Four Flavors of Entailment

Sibylle Möhle ${ }^{1}$, Roberto Sebastiani ${ }^{2}$, and Armin Biere ${ }^{1}$

${ }^{1}$ Institute for Formal Models and Verification LIT Secure and Correct Systems Lab

${ }^{2}$ Department of Information Engineering and Computer Science

The 23rd International Conference on Theory and Applications of Satisfiability Testing (SAT 2020)

$$
3 \text { - } 10 \text { July } 2020
$$

Motivation

We need. . .
> ...short (partial) models
■ model shrinking
(Tibebu and Fey, DDECS'18)

- dual reasoning
(Möhle and Biere, ICTAI'18)
- logical entailment
(Sebastiani, arXiv.org, 2020)

Motivation

We need. . .
...short (partial) models
> ■ model shrinking
(Tibebu and Fey, DDECS'18)

- dual reasoning
(Möhle and Biere, ICTAI'18)
- logical entailment
(Sebastiani, arXiv.org, 2020)

Motivation

We need...
...short (partial) models
■ model shrinking
(Tibebu and Fey, DDECS'18)

- dual reasoning
(Möhle and Biere, ICTAI'18)
- logical entailment
(Sebastiani, arXiv.org, 2020)

Motivation

We need...
. . short (partial) models

- model shrinking
(Tibebu and Fey, DDECS'18)
- dual reasoning
(Möhle and Biere, ICTAI'18)
> ■ logical entailment
(Sebastiani, arXiv.org, 2020)

Motivation

We need...
...short (partial) models

- model shrinking
(Tibebu and Fey, DDECS'18)
- dual reasoning
(Möhle and Biere, ICTAI'18)
- logical entailment
(Sebastiani, arXiv.org, 2020)
$>$ Example

$$
\begin{aligned}
F & =(x \wedge y) \vee(x \wedge \neg y) \\
\left.F\right|_{x} & =y \vee \neg y \neq 1 \\
\left.F\right|_{x y} & =\left.F\right|_{x \neg y}=1 \quad \Longrightarrow \quad x \models F
\end{aligned}
$$

Motivation

We need...
. . short (partial) models

- model shrinking
(Tibebu and Fey, DDECS'18)
- dual reasoning
(Möhle and Biere, ICTAI'18)
- logical entailment
(Sebastiani, arXiv.org, 2020)

$$
\text { Example } \begin{aligned}
F & =(x \wedge y) \vee(x \wedge \neg y) \\
\left.F\right|_{x} & =y \vee \neg y \neq 1 \\
\left.F\right|_{x y} & =\left.F\right|_{x \neg y}=1 \Longrightarrow x \models F
\end{aligned}
$$

> But determining logical entailment is harder than it seems!

Motivation

We need...
. short (partial) models

Motivation

We need...
...short (partial) models
> ... pairwise disjoint models

- add the negated models as blocking clauses
- variant of conflict analysis
(Toda and Soh, ACM J. Exp. Algorithmics, 2016)
- chronological CDCL
(Nadel and Ryvchin, SAT'18; Möhle and Biere, SAT'19)

Motivation

We need...
...short (partial) models
... pairwise disjoint models
> ■ add the negated models as blocking clauses

- variant of conflict analysis
(Toda and Soh, ACM J. Exp. Algorithmics, 2016)
- chronological CDCL
(Nadel and Ryvchin, SAT'18; Möhle and Biere, SAT'19)

Motivation

We need. . .

...short (partial) models
... pairwise disjoint models
■ add the negated models as blocking clauses

- ■ variant of conflict analysis
(Toda and Soh, ACM J. Exp. Algorithmics, 2016)
- chronological CDCL
(Nadel and Ryvchin, SAT'18; Möhle and Biere, SAT'19)

Motivation

We need...
...short (partial) models
... pairwise disjoint models

- add the negated models as blocking clauses
- variant of conflict analysis
(Toda and Soh, ACM J. Exp. Algorithmics, 2016)
- ■ chronological CDCL
(Nadel and Ryvchin, SAT'18; Möhle and Biere, SAT'19)

Motivation

We need...
. short (partial) models
pairwise disjoint models

Motivation

We need...
...short (partial) models
pairwise disjoint models

> ... projection
$F(X, Y)$ where $X \cap Y=\emptyset$
X relevant variables
Y irrelevant variables
$\exists Y[F(X, Y)] \quad$ project $F(X, Y)$ onto X

Motivation

We need...
.. short (partial) models
pairwise disjoint models

projection

Motivation

We need...
. . short (partial) models
pairwise disjoint models

projection

Motivation

We need...
...short (partial) models
... pairwise disjoint models

projection

We get...
> ... Disjoint Sum-of-Products (DSOP)

Main Idea

Next assignment

Our Contribution

Next assignment

Logical Entailment Test under Projection

> Given
$F \quad$ formula over variables in $X \cup Y$
I trail over variables in $X \cup Y$

Logical Entailment Test under Projection

Given

$F \quad$ formula over variables in $X \cup Y$
I trail over variables in $X \cup Y$
> Quantified entailment condition
■ In $\varphi=\forall X \forall Y\left[\left.F\right|_{/}\right]$the unassigned variables in $X \cup Y$ are quantified

- $\varphi=1$: all possible total extensions of I satisfy F

Logical Entailment Test under Projection

Given

$F \quad$ formula over variables in $X \cup Y$
I trail over variables in $X \cup Y$

Quantified entailment condition

■ In $\varphi=\forall X \forall Y\left[\left.F\right|_{/}\right]$the unassigned variables in $X \cup Y$ are quantified

- $\varphi=1$: all possible total extensions of I satisfy F
> Entailment under projection onto the set of variables X
■ Does for each J_{X} exist one J_{Y} such that $\left.F\right|_{I^{\prime}}=1$ where $I^{\prime}=I \cup J_{X} \cup J_{Y}$?

Logical Entailment Test under Projection

Given

$F \quad$ formula over variables in $X \cup Y$
I trail over variables in $X \cup Y$

Quantified entailment condition

■ In $\varphi=\forall X \forall Y\left[\left.F\right|_{/}\right]$the unassigned variables in $X \cup Y$ are quantified

- $\varphi=1$: all possible total extensions of I satisfy F

Entailment under projection onto the set of variables X

■ Does for each J_{X} exist one J_{Y} such that $\left.F\right|_{I^{\prime}}=1$ where $I^{\prime}=I \cup J_{X} \cup J_{Y}$?
> $\operatorname{QBF}(\varphi)=1$ where $\varphi=\forall X \exists Y\left[\left.F\right|_{/}\right]=1$?

Four Flavors of Logical Entailment under Projection

- 1) $\left.F\right|_{I}=1$ (syntactic check)

$$
\begin{array}{ll}
F=\left(x_{1} \vee y \vee x_{2}\right) \quad X=\left\{x_{1}, x_{2}\right\} \quad Y=\{y\} \\
I=x_{1}:\left.\quad F\right|_{I}=1 \quad \Longrightarrow \quad I \models F
\end{array}
$$

Four Flavors of Logical Entailment under Projection

1) $\left.F\right|_{I}=1$ (syntactic check)
2) $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})

$$
F=x_{1} y \vee \bar{y} x_{2} \quad X=\left\{x_{1}, x_{2}\right\} \quad Y=\{y\}
$$

$$
\begin{array}{ll}
I=x_{1} x_{2}: & \left.F\right|_{I}=y \vee \bar{y} \neq 1 \quad \text { but is valid } \\
I=x_{1} x_{2} \bar{y}: & 0 \in B C P(\neg F, I) \quad \Longrightarrow \quad x_{1} x_{2} \models F
\end{array}
$$

Four Flavors of Logical Entailment under Projection

1) $\left.F\right|_{I}=1$ (syntactic check)
2) $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})
> 3) $\left.F\right|_{I} \equiv 1$ (semantic check in coNP)

$$
\begin{aligned}
& F=x_{1}\left(\overline{x_{2}} \bar{y} \vee \overline{x_{2}} y \vee x_{2} \bar{y} \vee x_{2} y\right) \quad X=\left\{x_{1}, x_{2}\right\} \quad Y=\{y\} \\
& I=x_{1}: \quad I(F)=\overline{x_{2}} \bar{y} \vee \overline{x_{2}} y \vee x_{2} \bar{y} \vee x_{2} y \neq 1 \quad \text { but is valid } \\
& P=\operatorname{CNF}(F) \\
& N=\operatorname{CNF}(\neg F): \\
& \left.P\right|_{I} \text { and }\left.N\right|_{I} \text { are non-constant and contain no units } \\
& \left.N\right|_{I}=\left(x_{2} \vee y\right)\left(x_{2} \vee \bar{y}\right)\left(\overline{x_{2}} \vee y\right)\left(\overline{x_{2}} \vee \bar{y}\right): \quad \operatorname{SAT}(N \wedge I)=0 \quad \Longrightarrow \quad I \models F
\end{aligned}
$$

Four Flavors of Logical Entailment under Projection

1) $\left.F\right|_{I}=1$ (syntactic check)
2) $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})
3) $\left.F\right|_{I} \equiv 1$ (semantic check in coNP)
4) $\forall X \exists Y\left[\left.F\right|_{/}\right]=1\left(\right.$ check in $\left.\Pi_{2}^{P}\right)$

$$
\begin{aligned}
& F=x_{1}\left(x_{2} \leftrightarrow y_{2}\right) \quad X=\left\{x_{1}, x_{2}\right\} \quad Y=\left\{y_{2}\right\} \\
& P=\operatorname{CNF}(F) \quad \text { and } \quad N=\operatorname{CNF}(\neg F): \\
& P=\left(x_{1}\right)\left(s_{1} \vee s_{2}\right)\left(\overline{s_{1}} \vee x_{2}\right)\left(\overline{s_{1}} \vee y_{2}\right)\left(\overline{s_{2}} \vee \overline{x_{2}}\right)\left(\overline{s_{2}} \vee \overline{y_{2}}\right) \quad \text { where } \quad S=\left\{s_{1}, s_{2}\right\} \\
& N=\left(\overline{x_{1}} \vee t_{1} \vee t_{2}\right)\left(\overline{t_{1}} \vee x_{2}\right)\left(\overline{t_{1}} \vee \overline{y_{2}}\right)\left(\overline{t_{2}} \vee \overline{x_{2}}\right)\left(\overline{t_{2}} \vee y_{2}\right) \quad \text { where } T=\left\{t_{1}, t_{2}\right\} \\
& I=x_{1}: \quad P \mid \text { and }\left.N\right|_{I} \text { are non-constant and contain no units } \\
& I=x_{1} \overline{t_{2}} t_{1} \overline{y_{2}}:\left.\quad N\right|_{I}=1 \\
& \varphi=\forall X \exists Y\left[x_{2} y_{2} \vee \overline{\left.x_{2} \overline{y_{2}}\right]: \quad Q B F(\varphi)=1 \quad \Longrightarrow \quad x_{1} \models F}\right.
\end{aligned}
$$

What I Did Not Talk About

Input: formula $F(X, Y)$ over variables $X \cup Y$ such that $X \cap Y=\emptyset$, trail I, decision level function δ
Output: DNF M consisting of models of F projected onto X

```
Enumerate ( \(F\) )
    \(I:=\varepsilon ; \delta:=\infty ; M:=0\)
    forever do
    \(C:=\operatorname{PropagateUnits}(F, I, \delta)\)
    if \(C \neq 0\) then
        \(c:=\delta(C)\)
        if \(c=0\) then return \(M\)
        AnalyzeConflict ( \(F, I, C, c\) )
    else if all variables in \(X \cup Y\) are assigned then
        if \(V(\operatorname{decs}(I)) \cap X=\emptyset\) then return \(M \vee \pi(I, X)\)
        \(M:=M \vee \pi(I, X)\)
        \(b:=\delta(\operatorname{decs}(\pi(I, X)))\)
        Backtrack \((I, b-1)\)
    else if Entails \((I, F)\) then
            if \(V(\operatorname{decs}(I)) \cap X=\emptyset\) then return \(M \vee \pi(I, X)\)
            \(M:=M \vee \pi(I, X)\)
            \(b:=\delta(\operatorname{decs}(\pi(I, X)))\)
            Backtrack (I, b-1)
    else Decide \((I, \delta)\)
```


What I Did Not Talk About

```
EndTrue: \(\quad(F, I, M, \delta) \overbrace{\text { EndTrue }} M \vee m\) if \(V(\operatorname{decs}(I)) \cap X=\emptyset\) and
    \(m \stackrel{\text { def }}{=} \pi(I, X)\) and \(\forall X \exists Y\left[\left.F\right|_{I}\right]=1\)
EndFalse: \((F, I, M, \delta) \sim_{\text {EndFalse }} M\) if exists \(C \in F\) and \(\left.C\right|_{I}=0\) and
    \(\delta(C)=0\)
Unit: \(\quad(F, I, M, \delta) \leadsto\) Unit \((F, I \ell, M, \delta[\ell \mapsto a]) \quad\) if \(\left.\quad F\right|_{I} \neq 0\) and
    exists \(C \in F\) with \(\{\ell\}=\left.C\right|_{I}\) and \(a \stackrel{\text { def }}{=} \delta(C \backslash\{\ell\})\)
BackTrue: \((F, I, M, \delta) \sim_{\text {BackTrue }}(F, U K \ell, M \vee m, \delta[L \mapsto \infty][\ell \mapsto b])\) if \(U V \stackrel{\text { def }}{=} I\) and \(D \stackrel{\text { def }}{=} \overline{\pi(\operatorname{decs}(I), X)}\) and \(b+1 \stackrel{\text { def }}{=} \delta(D) \leqslant \delta(I)\) and \(\ell \in D\) and \(b=\delta(D \backslash\{\ell\})=\delta(U)\) and \(m \stackrel{\text { def }}{=} \pi(I, X)\) and \(K \stackrel{\text { def }}{=} V_{\leqslant b}\) and \(L \stackrel{\text { def }}{=} V_{>b}\) and \(\forall X \exists Y\left[\left.F\right|_{I}\right]=1\)
BackFalse: \((F, I, M, \delta) \sim_{\text {BackFalse }}(F, U K \ell, M, \delta[L \mapsto \infty][\ell \mapsto j])\) if exists \(C \in F\) and exists \(D\) with \(U V \stackrel{\text { def }}{=} I\) and \(\left.C\right|_{I}=0\) and \(c \stackrel{\text { def }}{=} \delta(C)=\delta(D)>0\) such that \(\ell \in D\) and \(\bar{\ell} \in \operatorname{decs}(I)\) and \(\left.\bar{\ell}\right|_{V}=0\) and \(F \wedge \bar{M} \models D\) and \(j \stackrel{\text { def }}{=} \delta(D \backslash\{\ell\})\) and \(b \stackrel{\text { def }}{=} \delta(U)=c-1\) and \(K \stackrel{\text { def }}{=} V_{\leqslant b}\) and \(L \stackrel{\text { def }}{=} V_{>b}\)
\[
\begin{array}{ll}
\text { DecideX: } & (F, I, M, \delta) \leadsto \text { DecideX }\left(F, I \ell^{d}, M, \delta[\ell \mapsto d]\right) \text { if }\left.F\right|_{I} \neq 0 \text { and } \\
& \text { units }\left(\left.F\right|_{I}\right)=\emptyset \text { and } \delta(\ell)=\infty \text { and } d \stackrel{\text { def }}{=} \delta(I)+1 \text { and } V(\ell) \in X \\
\text { DecideY: } & (F, I, M, \delta) \leadsto \text { Decide } Y\left(F, I \ell^{d}, M, \delta[\ell \mapsto d]\right) \text { if }\left.F\right|_{I} \neq 0 \text { and }
\end{array}
\] units \(\left(\left.F\right|_{I}\right)=\emptyset\) and \(\delta(\ell)=\infty\) and \(d \stackrel{\text { def }}{=} \delta(I)+1\) and \(V(\ell) \in Y\) and \(X-I=\emptyset\)
```


Conclusion

Our Contribution

Method for computing partial assignments entailing the formula on-the-fly

- Inspired by the interaction of theory and SAT solvers in SMT
- Combines dual reasoning and chronological CDCL
- Algorithm (in the paper)
- Formalization (in the paper)

Entailment test in four flavors of increasing strength

- $\left.F\right|_{I}=1$ (syntactic check)
- $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})
- $\left.F\right|_{I} \equiv 1$ (semantic check in coNP)

■ $\forall X \exists Y\left[\left.F\right|_{\prime}\right]=1$ (check in $\left.\boldsymbol{\Pi}_{2}^{P}\right)$

Conclusion

Our Contribution

Method for computing partial assignments entailing the formula on-the-fly

- Inspired by the interaction of theory and SAT solvers in SMT
- Combines dual reasoning and chronological CDCL
- Algorithm (in the paper)
- Formalization (in the paper)

Entailment test in four flavors of increasing strength

- $\left.F\right|_{I}=1$ (syntactic check)
- $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})
- $\left.F\right|_{I} \equiv 1$ (semantic check in coNP)

■ $\forall X \exists Y\left[\left.F\right|_{\prime}\right]=1$ (check in $\left.\boldsymbol{\Pi}_{2}^{P}\right)$

Further Research

- Implement and validate our method
- Target weighted model integration and model counting with or without projection
- Investigate methods concerning the implementation of QBF oracles
- Dependency schemes (Samer and Szeider, JAR, 2009)
- Incremental QBF (Lonsing and Egly, CP'14)
- Combine with decomposition-based approaches and generate d-DNNF

