Logical Entailment for Projected Model Counting

Sibylle Möhle ${ }^{1}$, Roberto Sebastiani ${ }^{2}$, and Armin Biere ${ }^{1}$

${ }^{1}$ Institute for Formal Models and Verification
LIT Secure and Correct Systems Lab
${ }^{2}$ Department of Information Engineering and Computer Science

UNIVERSITY
 OF TRENTO

International Workshop on Model Counting (MCW 2020)
9 July 2020

Algorithm

Input: formula $F(X, Y)$ over variables $X \cup Y$ such that $X \cap Y=\emptyset$, trail I, decision level function δ Output: $\quad M$ number of models of F projected onto X

```
Count(F)
I:=\varepsilon;\delta:=\infty;M:=0
forever do
    C:= PropagateUnits(F,I,\delta)
    if C\not=0 then
        c:=\delta(C)
        if c=0 then return M
        AnalyzeConflict(F,I,C,c)
    else if all variables in X\cupY are assigned then
        if}V(\operatorname{decs}(I))\capX=\emptyset then return M+2 2X-I|
        M:=M+2 2 X-I|
        b:= \delta(\operatorname{decs}(\pi(I,X)))
        Backtrack(I,b-1)
```

 else Decide \((I, \delta)\)

Algorithm

Input: formula $F(X, Y)$ over variables $X \cup Y$ such that $X \cap Y=\emptyset$, trail I, decision level function δ Output: $\quad M$ number of models of F projected onto X

```
Count(F)
I:=\varepsilon;\delta:=\infty;M:=0
forever do
    C:= PropagateUnits(F,I,\delta)
    if C\not=0 then
        c:= \delta(C)
        if c=0 then return M
        AnalyzeConflict(F,I,C,c)
    else if all variables in X\cupY are assigned then
        if}V(\operatorname{decs}(I))\capX=\emptyset then return M+2 2X-I|
        M:=M+2 2 X-I|
        b:= \delta(\operatorname{decs}(\pi(I,X)))
        Backtrack(I,b-1)
    else if Entails (I,F) then
            if}V(\operatorname{decs}(I))\capX=\emptyset\mathrm{ then return }M+\mp@subsup{2}{}{|X-I|
            M:=M+2 2X-I|
            b:= \delta(\operatorname{decs}(\pi(I,X)))
            Backtrack(I,b-1)
    else Decide(I, \delta)
```


Logical Entailment Test under Projection

Given: $\quad F(X, Y)$ formula over set of relevant variables X and set of irrelevant variables Y $I \quad$ trail over variables in $X \cup Y$

Entailment under projection onto $X: \quad \forall X \exists Y\left[\left.F\right|_{I}\right]$

Logical Entailment Test under Projection

Given: $\quad F(X, Y)$ formula over set of relevant variables X and set of irrelevant variables Y I trail over variables in $X \cup Y$

Entailment under projection onto $X: \quad \forall X \exists Y\left[\left.F\right|_{I}\right]$

Example: $\quad F(X, Y)=x_{1}\left(x_{2} \leftrightarrow y_{2}\right) \quad X=\left\{x_{1}, x_{2}\right\} \quad Y=\left\{y_{2}\right\}$

$$
\begin{aligned}
\left.F\right|_{x_{1}} & =\left(x_{2} \leftrightarrow y_{2}\right) \\
\left.F\right|_{x_{1} x_{2}} & =\left(1 \leftrightarrow y_{2}\right) \quad \text { and } \\
\left.F\right|_{x_{1} \overline{x_{2}}} & F\left(0 \leftrightarrow y_{x_{1} x_{2} y_{2}}=1\right. \\
& \text { and } \\
\Longrightarrow & x_{x_{1} \overline{x_{2}} \overline{y_{2}}}=1 \\
\Longrightarrow & x_{1} \models F
\end{aligned}
$$

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit:

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: (F, I, M, δ)

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: $(F, I, M, \delta) \quad$ if $\left.F\right|_{I} \neq 0$

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: $(F, I, M, \delta) \overbrace{\text { Unit }}\left(F, \quad M, \quad\right.$ if $\left.F\right|_{I} \neq 0$

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: $(F, I, M, \delta) \rightsquigarrow_{U_{\text {nit }}}\left(F, I \ell, M, \quad\right.$ if $\left.F\right|_{I} \neq 0$ and exists $C \in F$ with $\{\ell\}=\left.C\right|_{I}$

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: $(F, I, M, \delta) \overbrace{\text { Unit }}(F, I \ell, M, \delta[\ell \mapsto a])$ if $\left.F\right|_{I} \neq 0$ and exists $C \in F$ with $\{\ell\}=\left.C\right|_{I}$ and $a \stackrel{\text { def }}{=} \delta(C \backslash\{\ell\})$

Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: $(F, I, M, \delta) \overbrace{\text { Unit }}(F, I \ell, M, \delta[\ell \mapsto a])$ if $\left.F\right|_{I} \neq 0$ and exists $C \in F$ with $\{\ell\}=\left.C\right|_{I}$ and $a \stackrel{\text { def }}{=} \delta(C \backslash\{\ell\})$

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y

Idea: Flip the last relevant decision literal

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue:

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: (F, I, M, δ)

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: $(F, I, M, \delta) \quad$ if $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: $(F, I, M, \delta) \overbrace{\text { BackTrue }}(F, \quad)$ if $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: $(F, I, M, \delta) \leadsto_{\text {BackTrue }}\left(F, \quad M+m, \quad\right.$) if $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$ and $m \stackrel{\text { def }}{=} 2^{|X-I|}$ and

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: $(F, I, M, \delta) \leadsto_{\text {BackTrue }}\left(F, U K \ell, M+m, \quad\right.$) if $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$ and $m \xlongequal{\text { def }} 2^{|X-I|}$ and $D \xlongequal{\text { def }} \overline{\pi(\operatorname{decs}(I), X)}$ and $\ell \in D$ and $U V \stackrel{\text { def }}{=} I$ and $K \xlongequal{\text { def }} V_{\leqslant b}$ and

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: $(F, I, M, \delta) \rightsquigarrow_{\text {BackTrue }}(F, U K \ell, M+m, \delta[L \mapsto \infty][\ell \mapsto b])$ if $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$ and $m \stackrel{\text { def }}{=} 2^{|X-I|}$ and $D \stackrel{\text { def }}{=} \overline{\pi(\operatorname{decs}(I), X)}$ and $\ell \in D$ and $U V \stackrel{\text { def }}{=} I$ and $K \xlongequal{\text { def }} V_{\leqslant b}$ and $b=\delta(D \backslash\{\ell\})=\delta(U)$ and $b+1 \stackrel{\text { def }}{=} \delta(D) \leqslant \delta(I)$ and $L \stackrel{\text { def }}{=} V_{>b}$

Backtracking upon Model Found

Given: Formula $F(X, Y)$ over relevant variables X and irrelevant variables Y
Idea: Flip the last relevant decision literal

BackTrue: $(F, I, M, \delta) \rightsquigarrow_{\text {BackTrue }}(F, U K \ell, M+m, \delta[L \mapsto \infty][\ell \mapsto b])$ if $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$ and $m \stackrel{\text { def }}{=} 2^{|X-I|}$ and $D \stackrel{\text { def }}{=} \overline{\pi(\operatorname{decs}(I), X)}$ and $\ell \in D$ and $U V \stackrel{\text { def }}{=} I$ and $K \stackrel{\text { def }}{=} V_{\leqslant b}$ and $b=\delta(D \backslash\{\ell\})=\delta(U)$ and $b+1 \stackrel{\text { def }}{=} \delta(D) \leqslant \delta(I)$ and $L \stackrel{\text { def }}{=} V_{>b}$

Calculus

EndTrue: $\quad(F, I, M, \delta) \overbrace{\text { EndTrue }} M+m$ if $V(\operatorname{decs}(I)) \cap X=\emptyset$ and $m \stackrel{\text { def }}{=} 2^{|X-I|}$ and $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$
EndFalse: $(F, I, M, \delta) \sim_{\text {EndFalse }} M$ if exists $C \in F$ and $\left.C\right|_{I}=0$ and $\delta(C)=0$

Unit: $\quad(F, I, M, \delta) \overbrace{U_{\text {nit }}}(F, I \ell, M, \delta[\ell \mapsto a])$ if $\left.F\right|_{I} \neq 0$ and exists $C \in F$ with $\{\ell\}=\left.C\right|_{I}$ and $a \xlongequal{\text { def }} \delta(C \backslash\{\ell\})$
BackTrue: $(F, I, M, \delta) \sim_{\text {BackTrue }}(F, U K \ell, M+m, \delta[L \mapsto \infty][\ell \mapsto b])$ if $U V \stackrel{\text { def }}{=} I$ and $D \xlongequal{\text { def }} \overline{\pi(\operatorname{decs}(I), X)}$ and $b+1 \stackrel{\text { def }}{=} \delta(D) \leqslant \delta(I)$ and $\ell \in D$ and $b=\delta(D \backslash\{\ell\})=\delta(U)$ and $m \stackrel{\text { def }}{=} 2^{|X-I|}$ and $K \stackrel{\text { def }}{=} V_{\leqslant b}$ and $L \stackrel{\text { def }}{=} V_{>b}$ and $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$
BackFalse: $(F, I, M, \delta) \sim_{\text {BackFalse }}(F, U K \ell, M, \delta[L \mapsto \infty][\ell \mapsto j])$ if exists $C \in F$ and exists D with $U V \stackrel{\text { def }}{=} I$ and $\left.C\right|_{I}=0$ and $c \stackrel{\text { def }}{=} \delta(C)=\delta(D)>0$ such that $\ell \in D$ and $\bar{\ell} \in \operatorname{decs}(I)$ and $\left.\bar{\ell}\right|_{V}=0$ and $F \wedge \bar{M} \models D$ and $j \stackrel{\text { def }}{=} \delta(D \backslash\{\ell\})$ and $b \stackrel{\text { def }}{=} \delta(U)=c-1$ and $K \xlongequal{\ell d e f} V_{\leqslant b}$ and $L \stackrel{\text { def }}{=} V_{>b}$

DecideX: $(F, I, M, \delta) \sim_{\text {DecideX }}\left(F, I \ell^{d}, M, \delta[\ell \mapsto d]\right)$ if $\left.F\right|_{I} \neq 0$ and units $\left(\left.F\right|_{I}\right)=\emptyset$ and $\delta(\ell)=\infty$ and $d \stackrel{\text { def }}{=} \delta(I)+1$ and $V(\ell) \in X$

DecideY: $(F, I, M, \delta) \sim_{\text {DecideY }}\left(F, I \ell^{d}, M, \delta[\ell \mapsto d]\right)$ if $\left.F\right|_{I} \neq 0$ and $\operatorname{units}\left(\left.F\right|_{I}\right)=\emptyset$ and $\delta(\ell)=\infty$ and $d \stackrel{\text { def }}{=} \delta(I)+1$ and $V(\ell) \in Y$ and $X-I=\emptyset$

Conclusion

Our Contribution

Method for computing the model count of a formula exploiting logical entailment

- Inspired by the interaction of theory and SAT solvers in SMT
- Adaptation of our method addressing projected partial model enumeration presented at SAT'20

Entailment test in four flavors of increasing strength (in the SAT'20 paper)

- $\left.F\right|_{I}=1$ (syntactic check)
- $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})
- $\left.F\right|_{I} \equiv 1$ (semantic check in coNP)
- $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$ (check in Π_{2}^{P})

Conclusion

Our Contribution

Further Research

Method for computing the model count of a formula exploiting logical entailment

- Inspired by the interaction of theory and SAT solvers in SMT
- Adaptation of our method addressing projected partial model enumeration presented at SAT'20

Entailment test in four flavors of increasing strength (in the SAT'20 paper)

- $\left.F\right|_{I}=1$ (syntactic check)
- $\left.F\right|_{I} \approx 1$ (incomplete check in \mathbf{P})
- $\left.F\right|_{I} \equiv 1$ (semantic check in coNP)
- $\forall X \exists Y\left[\left.F\right|_{I}\right]=1$ (check in Π_{2}^{P})

■ Implement and validate our method on instances stemming from weighted model integration and model counting with or without projection

- Investigate methods concerning the implementation of QBF oracles (Incremental QBF (Lonsing and Egly, CP'14))
■ Combine with decomposition-based approaches (to generate a d-DNNF)

