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Abstract—Quantum computing is gaining considerable mo-
mentum through the recent progress in physical realizations
of quantum computers. This led to rather sophisticated design
flows in which the originally specified quantum functionality is
compiled through different abstractions. This increasingly raises
the question whether the respectively resulting quantum circuits
indeed realize the originally intended function. Accordingly,
efficient methods for equivalence checking are gaining impor-
tance. However, existing solutions still suffer from significant
shortcomings such as their exponential worst case performance
and an increased effort to obtain counterexamples in case of
non-equivalence. In this work, we propose an improved DD-
based equivalence checking approach which addresses these
shortcomings. To this end, we utilize decision diagrams and
exploit the fact that quantum operations are inherently reversible
– allowing for dedicated strategies that keep the overhead
moderate in many cases. Experimental results confirm that the
proposed strategies lead to substantial speed-ups – allowing to
perform equivalence checking of quantum circuits factors or even
magnitudes faster than the state of the art.

I. INTRODUCTION

Quantum computing promises to significantly outperform
classical computing in certain tasks, e.g., integer factoriza-
tion [1], database search [2], quantum chemistry [3] and many
more [4]–[6]. By utilizing quantum mechanical phenomena
like superposition and entanglement of so-called quantum bits
(qubits) [7], up to exponential speed-ups can be achieved.
Recent advancements in the physical realization of quantum
computers and the involvement of big players like Google,
IBM or Intel [8]–[10] further increase the momentum behind
quantum computing.

This led to rather sophisticated design flows in which
the originally intended quantum functionality is realized and
executed on an actual physical device. More precisely, a
high-level description of the desired functionality (usually
provided in terms of a quantum algorithm [11]–[13]) is first
compiled to a sequence of low-level quantum operations
(usually in terms of a quantum circuit composed of so-called
quantum gates). Then, the gates of the resulting circuit often
have to be further decomposed into elementary gates which
are supported by the targeted architecture [14]–[16]. Finally,
physical constraints on the allowed operations induced by
the targeted architecture have to be accounted for in another
mapping step [17]–[19]. In between, further optimizations can
be applied to improve the costs or certain aspects of the final
circuit to be executed [20]–[22].

However, while several methods for all these tasks are
available in the meantime and some of them even have been in-
tegrated into comprehensive toolkits such as IBM’s Qiskit [23]

or Microsoft’s QDK [24], this process eventually yields
several abstractions of quantum algorithms and/or quantum
circuits which significantly differ in their basis operations and
structure but are still supposed to be functionally equivalent.
Consequently, checking whether the original functionality is
indeed maintained throughout all these different abstractions,
becomes increasingly relevant in order to guarantee a con-
sistent and error-free design flow. Although first approaches
for this purpose (addressing equivalence checking of quantum
circuits) have been proposed in the past, they often suffer from
not being complete, from providing insufficient support of key
features such as entanglement, or from the exponential worst
case complexity as well as the non-trivial process of obtaining
counterexamples in the case of non-equivalence (the state of
the art is discussed in more detail later in Section III).

In this work, we propose an advanced approach for equiv-
alence checking which addresses these shortcomings. To this
end, we utilize Decision Diagrams (DDs) which already have
been proven to provide a suitable means for representing
and manipulating quantum circuits [25]–[28]. Moreover, we
additionally exploit the fact that every quantum computation
is inherently reversible. This allows to treat the two quantum
circuits to be checked for equivalence in a fashion that keeps
the corresponding representation close to the identity function.
Since the identity function can be represented in terms of DDs
with linear complexity, this directly tackles the exponential
worst case complexity of current state-of-the-art solutions.
Besides that, counterexamples in case of non-equivalence
can be determined “for free” following the proposed idea.
Experimental results show the potential of the proposed idea
and confirm that this allows to perform equivalence checking
of quantum circuits factors or even magnitudes faster than the
state of the art.

The remainder of this paper is structured as follows: Sec-
tion II covers the background on quantum circuits and decision
diagrams. Section III reviews the state of the art in equivalence
checking of quantum circuits followed by a description of
the proposed idea. Based on that, several possible strategies
implementing the proposed idea are provided in Section IV.
Finally, Section V summarizes the obtained experimental
results before the paper is concluded in Section VI.

II. BACKGROUND

In this section, we briefly review quantum circuits as well
as decision diagrams. Note that the descriptions are kept brief.
For a more detailed treatment, we refer to [7] and [27],
respectively.

A. Quantum Circuits
Quantum computing uses qubits instead of bits to describe

the state of a quantum system. In addition to the basis states
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Figure 1: Quantum circuits and matrix representation

|0〉 and |1〉, qubits may also assume an arbitrary superposition
α0 |0〉 + α1 |1〉 with α0, α1 ∈ C and |α0|2 + |α1|2 = 1.
Accordingly, the state of an n-qubit system is de-
scribed as |ψ〉 =

∑
x∈{0,1}n αx |x〉 with

∑
x∈{0,1}n |αx|2 = 1,

which is represented by a 2n-dimensional state vector
[α0, . . . , α2n−1]

>. Modifying the state of a quantum systems
can be conducted by applying quantum operations, which are
represented by unitary1 matrices U ∈ C2n×2n .

A sequence of quantum operations is usually described
in terms of a quantum circuit G, which is comprised of
a sequence of quantum gates, i.e., G = g1 . . . gm. Each
gate gi represents a unitary matrix describing its functionality,
i.e., gi ≡ Ui ∈ C2n×2n . To obtain the unitary matrix
describing the entire circuit, the individual gate matrices have
to be multiplied with each other in reverse order, i.e., the
functionality U of a circuit G = g1 . . . gm is obtained by
U = Um · · ·U1 (where each Ui describes the functionality of
a gate gi).

Example 1. Fig. 1a shows a quantum circuit G = g1g2
comprised of n = 2 qubits and m = 2 gates. The functionality
of the two gates g1 and g2 is defined by the unitary matrices U1

and U2, respectively, which are provided in Fig. 1b. The
unitary matrix U describing the entire circuit G is obtained
by U = U2U1 – leading to a matrix as shown in Fig. 1c.

Since quantum operations are inherently reversible, the
inverse of a quantum circuit G can easily be determined by
G−1 = (g1 . . . gm)−1 = g−1m . . . g−11 ≡ U−11 · · ·U−1m .

B. Decision Diagrams

Decision diagrams (DDs) have been proposed as a compact
way of representing quantum functionality. This is accom-
plished by decomposing a given unitary matrix U ∈ C2n×2n

into equally sized sub-matrices Uij ∈ C2n−1×2n−1

, i.e.,
U =

[
U00 U01

U10 U11

]
. This is recursively conducted until single

complex numbers remain. Then, each decomposition step con-
stitutes a level in the decision diagram and each (sub-)matrix
is represented by a node with four successors for each of
the corresponding sub-matrices2. A compact representation is
eventually obtained when identical sub-matrices occur which
are represented by the same node. By additionally introducing
edge weights, sub-matrices that only differ by a scalar factor
can also be shared – allowing for an even more compact
representation.

Example 2. Consider again the the matrix U as shown in
Fig. 1c. Decomposing this matrix yields, in the first level, four

1A matrix U is unitary iff UU† = U†U = I, where U† denotes the
Hermitian conjugate of U . As a result, U−1 = U†.

2Note that sub-matrices only containing zero entries are represented as
0-stubs.
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Figure 2: Decision diagrams

sub-matrices as indicated in Fig. 2a. Since sub-matrices U00

and U01 are equal and sub-matrices U10 and U11 only differ by
the scalar factor −1, the representation of these sub-matrices
can be shared if corresponding edge weights are employed.
This eventually leads to the decision diagram shown in Fig. 2b
representing the entire matrix U .

Using decision diagrams, multiplication of matrices is han-
dled by recursively breaking the operation down into multi-
plications/additions of sub-matrices. This eventually allows to
construct a decision diagram representing the functionality of
a quantum circuit G by multiplying the DD-representations
of its gates gi (more precisely, the DD-representations of
the respective matrices Ui of the gates gi). This leads to
intermediate decision diagrams after each multiplication until
the entire functionality U of the circuit G is obtained. Keeping
the average (or maximum) number of nodes required by the
decision diagrams low is essential for a compact and efficient
performance on quantum circuits. In this regard, the identity
function

I =


1 0

. . .
0 1

0

0
1 0

. . .
0 1


constitutes the best case, because here all sub-matrices U00

and U11 are recursively identical and all sub-matrices U01 and
U10 are solely composed of 0-entries – yielding the compact
decision diagram as shown in Fig. 2c.

III. EQUIVALENCE CHECKING OF QUANTUM CIRCUITS

The problem of equivalence checking addresses the question
whether two given circuits G and G′ do realize the same
function. Complete methods for equivalence checking either
provide a corresponding proof for that or, in case both circuits
G and G′ are not equivalent, generate a counterexample
showcasing the non-equivalence.

In this section, we briefly review and discuss existing
methods for equivalence checking of quantum circuits. Based
on that, the general idea of the proposed improved equivalence
checking method is provided.

A. State of the Art
Equivalence checking of quantum circuits has intensely

been considered in the past. Inspired by methods for equiva-
lence checking of classical circuits, methods based on simula-
tion [28], [29], re-writing [30], Boolean satisfiability [31], or
decision diagrams [26]–[29], [32] have been proposed. How-
ever, approaches based on simulation and re-writing either
suffer from the fact that they are not complete and/or may
require the enumeration of an exponential number of stimuli
or possibilities to check. Solvers for Boolean satisfiability may
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Figure 3: Two equivalent circuits G and G′ with their decision diagram representation

cope with these problems but, in case of quantum circuits, face
the problem that an infinite number of quantum states need to
be encoded.3 Because of that, approaches based on decision
diagrams (also called DD-based equivalence checking) still
constitute the state of the art for equivalence checking of
quantum circuits.

Indeed, decision diagrams offer several benefits for this
task: As reviewed in Section II-B, they provide a compact
representation of the respective functionality realized by a
quantum circuit. Moreover, most decision diagrams provide a
canonical way of representing quantum functionality (usually
with respect to a given variable order). Because of that, once
the functionalities of different quantum circuits are represented
as decision diagrams, checking their equivalence can be con-
ducted in constant time by simply comparing the pointers to
their root nodes.

Example 3. Consider the two quantum circuits G and G′

as shown at the left-hand side and the right-hand side of
Fig. 3. Creating decision diagrams for both circuits yields
the representation as shown in the center of Fig. 3. As can
be seen, the pointers to the root node(s) are equivalent for
both circuits – proving that both, G and G′, are functionally
equivalent. During the construction, intermediate decision
diagrams required a maximum of 15 nodes, while the average
node count was 12.2.

However, despite the benefits discussed above, DD-based
equivalence checking of quantum circuits as conducted thus
far still has significant shortcomings. In fact, representing
the entire functionality of a quantum circuit still might be
exponential in the worst case. Even if the representation
of the overall functionality of a circuit might be compact,
intermediate results may require significantly more space. As
an example, the final decision diagram discussed in Example 3
and shown in Fig. 3 is composed of 13 nodes; however, inter-
mediate decision diagrams generated during the construction
required up to 15 nodes.4

Moreover, the generation of a counterexample (which is
supposed to be provided in case two quantum circuits are not

3Note that this problem has partially been addressed in [31] by employing
a detailed structural analysis that restricts the number of possible states to
a finite one. However, the resulting encoding does not support key features
of quantum circuits such as entanglement and, hence, is not applicable for
almost all relevant quantum circuits.

4Note that an increase by two nodes might not seem substantial. However,
for realistic quantum circuits which obviously represent much more complex
functionality than this example, the difference in the number of nodes between
the final decision diagram and intermediate decision diagrams easily sums up
to several orders of magnitudes.

equivalent) require further (potentially) expensive manipula-
tions of the decision diagrams. In fact, in order to generate
such a counterexample, the “difference” between the two
non-equivalent decision diagrams has to be determined. To
this end, one decision diagram has to be inverted (i.e., the
conjugated-transposed representation has to be generated) and
multiplied with the other decision diagram – requiring non-
trivial operations on (potentially) large representations.

B. General Idea
In this work, we propose an alternative and improved

method for DD-based equivalence checking which addresses
the problems of the current state of the art and, as confirmed by
evaluations summarized in Section V, allows to substantially
improve the process. To this end, we exploit the fact that
every quantum operation U is inherently reversible. In the
case that both considered circuits G and G′ are functionally
equivalent, this allows for the conclusion that G·G′−1 = I, i.e.,
that multiplying G with the inverse of G′ yields the identity
function I. Since the identity function constitutes the best
case for decision diagrams (as discussed in Section II-B and
Fig. 2c), this offers significant potential.

Unfortunately, creating G ·G′−1 in a naive fashion, i.e., by
applying

G ·G′−1 = (g1 . . . gm) · (g′−1m′ . . . g
′−1
1 )

≡ (Um · · ·U1) · (U ′−11 · · ·U ′−1m′ )

hardly yields any benefits compared to the state of the art.
This is, because even if the final decision diagram would
represent the (very compact) identity function, (potentially
large) decision diagrams representing G and G′−1 would still
be generated as intermediate decision diagrams for the first m
and last m′ gates, respectively. Instead, the full potential
of G · G′−1 = I is utilized if the associativity of the
respective multiplications is fully exploited. More precisely, if
the respective gates of G and G′−1 are multiplied in a fashion
so that their products frequently yield the identity, the entire
equivalence checking process can be conducted with rather
small (intermediate) decision diagrams only. This is illustrated
by the following example.

Example 4. Consider again the two circuits G and G′ from
Fig. 3 as discussed before in Example 3. Conducting the
multiplications as sketched in Fig. 4 frequently yields to
situations where the impact of a gate of circuit G (potentially
increasing the size of the decision diagram) is reverted by
multiplications with gates from G′−1 (potentially decreasing
the size of the decision diagram back to the representation
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Figure 4: Illustration of the general idea: G ·G′−1 = I with G and G′ from Fig. 3 using decision diagrams

of the identity function). By this, instead of 15 nodes (as dis-
cussed in Example 3), never more than 9 nodes are required.
Moreover, the average node count of intermediate decision
diagrams drops from 12.2 to 6.4.

In general, starting from a decision diagram representing
the identity function, gates from G and G′−1 are applied
successively either from the left (G) or from the right (G′−1),
i.e.

G→ I← G′−1.

However, determining when to apply gates from G and
when to apply gates from G′−1 is not always obvious. But
whenever a “good” strategy for a selection of gates can be
employed, equivalence checking of two equivalent quantum
circuits can be conducted very efficiently and compactly using
decision diagrams (corresponding strategies for this purpose
will be presented and evaluated in Section IV and Section V,
respectively).

Moreover, even if the considered circuits G and G′ are
not functionally equivalent, the observations from above still
promise improvements compared to creating the complete
decision diagrams for G and G′. In fact, the resulting decision
diagram for G ·G′−1 likely will be substantially smaller than
the representation of the full functionalities of G and G′.
Moreover, G ·G′−1 inherently provides an efficient represen-
tation of all counterexamples “for free” (while state-of-the-
art solutions have to explicitly create those using additional
inversion and multiplication operations as discussed in Sec-
tion III-A).

Example 5. Consider again the circuits G and G′ from Fig. 3
and assume that, e.g., due to a design error, gate g′19 is
dropped. Applying the state-of-the-art approach for equiva-
lence checking (taken from [27]) would yield two decision
diagrams of size 13 and detect that they are not equivalent.
Then, in order to generate counterexamples, the difference of
both circuits has to be determined – requiring the inversion of
G′ and multiplication with G. In contrast, applying the general
idea proposed above follows the same steps as illustrated in
Fig. 4 up to the very last multiplication – which is dropped. As
already discussed in Example 4, this yields decision diagrams
not larger than 9 nodes and additionally provides the differ-
ence of both circuits as a result. From this, we can extract, e.g.,
the counterexample |φ〉 = |00010〉 (indicated by bold lines in
the decision diagram before the last step in Fig. 4). Indeed, it
holds that G |φ〉 = |00011〉, while G′ |φ〉 = |00010〉.

IV. STRATEGIES FOR
ADVANCED EQUIVALENCE CHECKING

Following the general ideas outlined above potentially al-
lows to conduct DD-based equivalence checking of quantum
circuits in a significantly more efficient fashion than before.
However, to fully exploit that, a “good” strategy how to
eventually conduct G→ I← G′−1 (i.e., when to apply a gate
from G and when to apply a gate from G′−1) is essential.
In this section, we propose several promising strategies and
illustrate their application. The effect of those strategies and,
by this, the efficiency of the proposed improved DD-based
equivalence checking is afterwards evaluated in Section V.

A. Naive Strategy
The first strategy is motivated by the (rather naive) as-

sumption that a given circuit G is checked against itself, i.e.
G→ I← G−1. Then, obviously the best possible strategy is
to alternate between applications of gates from G and G−1 –
yielding the identity function after each pair of operations. In
case that G 6= G′ (and, w.l.o.g., assuming that m < m′, i.e.,
that G′ has more gates), this strategy alternates between the
gates from G and the gates from G′−1 until all gates of G
have been applied. Afterwards, the remaining “left-over gates”
from G′−1 are applied. This strategy supposedly works well
if G and G′−1 are very similar, but obviously looses its
benefits if both circuits significantly differ in their structure
(in particular if one circuit has significantly more gates than
the other, i.e., if m� m′).

Example 6. Consider again the two circuits G and G′ from
Fig. 3 as discussed before in Example 3. Applying the naive
strategy leads to an order of gate applications as shown in
the first row of Fig. 5. During this process, the size of the
(intermediate) decision diagrams never exceeds 9 nodes, while
the average node count is 7.1.

B. Proportional Strategy
Applying the naive strategy to circuits which, structurally,

are significantly different obviously leads to an unbalance
since a huge portion of “left-over” gates are solely applied –
possibly neglecting the effect of staying close to the identity
function. In order to avoid that, the proportional strategy aims
for a balanced approach. To this end, first, the ratio with
respect to the number of gates for both circuits is determined.
Afterwards, the gates from G and the gates from G′−1 are
proportionally applied according to this ratio.

Example 7. Consider again the two circuits G and G′ from
Fig. 3 as discussed before in Example 3. The ratio between
their gate counts is 5 : 19 ≈ 1 : 4. Hence, applying the
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Figure 5: Illustrations of the proposed strategies (for the circuits G and G′−1 from Fig. 3)

proportional strategy leads to an order of gate applications
as shown in the second row of Fig. 5. During this process, the
size of the (intermediate) decision diagrams never exceeds 9
nodes, while the average node count is 6.5.

C. Look-ahead Strategy

Despite strategies that motivate themselves through the
structure of the given circuit, also schemes based on the actual
size of the (intermediate) DDs may provide a good indication
of how to proceed. Recall that the general aim is to stay
as close as possible to the identity function (leading to the
smallest possible DD). Hence, the decision to either apply a
gate from G or a gate from G′−1 can be based on which case
actually leads to a smaller DD. This is conducted by the look-
ahead scheme. While this potentially doubles the number of
multiplications to be performed (since both alternatives have
to be checked out), it may lead to smaller decision diagrams
and, by this, a more efficient equivalence check.

Example 8. Consider again the two circuits G and G′ from
Fig. 3 as discussed before in Example 3. Applying the look-
ahead strategy leads to an order of gate applications as shown
in the third row of Fig. 5. During this process, the size of the
(intermediate) decision diagrams never exceeds 9 nodes, while
the average node count is 7.0.

Even for the small example showcased throughout this
section, all proposed strategies perform significantly better in
terms of maximum as well as average DD size when compared
to the state-of-the-art approach.

V. EXPERIMENTAL RESULTS

The proposed idea for improved DD-based equivalence
checking of quantum circuits together with the strategies
introduced in the previous section have been implemented in
C++ on top of the DD-package provided in [33]. To evaluate
the potential of the resulting solution, circuits taken from [34],
[35] as well as own implementations of quantum algorithms
(such as Shor’s algorithm, Grover’s Search, Deutsch Algo-
rithm, etc.) have been used as benchmarks. For each given
high-level circuit description G, a corresponding low-level
circuit description G′ has been generated – forming proper
equivalence checking instances. Furthermore, in order to also
evaluate the performance on non-equivalent circuits, errors
have been randomly injected into the circuits. All evaluations
have been conducted on a 4 GHz machine with 32 GiB of
main memory running Ubuntu 16.04 using a hard timeout of
one hour (3600 s). Afterwards, we compared the respectively
obtained results to the state-of-the-art equivalence checking
approach (taken from [27]).

Table I provides a selection of the respectively obtained
results5. The first four columns list the name of the benchmark,
the number n of qubits, as well as the numbers of gates of both
circuits G and G′. The remaining columns show the peak node
count (Nodes) reported by the DD-package and the runtime t
(in CPU seconds) for the state-of-the-art approach as well as
the corresponding strategies. The table rows are separated into
two groups – showing the results obtained for the equivalent
and for the non-equivalent circuits.

As expected, the naive strategy performs rather poorly –
particular in cases where one circuit has significantly more
gates than the other. In contrast, the proportional and the
look-ahead strategy rather consistently allow for much smaller
intermediate decision diagrams and, hence, for significantly
better performance. This is perfectly in line with the expec-
tations discussed in Section IV. However, most importantly,
all strategies (even the naive one) show substantially better
performance than the state-of-the-art approach. In the majority
of cases, equivalence checking can be conducted factors or
even magnitudes faster. Moreover, in many cases, the proposed
solution even allows to successfully complete the check in
seconds or just a few minutes, while the state-of-the-art
solution ran into a timeout of one hour.

VI. CONCLUSIONS

In this paper, we proposed an improved DD-based approach
for equivalence checking of quantum circuits. To this end,
we exploited the fact that quantum circuits are inherently
reversible – allowing for strategies which, together with deci-
sion diagrams, keep the overhead of the problem moderate in
many cases. Experimental results have shown that this leads to
speed-ups of several factors or even magnitudes. By this, we
were able to show that – in contrast to conventional circuitry
– quantum circuits can be verified rather efficiently whenever
a “good” strategy for exploiting the underlying reversibility is
available. This finding also provides interesting connections
for future work on quantum circuit verification. An imple-
mentation of the proposed scheme is publicly available at
iic.jku.at/eda/research/quantum_verification/.
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Table I: Experimental results

Ref. (Section III) Proposed Strategies (Section IV)
Naive Proportional Look-ahead

Benchmark n |G| |G′| Nodes t [s] Nodes t [s] Nodes t [s] Nodes t [s]

Equivalence

shor_33_2 26 189979 449131 − > 3600 − > 3600 − > 3600 65008 322.83
qft_16 16 136 616 − > 3600 − > 3600 15006 0.07 12276 0.02
hwb6_301 46 159 1377 − > 3600 − > 3600 40107 0.36 70426 3.81
bw_291 87 307 2533 − > 3600 − > 3600 403396 19.27 169994 22.48
grover_6 9 1042 1622 − > 3600 55135 14.16 35201 0.52 18287 0.03
inst4/4/100/0/10 16 95 459 − > 3600 30015 0.17 20292 0.03 25034 0.05
urf6_160 15 10740 161100 1495110 810.92 1646515 1017.36 25001 1.70 40077 1.95
ham15_298 45 153 699 3506681 439.07 1998361 288.27 40370 0.33 91857 129.16
rd84_253 12 111 121645 440074 169.30 475024 123.95 295008 63.52 270085 36.92
urf1_149 9 11554 173310 485035 69.34 500052 69.60 12892 1.53 25375 1.39
5xp1_194 17 85 48485 360122 33.33 180080 10.52 240009 16.31 19005 0.45
hwb5_300 28 88 746 339390 10.90 235935 4.58 18415 0.07 50335 3.48
rd84_313 34 104 804 263763 9.68 130198 2.73 25075 0.15 20001 0.11
mod5adder_306 32 96 782 288862 8.44 175256 4.79 15533 0.06 458317 17.47
hwb7_61 7 236 28820 115109 4.12 115128 3.94 100002 2.69 115001 3.60
grover_5 9 830 1262 25000 0.07 30009 0.13 30020 0.13 21236 0.03
deutsch − 64bal 64 190 314 27362 0.06 25061 0.05 25094 0.05 25164 0.07

Non-Equivalence

shor_33_2 26 189979 444647 − > 3600 − > 3600 − > 3600 35036 6.27
urf1_149 9 11554 169785 − > 3600 − > 3600 − > 3600 35019 1.78
qft_16 16 136 612 − > 3600 − > 3600 142017 41.92 − > 3600
hwb6_301 46 159 1357 − > 3600 − > 3600 1299050 105.48 79235 2.61
inst4/4/100/0/10 16 95 456 − > 3600 30030 0.19 20714 0.02 23049 0.04
ham15_298 45 153 693 3518246 584.18 2047513 403.42 70110 0.89 30852 0.42
hwb5_300 28 88 740 311314 12.41 240930 10.02 51982 0.53 57836 0.77
rd84_313 34 104 795 269111 10.86 231531 10.22 100522 1.65 95224 5.96
mod5adder_306 32 96 774 275817 9.47 255232 11.33 45551 0.45 136907 26.01
grover_5 9 830 1256 32268 0.17 35000 0.22 35026 0.34 45114 28.94
deutsch − 64bal 64 190 311 27836 0.06 30172 0.08 25095 0.06 25196 0.08

n: Number of qubits |G|: Gate count of G |G′|: Gate count of G′ Nodes: Peak node count t: Runtime in seconds
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