−∞
|ℎR[𝑘]|

2. Note that for the
case that the receiver’s impulse response ℎR[𝑛] does have unit
energy, hence,∑+∞

𝑘=−∞
|ℎR[𝑘]|

2
= 1, and the variance 𝜎2] of the

random variable ] is equal to the noise power spectral density
𝑁0/2 of the noise sequence ][𝑛] so that 𝜎2] = 𝑁0/2. Note
that 𝑠 is given as 𝑠 ∈ {𝑎𝑙} if ℎT[𝑛] with unit energy and ℎR[𝑛]
represents the corresponding unit energy matched filter.

For detection, the decision device (DD) compares the
decision variable 𝑧 with a set of thresholds {𝛾𝑙}. The interval
between two threshold values 𝛾𝑙 and 𝛾𝑙+1 defines the range of
the symbol 𝑎𝑙. If 𝑧 is in the interval of the two threshold values
𝛾𝑙 and 𝛾𝑙+1, the decision device decides for 𝑎 = 𝑎𝑙.

For a binary antipodal one-dimensional PAM, for exam-
ple, binary phase-shift-keying (BPSK), the symbols 𝑎 are
given as 𝑎 ∈ {−√E𝑏, +√E𝑏}, whereE𝑏 denotes the bit energy
for a unit energy pulse shape.The ratioE𝑏/𝑁0 is awell-known
metric for comparing the performance of communication
systems. The theoretical bit error probability 𝑃𝑒 for the
optimum matched filter receiver of a binary antipodal PAM
is given as

𝑃𝑒 = Q{√
2E𝑏

𝑁0

} , (6)

where Q{⋅} is the Q-function. As discussed before, this
theoretical bit error probability represents a lower bound to
technically achievable (i.e., approximating ℎR[𝑛]) BERs.
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4. IIR Filter Design

Infinite impulse response filters provide comparable perfor-
mance at less computational/hardware requirements com-
pared to finite impulse response (FIR) filters. The disadvan-
tage of IIR filters is the fact that they can become unstable and
that the error surface for finite-precision implementations is
nonlinear and multimodal [10]. The latter renders finding an
optimal set of quantised filter coefficients for implementation
in finite precision arithmetic a hard problem.

Due to the relevance of digital filters in general and the
resource savings possible through use of IIRs, there exists a
high interest in converting continuous into quantised filter
coefficients. Consequently, many different respective meth-
ods have evolved. Matching a certain frequency response
specification is the major target of most of them. However,
there are also interesting approaches that design the filter in
the time domain. The latter is used in this work as it has
several advantages for the design of digital filters used in
communication systems.

Especially for IIR filters designed to meet certain filter
specifications such as pass-band ripple, cutoff frequency,
stop-band frequency, or stop-band attenuation, it is common
to adjust poles and zeros in the 𝑧-plane as this automatically
ensures stability [27]. However, for a digital implementation,
coefficients still need to be calculated out of the poles/zeros
and quantised. Furthermore, depending on the filter struc-
ture, scaling factors that are used to limit the numerical range
for finite-wordlength architectures do not come out from
such designs in the 𝑧-plane. That is why, in contrast to [27],
we adjust the coefficients of the filter directly in order to avoid
this issue. To verify stability of these coefficients, poles and
zeros need to be computed. Verifying location of poles and
zeros is a simple operation with low computational effort,
though.

Designing the filter in time domain can be incorporated
by trying tomatch, for instance, a reference impulse response.
Besides the fact that the evaluation is simple, quantisation
errors can be evaluated convenient in time domain. Further-
more, computations of the impulse response can be done bit-
true such that the simulation corresponds exactly to the final
hardware implementation.

Instead of taking the impulse response, we generate a
randomdata sequence as reference out of the communication
system model (Figure 1) and aim at to minimising the bit
error rate.

4.1. Filter Structure. There exist many possible filter struc-
tures to implement a given transfer function. The cascading
of second-order (or biquadratic) filter sections is beneficial
as the number range is limited by the scale values in front of
each section.Therewith, even quantisation errors are reduced
[28] which is the main purpose of utilizing SOS direct-form
II filter structures in this work (see Figure 2). Alternative
filter structures include lattice wave filters [29, 30], but there
is the issue that in general this filter structure needs the
double amount of multipliers compared to direct-form II
implementations [1].

𝑧−1

𝑧−1

𝑥[𝑛]

−𝑎1

−𝑎2

𝑏0

𝑏1

𝑏2

𝑦[𝑛]

Figure 2: Direct-form 2 implementation of a biquadratic (or se-
cond-order) filter stage.

The transfer function of a cascaded SOS is given as

𝐻(𝑧) =

𝑁
𝑠

∏

𝑘=1

𝑠𝑘

𝑏0𝑘 + 𝑏1𝑘𝑧
−1
+ 𝑏2𝑘𝑧

−2

1 − 𝑎1𝑘𝑧
−1 + 𝑎2𝑘𝑧

−2
, (7)

where 𝑁𝑠 is the number of sections, 𝑠𝑘 is the scale value for
each SOS, and the filter coefficients are represented by 𝑏0𝑘, 𝑏1𝑘,
𝑏2𝑘, 𝑎1𝑘, and 𝑎2𝑘. Note that there is full freedom in ordering the
sections itself.

Starting at the entry of an SOS, the scale value is a useful
factor for limiting the numerical range of finite-precision
arithmetic; thus, overflows can be suppressed in an elegant
way. Furthermore, this scale value can be used to weight the
SOS itself. As each SOS is a filter of order two, quantisation
errors are mainly influencing one section. The impact on
the overall filter transfer function is reduced as the signal is
damped and the noise bandlimited by subsequent sections.
Finally, the number of delay elements is decreased compared
to direct-form I sections [1, 12, 28].

4.2. Filter Evaluation. The typical quality measure employed
to quantify how well a filter matches the system specification
is the mean squared error (MSE) between original speci-
fication and actual filter characteristic. For demonstration,
we compare in the following the magnitude response of
the matched filter with the one of the considered standard
filter design approaches given the matched filter magnitude
response as design objective.

For the transceiver system model presented in Section 3
with root-raised-cosine shaped pulses, the matched filter is
a lowpass. We design three standard lowpass filter types to
demonstrate the achievable match of magnitude responses.
The filter types are Butterworth, Elliptic, and Chebyshev
type I [1]. All filters are designed with order 6. A simulation
is done exemplary for a binary antipodal PAM.The optimum
BER is obtained by varying the cut-off frequency 𝑓𝑐 between
0.05𝜋 and 0.1𝜋 in steps of 0.005𝜋. These parameters are
selected by evaluating the magnitude response of the pulse
shaping filter ℎT[𝑘]. The reference filters are designed to
match it as close as possible (Figure 11). Table 1 lists the iden-
tified best cut-off frequency 𝑓𝑐 for each filter type together
with the respective MSE compared to the matched filter’s
magnitude response. The Butterworth filter performs best;
that is, its magnitude response is closest to thematched filter’s
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Table 1: Best cut-off frequency 𝑓𝑐 and corresponding MSE to the
matched filter’s magnitude’s response.

Filter type 𝑓𝑐 MSE
normalised frequency (dB)

Butterworth 0.07𝜋 −10.63

Elliptic 0.075𝜋 −8.83

Chebyshev 0.075𝜋 −8.61
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Figure 3: Transceiver BER for a Butterworth, elliptic, and Cheby-
shev filters based on the exemplary communication system model
(Figure 1). All filters are designed with order 6. The simulation is
done for𝑁𝑏 = 10

6 bits.

one. As illustrated in Figure 3, the theoretical BER given in (6)
is not reached.

4.3. Discrete Design Space. Given some filter structure imple-
mented using finite precision arithmetic, the set of possible
filter coefficients (and therefore filter characteristics) can be
enumerated.This set represents a huge, yet finite design space.
Given a sixth-order IIR filter implemented as a cascade of
biquadratic filter stages, every possible implementation can
be described by an instance of the SOSmatrixC, representing
the filter coefficients where

C =

[
[
[
[

[

𝑏01 𝑏11 𝑏21 1 𝑎11 𝑎21

𝑏02 𝑏12 𝑏22 1 𝑎12 𝑎22
...

...
...

...
...

...
𝑏0𝑁
𝑠

𝑏1𝑁
𝑠

𝑏2𝑁
𝑠

1 𝑎1𝑁
𝑠

𝑎2𝑁
𝑠

]
]
]
]

]

(8)

and the scale vector s

s = [𝑠1, 𝑠2, . . . , 𝑠𝑁
𝑠

]
T
, (9)

where𝑁𝑠 is the number of biquadratic filter stages.
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Figure 4: Chip area for programmable coefficients of the IIR filter
with three biquadratic filter stages for fixed- and floating-point.

4.4. Arithmetic. Besides the filter architecture, the arithmetic
in which the computations are performed in digital hardware
is amajor design decision. Especially the number of fractional
bits for fixed-point and the precision for floating-point
implementations is a major design decision as a tradeoff
between performance and hardware costs needs to be found.
This will be evaluated in detail in Section 7.4.

4.5. Implementation Cost-Chip Area. Digital filters are com-
plex structures requiring a significant amount of chip area
for implementation. We have developed a generic code
describing the cascaded filter structure in both fixed- and
floating-point with the precision as a parameter. There exist
two versions. One integrates the coefficients directly into
the design while the other one implements a register. The
latter option allows for arbitrary changes of parameters
through reprogramming of the registers. All multiplier paths,
however, need to be fully instantiated, resulting in a much
higher area requirement compared to predefined coefficients.

Synthesis results for different floating-point and fixed-
point number formats are given in Table 2 and depicted in
Figure 4.

4.6. Limit Cycle. An IIRfilter can exhibit an unstable behavior
under finite precision arithmetic for specific constant input
signals.This type of instability usually results in an oscillatory
periodic output called a limit cycle [31].

There are two types of limit cycles: (1) granular limit cycle
(LSB oscillations; typically of low amplitude) and (2) overflow
limit cycle (MSB oscillations; typically of large amplitude).

Criteria considering the combined effect of these two
phenomena have only recently started to appear [25].

Many filter design methods aim at reducing or avoiding
limit cycle effects. Our chosen filter realisation (cascaded
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Table 2: Chip area for an IIR filter (order 6, cascade of three
biquadratic filter stages) with programmable coefficients.

Fractional bits (bit) Area fixed-point
(𝜇m2)

Area floating-point
(𝜇m2)

7 112370 244905
8 125379 279039
9 154582 309891
10 169388 339441
11 202143 388644
12 218251 406734
13 256645 458154
15 313606 533592
19 430632 705147

Table 3: Evolutionary computation nomenclature (from [32]).

Individual A candidate solution
Child, parent A child is the tweaked copy of its parent
Population Set of candidate solutions
Fitness Quality, directly related to the cost function
Selection Picking individuals based on their fitness

Mutation Plain tweaking of parameters based on
population

biquadratic DF II filter) is known to limit the possible effects
of limit cycles but does not exclude them.The current design
flow does not check for possible limit cycles.

5. Differential Evolution

The Differential Evolution (DE) optimisation algorithm is
proposed in [2]. Since it shows excellent performance com-
pared to other much more complex heuristic optimisation
algorithms [19], we utilize this algorithm. As described in
Section 2, many variants and improvements of the original
schemes have been conceived. As the task at hand is per-
formed offline and the basic scheme does deliver good results,
we have not explored further opportunities for tweaking the
DE scheme.We discuss future improvements in Section 11. In
the following, the DE algorithm’s steps are described in detail.
As evolutionary computationmethods have different naming
conventions, a short nomenclature is provided in Table 3.
(1) Initialization. The following constants need to be chosen.
𝑁𝑠 is the number of biquadratic filter stages, 𝑃 is the
population size, and𝐺 the maximum number of generations.
Furthermore, the number format (fixed- or floating-point)
and the respective precision needs to be selected.

The initial population of individuals is randomly gener-
ated. One individual represents the scale vector s and the SOS
matrix C. The scales are generated as

𝑠𝑖 = U (0, 0.1) ∀𝑖 = 1, . . . , 𝑁𝑠, (10)

where U(𝑎, 𝑏) denotes the continuous uniform distribution
in between 𝑎 and 𝑏. The coefficient matrix is initialized as

𝐶𝑖𝑗 = U (−1, 1) ∀𝑖 = 0, . . . , 5, 𝑗 = 1, . . . , 𝑁𝑠. (11)

In general, the number range of coefficients and scales of
the initial population is of little importance. We found that
the algorithm finds a satisfying solution with any random
initialization.
(2) Scales and Coefficient Quantisation (Optional). In case
of optimisation for bit-true filter coefficients (i.e., fixed- or
floating-point), the scales and coefficients are quantised to
their predefined number format.
(3) Compute and Evaluate the Cost Function. A system simu-
lation is performed for all individual in the current generation
(i.e., 𝑠𝑖,𝑔 and C𝑖,𝑔 ∀𝑖 = 1, . . . , 𝑃) and the BER computed at a
given operating point according to (16). Depending on the
objective function used, additional criteria are evaluated to
arrive at the final fitness of each individual.
(4) Mutation and Selection. There are two basic schemes for
mutation suggested in [2] (DE1 and DE2). DE1 performs
mutation relying on a random difference vector. The differ-
ence vector is built using two randomly selected individuals
(indices 𝑖, 𝜉, 𝜂 ∈ {1, . . . , 𝑃} and mutually different). The scales
and coefficients are tweaked according to

𝑠𝑖,𝑔+1 = 𝑠𝑖,𝑔 + 𝐹 ⋅ (𝑠𝜉,𝑔 − 𝑠𝜂,𝑔) ∀𝑖 = 1, . . . , 𝑃,

C𝑖,𝑔+1 = C𝑖,𝑔 + 𝐹 ⋅ (C𝜉,𝑔 − C𝜂,𝑔) ∀𝑖 = 1, . . . , 𝑃.

(12)

DE2 performs mutation as DE1 but takes the best solution
in the current generation into account, too. The scales and
coefficients are tweaked according to

𝑠𝑖,𝑔+1 = 𝑠𝑖,𝑔 + 𝜆 ⋅ (𝑠best,𝑔 − 𝑠𝑖,𝑔) + 𝐹 ⋅ (𝑠𝜉,𝑔 − 𝑠𝜂,𝑔) ,

C𝑖,𝑔+1 = C𝑖,𝑔 + 𝜆 ⋅ (Cbest,𝑔 − C𝑖,𝑔) + 𝐹 ⋅ (C𝜉,𝑔 − 𝑠𝜂,𝑔) .
(13)

Choice of DE variant and parameters 𝐹 and 𝜆 will be
discussed in Section 7.5.

Depending on the cost function, the parents or the
mutated children stay within the population or not [2, 4].
(5) Termination. The termination condition is met if the
number of maximum generations (i.e., 𝑔 = 𝐺) is reached.
Otherwise, the algorithm continues with step 2.

6. Filter Design under Communication
System Constraints

In this section, the optimisation of a quantised IIR filter
considering the overall system model is derived. After defi-
nition of the optimisation problem, the theoretical optimum
receiver and the DE optimisation algorithm are proposed.
The transceiver performance is then analysed with respect to
implementation costs in digital hardware.

6.1. Optimisation Problem Definition. Based on the blocks
of the transceiver model described so far (Figure 1),
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Figure 5: Communication system optimisation. Transmitted sym-
bols are compared against the received ones to design the receiver
filter.

the optimisation problem to minimise the bit errors of the
receiver is defined and illustrated in Figure 5. The received
symbols 𝑎[𝑘] are compared against the transmitted symbols
𝑎[𝑘] defining the error as

𝑒 [𝑘] = 𝑎 [𝑘] − 𝑎 [𝑘 − Δ] , (14)

where Δ is a time delay introduced by the communication
system.

For stable coefficient sets, we define the bit error rate as
the squared error

BER = 1

𝑁𝑏

𝑁
𝑏
−1

∑

𝑘=0

𝑒
2
[𝑘] , (15)

where 𝑁𝑏 is the number of transmitted symbols for the
training sequence. The cost function is dependent on the
SOSmatrixC representing the filter coefficients and the scale
vector s.

The specific cost functions used will be detailed in
Section 7.

7. Experiment Setup

In the following, we detail the experiment setup. Results of
experiments performed are reported in Section 8.

7.1. SystemModel Specification. Without loss of generality, the
signaling scheme is chosen to be a binary antipodal PAM
with 𝑎 = {−√E𝑏, +√E𝑏}. The symbol rate 𝑅sym is 125 kbit/s
and the upsampling factor 𝑀 = 16. The pulse shape of the
transmitted pulses is a root-raised-cosine pulse with a roll-
off factor of 𝛼 = 0.5. The symbol sequence {𝑎[𝑘]} is randomly
generated with equiprobal symbols, and the simulation is
done for𝑁𝑏 = 10

6 bits.
The communication system’s target BER is set to 10−3

(or better). The corresponding E𝑏/𝑁0 ratio is 7.288 dB (see
Figure 6 for an illustration).

The gain 𝑔 which is introduced in Figure 5 is used to
prescale the input number range of the receiver filter to ensure
fair comparison between fixed- and floating-point.

7.2. Emulation of Finite Precision Hardware. In order to allow
for a correct evaluation of quantisation effects, a bit-true
simulation of the implementations considered is required.
We provide bit-true simulation of BER calculation for both
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Figure 6: Transceiver BER for the optimum solution found by the
DE algorithm. The operating point for fixed- and floating-point
analysis is chosen to be at a BER of 10−3 resulting in anE𝑏/𝑁0 ratio
of 7.288 dB.

floating-point and fixed-point arithmetics. Both simulations
allow the choice of arbitrary values for the number format’s
precision.

7.2.1. Fixed-Point. For fixed-point, the BER is evaluated for
different 𝑄𝑚 ⋅ 𝑛 number formats for the state variable of
the filter. This notation defines the number of integer (𝑚)
and fractional (𝑛) bits within the representation. 𝑚 is kept
constant at 8 bits. Experimentally, this has been found to be
sufficient to avoid overflows for all of the different solutions
obtained by the DE. An overflow is indicated by a dedicated
flag in the bittrue reference design. However, it might occur
depending on the randomly generated noise added to the
data sequence, especially when approaching a low number of
fractional bits as the quantisation noise increases.

The signal range at the input of the filter is scaled to 90%
of the input value range by setting 𝑔 = 0.9 in Figure 5. This
choice is significant, especially when comparing the BER to
the floating-point scenario. Furthermore, it implies that for
any E𝑏/𝑁0 ratio the signal needs to be scaled accordingly by
a dedicated gain control unit.

The filtering for the analysis is done based on a hard-
ware equivalent implementation in C code and called from
MATLAB using MEX [33] interface. Due to this, the filtering
operation lasts a multiple of the double-precision floating-
point implementation. A comparison is given in Table 4.

7.2.2. Floating-Point. For the floating-point analysis, the BER
computation in Figure 12(b) is performed for different preci-
sions while the exponent is constrained to 4 bits.

For hardware equivalent filtering, the GNU MPFR [34]
library is used. It allows for floating-point operations on
custom number formats (i.e., arbitrary mantissa (precision)
and exponent bit widths). As the execution time is dominated
by the Matlab-to-C interface, observed times are equivalent
to the fixed-point implementation (see Table 4).
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Table 4: Execution time analysis of a single generation of the DE1
algorithm (population size: 100).

Matlab Bit-true
(double) (fixed/float)

[s] [s]
Initialization 0.935 0.908

Filtering operation 0.603 27.25

Evaluate fitness/cost function
Calculate BER 2.488 2.488

Check stability 0.327 0.327

Multiobjective fitness functions — 0.123

Mutation and selection 0.284 0.284

Total time for single generation 4.637 31.380

7.3. Single-Objective Optimisation for Target Bit Error Rate.
The objective function uses the BER definition given in (16).

For stable coefficient sets, we define the cost function to
equal the bit error rate

𝐽BER (s,C, 𝑁𝑏,
E𝑏

𝑁0

) = BER. (16)

(a) Stability. Digital filters can be specified using filter
coefficients or pole/zeros. In R, these specifications are
interchangeable. Using pole/zero description has the advan-
tage of restricting the search space to stable systems (i.e.,
all poles reside inside the unit circle) by design. When
considering quantised coefficients, however, there is—due
to quantisation—not necessarily a one-to-one mapping
between pole/zero and parameters anymore. As DE is a direct
search method, the native approach appears to be using
quantised filter coefficients as parameters. DE might, how-
ever, consider parameter combinations resulting in unstable
filters. The objective function therefore needs to exclude
unstable solutions. From quantised coefficients 𝐶, poles can
be computed and the stability criterion be checked.We define
a condition function 𝐽Stable(s,C) for the objective function
𝐽(s,C, 𝑁𝑏,E𝑏/𝑁0). 𝐽Stable(s,C) is assigned the value 1 if the
filter is stable, 0 otherwise.

For an unstable parameter set, we define

𝐽BER (s,C, 𝑁𝑏,
E𝑏

𝑁0

) = max(𝐽(s,C, 𝑁𝑏,
E𝑏

𝑁0

)) = 1. (17)

7.4. Multiobjective Optimisation. The DE optimisation algo-
rithm proposed so far is able to find optimised coefficients
with respect to the receiver performance as given by the
bit error rate (BER) measure. It already generates fully
quantised coefficients that can be plugged into a hardware
description. However, for FPGAs/ASICs, the hardware costs,
that is, area and power, are of very high relevance. In the
vicinity of the optimum found by the DE, there might be
several other solutions with the same BER but with less
amount of hardware requirements due to different sets of
coefficients. We therefore extend the existing framework to a

multiobjective optimisation approach that tries to minimise
these costs at system-level design. The cost function and
optimisation procedure is described later.
(b) Signal Range. In order to maximise the sensitivity of the
receiver, the filters’ internal signal range is evaluated. The
quantisation noise is minimised if the available fractional bits
of the implemented registers are used in its whole width. We
define

𝐽SR =

{{{{

{{{{

{

0, if 2𝑛−1 ≤ max (abs (𝛿)) < 2𝑛+1,

1 −
max (abs (𝛿))

2𝑛
, if max (abs (𝛿)) < 2𝑛−1,

1, else,

(18)

where𝛿 is a vector of all the register values aftermultiplication
in the biquadratic filter stages and 𝑛 is the number of
fractional bits. Below the acceptable value range, the cost
function is linearly increasing or directly forced to one if it
exceeds it.
(c) Hardware Cost.Amultiplier in digital hardware is, in gen-
eral, built fromadders. Still, an adder is only instantiated if the
corresponding bit in the multiplicand (i.e., the coefficient) is
set (1). As the optimisation algorithm tweaks the coefficients,
this can be reformulated as an optimisation criterion. The
amount of nonzero bits can be minimised by introducing a
dedicated cost function 𝐽HW.

For modeling the hardware costs, a full synthesis run for
each individual within the population could be investigated
to obtain the final area and even power consumption for a
certain stimuli. However, this is impractical since the syn-
thesis and simulation would need enormous amount of time.
Therefore, the hardware costs need to be approximated. For
fixed-point, several synthesis runs with different coefficient
sets were performed for the digital filter. They show that the
area is maximised if half of the bits are set alternating within
the coefficient number representation. It drops if more or less
of half of all the bits are set.Thus, we define a function Γ(𝑥, 𝐵)
as

Γ (𝑥, 𝐵) =

{{{

{{{

{

𝐵set, if 𝐵set ≤
𝐵

2
,

𝐵 − 𝐵set, if 𝐵set >
𝐵

2
,

(19)

where 𝐵 is the bitwidth of 𝑥 and 𝐵set is the count of
nonzero bits within the number representation of 𝑥. Then,
the hardware costs are defined by summing all the set bits for
the scales and coefficients and normalizing them, which is

𝐽HW (s,C) =
∑
𝑁
𝑠

𝑖=1
Γ (𝑠𝑖, 𝐵𝑠)

𝑁𝑠𝐵𝑠

+

∑
5

𝑖=0
∑
𝑁
𝑠

𝑗=1
Γ (𝐶𝑖𝑗, 𝐵𝑐)

6𝑁𝑠𝐵𝑐

, (20)

where 𝐵𝑠 and 𝐵𝑐 are the bitwidths of the scales and coeffi-
cients, respectively.
(d) Summation of Cost Functions. For themultiobjective opti-
misation, we sum the partial costs by weighting. Given that
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the filter is stable, we wish to minimise the communication
system’s BER. For a given set of parameters resulting in a
stable filter, we therefore evaluate the cost function 𝐽 as

𝐽 (s,C, 𝑁𝑏,
E𝑏

𝑁0

)=𝛼BER𝐽BER (s,C, 𝑁𝑏,
E𝑏

𝑁0

) + 𝛼HW𝐽HW (s,C)

+ 𝛼SR𝐽SR (s,C, 𝑁𝑏,
E𝑏

𝑁0

) ,

(21)

where 𝐽BER, 𝐽HW, 𝐽CR are the partial cost functions and 𝛼BER,
𝛼HW, 𝛼CR are the weighting parameters, respectively.The cost
function is evaluated at step 3 of the algorithm proposed in
Section 5.

For an unstable parameter set, we define

𝐽 (s,C, 𝑁𝑏,
E𝑏

𝑁0

) = max(𝐽(s,C, 𝑁𝑏,
E𝑏

𝑁0

)) . (22)

In order to obtain the weighting parameters, we analyse
the cost functions itself. 𝐽BER is depending on the operation
point of the optimisation, that is, defined by E𝑏/N0. 𝐽HW
is normalized by the total number of possible set bits and
is found to be approximately 0.33 for scale and coefficient
sets generated in the form of (10) and (11). In order to not
influence the BER significantly, 𝐽HW is chosen to be in the
same number range as 𝐽BER. Thus, for an expected BER of
10−3, 𝛼HW = 0.003 while 𝛼BER = 1. In order to minimise
the quantisation noise by fully using the fractional bits of the
implemented registers, we expect 𝐽CR to vanish. Hence, we set
𝛼CR = 1 as well.

Note that even with reprogrammable coefficients via
registers, the DE optimised solution is able to reduce the
power consumption by minimizing the number of nonzero
bits of the coefficients for fixed-point. In this case, the
hardware cost function is simply reformulated to

Γ (𝑥, 𝐵) = 𝐵set (23)

as the power consumption will rise proportional with the
increasing number of nonzero bits.

7.5. Choice of DE Variant. Two DE schemes were presented
in Section 5. Here, we discuss identification of the variant
most suitable for the design space at hand. Figure 7 shows
the objective’s function value over 2000 generations for 20
optimisation runs per DE variant (DE1 and DE2). DE1
provides a muchmore uniform behaviour and often provides
better final solutions than DE2. We therefore choose DE1
as the DE variant of choice in all experiments reported in
Section 8.

The control variable 𝐹 in (12) and (13) was found by
performing 20 simulation runs for each value between 0.1
and 0.8 with step size 0.1. Comparing the average and best
fitness over generations, we found 𝐹 = 0.5 to be the best
choice delivering fast initial convergence with satisfying final
solutions over multiple runs. This choice coincides with the
value suggested in [2]. For 𝜆, a value of 0.2 was found to be a
reasonable choice.
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Figure 7: Comparison of convergence rate between DE1 and DE2
with multiobjective cost function. Twenty runs per DE variant.
Population size 100.

8. Experiments

In the following, we report on experiments with a single
objective (BER) and multiple objectives.

8.1. Single-Objective Optimisation for Target Bit Error Rate.
In the first experiment, DE is used to search for a solution
using double-precision floating point coefficients. Population
size is 100 and maximum simulation run-time is set to 1000
generations (i.e., optimisation is stopped, even if results do
not converge). The execution of a single generation takes 4.6
seconds on a Linux server (2x Intel XeonCPUX5677 running
at 3.47GHz. System memory: 47GB RAM), resulting in a
maximum run time of 1000 ⋅ 4.6 s = 1 h 17 min. Refer to
Table 4 for a detailed breakdown of execution times.

Figure 8(a) shows the BER of the best solution found
by DE in every iteration. It shows how the final optimum
BER curve is obtained iteratively. Figure 8(b) depicts the
population’s best and average BER as well as the average BER
of the best 25% of all individuals within the population for
each generation. Note that the latter converges fast, providing
several potential candidate solutions close to the optimum
BER.

Figure 9 shows the BER of the individual with the lowest
BER in Generation 1000 and the BER curves for the standard
filters (see Section 4). As can be seen, the filter coefficients
identified by DE result in a superior filter (in terms of BER)
compared to all considered standard filter design approaches.

To give an impression of the design space’s structure,
Figure 10 shows the cost function 𝐽 in the 𝑎1/𝑎2 planewhile all
other parameters are fixed at the optimum solution identified
by DE.

8.1.1. Filter Magnitude Response. Because filter specification
and evaluation in the frequency domain is so ubiquitous, we
compare here theDE’s solutionsmagnitude response with the
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elliptic, and Chebyshev filters are plotted as reference.𝑁𝑏 = 10

6 bits.

magnitude responses of standard reference filters. Note that
the design methods are completely different. The reference
filters are designed with a certain cut-off frequency which
defines the filters frequency response characteristics. The
optimised DE filter considers the overall system in which it is
embedded and iteratively identifies suitable filter coefficients
relying on a time domain perspective.

Figure 11 shows the magnitude response of Butterworth,
elliptic, and Chebyshev filters as detailed in Section 4.2
together with the magnitude response of the solution iden-
tified by DE. Observe that the optimal solution’s gain is
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Figure 10: Visualisation of the cost function 𝐽 over 𝑎1 and 𝑎2.

significantly higher than the filter specification derived from
the matched filter assumption.

8.1.2. Choice of Number Format. A communication system’s
performance is significantly depending on the receiving’s
filter number format and precision chosen. Quantifying this
dependency is the goal of the following experiment.

DE was used to search for the optimal solution given
a fixed-point receiver filter implementation and given a
floating-point receiver implementation.

Figure 12(a) shows the BER over different fixed-point
𝑄𝑚 ⋅ 𝑛 formats, where 𝑚 is constantly set to 8 and 𝑛 is
the number of fractional bits. Figure 12(b) shows the BER
over different floating-point precisions, where the exponent
is limited to the range of ±15. The red line shows the BER
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order 6.

achieved with the software reference implementation using
double-precision floating point.

8.2. Multiobjective Optimisation for Hardware Efficiency. To
give an impression of the design space’s structure when
using a multiobjective cost function, Figure 13 shows the cost
function 𝐽 in the 𝑎1/𝑎2 plane while all other parameters are
fixed at the optimum solution identified by DE.

The required chip area found by the DE with and
withoutmultiobjective optimisation in fixed-point arithmetic
is presented in Figure 14. The synthesis is performed for
predefined coefficients, which means that they are constants
at synthesis time. On average, around 4.4% can be saved
utilizing the multiobjective optimisation with hardware costs
(Table 5) while at the same time the BER from Figure 12(a) is
retained. It is clear that, for the DE algorithm without ded-
icated cost function, the hardware costs are purely random.
Thus, also the saving in area compared to the multiobjective
optimisation is varying between 1% and 12%.

9. Discussion

Using the BER as optimisation objective, the DE algorithm
is able to identify coefficient sets which outperform systems
relying on conventional filter design methods with specifi-
cation in the frequency domain (matched filter). Inspecting
the resulting filter in the frequency domain reveals that the
magnitude response deviates significantly from the matched
filter’s magnitude response. This result does not interfere
with the matched filter theory. It reveals, though, that under
the presence of channel noise and nonlinearities (finite-
precision arithmetic), a filter optimising the overall BER
can be implemented with a magnitude response significantly
different than the specification of the matched filter. This
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Figure 12: (a) BER over different fixed-point𝑄𝑚 ⋅ 𝑛 formats, where
𝑚 is constantly set to 8 and 𝑛 is the number of fractional bits. (b)
BER over different floating-point precisions, where the exponent is
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is a strong argument against direct specification of filters
approximating a matched filter.

Employing a direct search algorithm has the advantage
that—given it works reliably on the original problem space—
new search criteria (i.e., extended cost functions) can be
added (almost) at will. Additional partial cost functions
will not break the search algorithms efficiency (i.e., reduce
the convergence rate). We have demonstrated this strategy
successfully by adding hardware measures. This results in
reliably cheaper implementations with identical BERs.

Using the DE algorithm with a single BER objective can
result in many solutions with almost identical cost (i.e., BER)
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Table 5: Chip area in 𝜇m2 for predefined coefficients (constant at synthesis time) with and withoutmulti-objective optimisation for hardware
efficiency (fixed-point). The mean is computed out of the best 25% solutions within the final population. Populations size is 100.

Area predefined coeffs Area predefined coeffs
Fractional bits (𝑛) without hardware opt. with hardware opt. Area savings

Mean best 25% Best Mean best 25% Best
7 40048 37738 39009 33183 12%
8 45441 42977 44736 42688 1%
9 51879 49506 50513 47065 5%
10 58855 54360 55379 49585 9%
11 67323 62873 66895 61007 3%
12 74079 68240 73835 64848 5%
13 82066 77486 80760 75403 3%
15 99119 91118 98238 90403 1%
19 145077 136627 142296 135049 1%
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Figure 13: Visualisation of the multiobjective cost function 𝐽 over
𝑎1 and 𝑎2.

but significantly varying hardware costs due to the different
amounts of set bits in the coefficients. The uncertainty in
hardware cost lies between a factor of 2 and 10 depending
on the number format considered. Introducing an additional
hardware cost objective allows for significant reduction of
this uncertainty. Consequently, using a multiobjective cost
function taking the number of set bits into account allows for
a much more reliable design process guaranteeing identifica-
tion of hardware-efficient filter implementations.

We have shown partial visualisations of the cost function.
While no general insights can be derived from these minimal
projections, it is interesting to observe the change in appear-
ance with modifications to the cost function 𝐽. Figure 10
shows the BER as a function of filter coefficients 𝑎1 and 𝑎2
while all other scaling values and coefficients are kept fixed
at the values of the DE algorithm’s solution. The plot shows
that for the depicted partial design space, the constraints for
a good solution (low BER) are abs(𝑎2) being close to zero and
𝑎1 being negative. The exact value of 𝑎1 is of little relevance.
Extending the objective function by additional criteria (see
(21)) changes the situation significantly. Figure 13 shows the
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Figure 14: Chip area for predefined coefficients with and without
multiobjective optimisation for hardware efficiency (fixed-point) as
presented in Table 5. Limit bars indicate the theoretical minimum
and maximum area requirements.

multiobjective cost function 𝐽 over filter coefficients 𝑎1 and 𝑎2
while all other scaling values and coefficients are kept fixed at
the values of the DE algorithm’s final solution.The additional
criteria have further constrained the acceptable value of 𝑎1 to
the interval 0, . . . , −0.5.

Filter structures are expensive in terms of chip area, espe-
cially when implemented with high precision. It is of major
interest to identify the most suitable number format (fixed-
point, floating-point; precision) and to minimise the power
consumption by suitable choice of coefficients. Comparing
Figures 12(a) and 12(b) shows that the fixed-point filter’s BER
deteriorates much faster with decreased precision than the
floating-point filter’s BER (13 bit versus 9 bit precision). One
can also observe that the deviation from the red line is much
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more prominent in the fixed-point case. Typically, floating
point arithmetic is considered more costly than fixed-point.
Our experiments show that, from a system perspective, the
difference in chip area for otherwise comparable system is
not so clear. Floating-point arithmetic requires more area
per bit precision than fixed-point arithmetic. It requires,
however, less precision to achieve a specific BER. Given that
our floating-point implementation is far from optimal, the
chip area per bit error can be considered roughly equivalent.

10. Conclusion

DE can sample the huge time domain design space of
a communication system with a 6th-order receiving filter
including bit-true BER simulation using Matlab/Mex/MPFR
in 31.38 s ⋅ 1000 generations = 8 h 43 min using standard
hardware (single core). Given that this design space explo-
ration is performed offline, the time required is acceptable.
Each identified filter coefficient set is already quantised. The
cost function is therefore accurate and the filter directly
implementable.

Using DE as an exploration tool for the huge discrete
design space of digital receiver filters allows for interesting
insights. We have demonstrated two, namely, that (1) receiv-
ing filters with magnitude responses deviating significantly
from thematched filter’smagnitude response can outperform
standard filter design techniques relying on specification in
the frequency domain and that (2) from a system perspective,
fixed- and floating-point IIR implementations have roughly
comparable cost.

Both findings are in contrast to current practice in filter
design for communication systems. We therefore mandate
further BER-guided exploration of communication system’s
discrete filter design space.

11. Future Work

We have chosen to investigate communication systems with-
out intersymbol interference (ISI).This typically is the case in
low-rate communication systems. It would be interesting to
investigate how systems with intersymbol interference could
benefit from the implicit filter specification as described in
our work.

We have shown that implicit filter specification through
system BER specification and system simulation can result in
filter designs with significantly differentmagnitude responses
than conventional filter specifications typically used for
communication systems.This shows the importance of taking
into consideration nonlinear effects, rendering the matched-
filter assumption void. We have only considered the most
basic nonlinear effects, namely, an AWGN channel, BER
calculation in time domain, and the finite-precision effects
of digital filter implementations. Many more opportunities
for a more accurate system model exist [15]. It would be
worthwhile exploring further nonlinear effects and their
respective impact on filter design. Furthermore, indoor as
well as multipath channel models wouldmake the simulation
results more relevant for practical applications.

Differential Evolution has become a widely used tool
since its inception almost 20 years ago. We have chosen to
implement DE as originally described in [2] as its perfor-
mance was sufficient for our purpose. It would be worth
exploring state-of-the-art DE implementations [19], espe-
cially integrating automatic/dynamic schemes for parameter
(population size, 𝐹, 𝜆) selection. Reducing optimisation time
through parallel DE would be another fruitful direction for
future work. Not all DE schemes, however, lend themselves
equally well to efficient parallelisation [35].
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