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Abstract—The computational power of quantum computers
poses major challenges to new design tools since represent-
ing pure quantum states typically requires exponentially large
memory. As shown previously, decision diagrams can reduce
these memory requirements by exploiting redundancies. In
this work, we demonstrate further reductions by allowing for
small inaccuracies in the quantum state representation. Such
inaccuracies are legitimate since quantum computers themselves
experience gate and measurement errors and since quantum
algorithms are somewhat resistant to errors (even without error
correction). We develop four dedicated schemes that exploit
these observations and effectively approximate quantum states
represented by decision diagrams. We empirically show that the
proposed schemes reduce the size of decision diagrams by up
to several orders of magnitude while controlling the fidelity of
approximate quantum state representations.

I. INTRODUCTION

Quantum computing [1] enables exponential speed-ups compared
to conventional computers by exploiting quantum mechanical effects
such as superposition, where qubits can assume a linear combination
of their basis states |0〉 and |1〉, and entanglement, where qubits
may be correlated. As a result, the pure state of a quantum system
composed of n qubits may represent a superposition of 2n basis states
and corresponding complex amplitudes—promising a greater amount
of information per qubit and greater computational power. First
algorithms following this powerful computing paradigm have been
developed in the last century such as Shor’s algorithm for integer
factorization [2] and Grover’s algorithm for searching in unsorted
databases [3]. Recently, the development of new quantum algorithms
targeting various problems in physical simulation, chemistry, finance,
and machine learning [4]–[6] has gained momentum since signifi-
cant progress in the physical realization of quantum computers has
been achieved by players such as IBM, Google, Microsoft, Intel,
Rigetti [7].

The development of quantum algorithms and their successful
implementation on quantum computers relies on several tasks (such
as simulation, state preparation, and verification) that have to be
completed on conventional computers. Here, the enormous com-
putational power of quantum computers becomes a liability since
the amplitudes describing the wave function of the quantum system
are often represented by means of a 2n-dimensional state vector—
implying exponential memory requirements.

In the past, several data structures have been developed to over-
come this exponential memory complexity of representing quan-
tum states—including Matrix Product States (MPS [8]), Projected
Entangled Pair States (PEPS [8]), and even neural networks [9].
Besides that, Decision Diagrams (DDs [10]–[13]) have been intensely

investigated and, in the meantime, have shown great potential for
the design tasks outlined above [12]–[18]—especially for quantum-
circuit simulation [19]–[21]. This is in line with the successes of
conventional decision diagrams such as BDDs [22], KFDDs [23],
etc. which got established in numerous design tasks for conventional
circuits.

Even with specialized data structures, the memory requirements
for the respective representations remain a significant challenge.
Although decision diagrams allow for a rather compact representation
in many cases, we note that approximations of quantum states
have not yet been used to reduce memory usage. To this end,
quantum algorithms are resistant to errors to some extent (even
without error correction) and quantum computers experience gate as
well as measurement errors. Hence, allowing for small inaccuracies
in the state representation does not (or hardly) affect the result
of these probabilistic measurements. Moreover, current quantum
computers are subject to noise [5], [24] and, thus, do not represent
desired quantum states exactly anyway. These considerations suggest
possibilities for memory compression which has not been investigated
thus far.

In this work, we investigate the potential of approximation to
obtain more compact DD-based representations of quantum states.
The key idea is to eliminate nodes from the decision diagram that
represent basis states with minuscule contributions to the overall state
vector—setting small amplitudes to zero. More precisely, we present
several dedicated approximation schemes with linear time complexity
in the size of the decision diagram, which can reduce its size signif-
icantly. Tuning hyper-parameters of these schemes ensures a certain
fidelity when determining approximations. Empirical evaluations
confirm this behavior and show that the size of the decision diagrams
can be reduced by several orders of magnitude while also controlling
the fidelity of the resulting approximated state representations. Given
our results, these schemes can be automatically invoked during tasks
such as simulation to reduce the size of the decision diagram when
it grows too large, similar to garbage collection some programming
languages.

The remainder of this paper is structured as follows. Section II
reviews the background on quantum states and decision diagrams.
Afterwards, Section III describes the main idea of state approxi-
mation, whereas Section IV discusses four dedicated schemes to
perform the approximations. Section V summarizes the evaluation
of the presented schemes while Section VI concludes the paper.

II. BACKGROUND

This section provides the background to keep the exposition
self-contained. It reviews quantum states as well as decision diagrams
that can represent them in conventional software.
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A. Quantum States
In the realm of quantum computing, conventional bits are gener-

alized to quantum bits (i.e., qubits). While the former can only be in
exactly one of the states 0 and 1, qubits may assume two basis states
(denoted |0〉 and |1〉) as well, but also any linear combination of
them. This is described by |ψ〉 = α0 · |0〉+α1 · |1〉 with amplitudes
α0, α1 ∈ C and the normalization constraint |α0|2 + |α1|2 = 1.
Qubits with α0 and α1 unequal to zero are referred to as being
in superposition, i.e., they are in “both states” at the same time—
one of the main characteristics of quantum computing that enables
substantial speed-ups in certain applications due to the resulting
potential for considering multiple states at the same time1.

Unfortunately, the respective amplitudes (α0 and α1) cannot be
directly observed on a quantum computer. Instead, they dictate the
probability of certain outcomes of a measurement with respect to
the corresponding basis states. More precisely, measuring a single
qubit in state |ψ〉 = α0 · |0〉+ α1 · |1〉 yields the output |0〉 with
probability |α0|2 or the output |1〉 with probability |α1|2. After
the measurement, the qubit will lose any superposition, i.e., it
collapses into a basis state. For quantum systems composed of
more than one qubit, the description is accordingly extended. For
example, a system with two qubits has four basis states, i.e.,
|ψ〉 = α00 · |00〉+ α01 · |01〉+ α10 · |10〉+ α11 · |11〉 with the nor-
malization constraint |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. Com-
monly, the description of a quantum state is shortened to a vector
containing the amplitudes |ψ〉 = [α00, α01, α10, α11]

T.

Example 1. Consider an arbitrary quantum system with two
qubits, which are entangled and in superposition. The state is
given as |ψ〉 = 1/

√
2 · |00〉+ 0 · |01〉+ 0 · |10〉+ 1/

√
2 · |11〉.

This state is valid as the normalization constraint
(1/
√
2)2 + 02 + 02 + (1/

√
2)2 = 1 is satisfied. The quantum

state is represented as a vector ψ = [1/
√

2, 0, 0, 1/
√
2]T.

Performing a measurement on this system yields one of the two
basis states |00〉 or |11〉, each with a probability of |1/√2|2 = 1/2.
After the measurement, the quantum state collapses, i.e., the state
vector is either ψ = [1, 0, 0, 0]T or ψ = [0, 0, 0, 1]T, depending on
the measured state.

B. Decision Diagrams
Decision diagrams have been successfully utilized to drastically

reduce the memory requirements for representing state vectors in
quantum computing [10]–[13]. For example, simulation approaches
based on decision diagrams have recently moved into the spotlight
since they significantly outperform array-based simulators in cases
where redundancies can be exploited (in extreme cases leading to an
improvement in runtime from 30 days to 2 minutes [20]).

In the context of quantum state representation, decision diagrams
identify redundancies in the state vector and provide compaction
by sharing structures. The vector is split into two equal-sized sub-
vectors. This process is repeated until the sub-vector contains a
single element only, i.e., one split for every qubit. If identical
sub-vectors occur in the process, this redundancy is exploited by re-
using (sharing) the same structure in the resulting decision diagram.

More precisely, consider an arbitrary quantum system with n

qubits which are labeled q0, q1, . . . , qn−1, where q0 represents the
most significant qubit of the quantum state. The state of q0 splits the
state vector in half: the first 2n−1 entries correspond to q0 = |0〉,
while the other entries correspond to q0 = |1〉. The decision diagram

1Another important characteristic is entanglement, where the state of a
single qubit may influence the state of another qubit.
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Fig. 1: Given quantum state

structure represents this decomposition through the node labeled q0
with two successor nodes that represent the aforementioned sub-
vectors. Commonly, the left node denotes the 0-successor where
as the right node denotes the 1-successor. This decomposition is
recursively applied until the remaining sub-vectors have size 1,
i.e., they represent a single complex number. In the process, two
equivalent sub-vectors are represented by the same node, which
reduces the memory requirements by exploiting redundancies. Nodes
representing qn−1 have a single terminal for their left and right
successors. This is achieved by storing common factors in the edge
weights. To determine the value of an amplitude, the edge weights
of the path representing said amplitude are multiplied.

Example 2. Consider the state vector in Fig. 1a. The corresponding
basis state to each entry of the vector is written to the left. The
decision diagram representing the same state as the vector is depicted
in Fig. 1b. The amplitude of any state is accessed by following the
path in the decision diagram and multiplying the corresponding edge
weights. For the state |111〉, the path is bolded (q0 = 1, q1 = 1,
q2 = 1) and the amplitude is 2/

√
10 · 1/2 · (−1) · 1 = −1/

√
10.

III. GENERAL IDEA

This section describes and illustrates the general idea of the
proposed approximation approach. Naturally, designers are interested
in an as compact as possible representation of the quantum states
generated, e.g., by a quantum algorithm—a challenging task given
that straightforward representations of states are exponential in size.
As reviewed in the previous section and as already utilized in
the conventional domain for decades, decision diagrams provide a
well suited means for this purpose (by reducing the complexity
through sharing of redundancies). In contrast to their conventional
counterparts, quantum computations provide another useful property
that allows for more compact representations by means of decision
diagrams: Quantum algorithms are resistant to errors to some de-
gree. Additionally, quantum computers suffer from gate as well as
measurement errors anyway.

At each run, a quantum computer generates a bitstring (represent-
ing the measured basis state) which is affected by the aforementioned
errors. More precisely, while the respective amplitude αi of a basis
state |i〉 dictates the probability of the measurement, small changes
in the amplitude introduced by some error or approximation scheme
do not (or hardly) affect the measurement due to the error resistance
of the quantum computation. Because of that, perfect precision of a
state representation is not necessary in most cases anyway. Besides
that, quantum computing itself suffers from noise which additionally
renders a precise representation unnecessary in many cases.
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Fig. 2: Approximated quantum state

Exploiting the need of quantum computing to operate in noisy
environments with gate and measurement errors offers further po-
tential for more compact decision diagrams: Rather than aim to
precisely represent the quantum state with amplitudes αi for all
possible basis states |i〉, the quantum state is approximated. The DD-
based representation can be approximated in two ways to become
more compact. First, similar nodes can merged to a single node. This
is implicitly implemented by considering complex numbers with a
difference below a given tolerance value as equal. Second, basis states
which do not contribute significantly to the quantum state (i.e., states
whose amplitudes are close to zero) are eliminated. Removing these
nodes from the decision diagram sets the corresponding amplitudes
to zero. Since quantum states are represented by unit-norm com-
plex vectors, the remaining amplitudes are scaled (dividing by the
magnitude of the approximated vector) such that the normalization
constraint

∑2n−1
i=0 |αi|2 = 1 remains satisfied.

Example 3. Assume that basis states |i〉 with |αi|2 < 1/4 are
indistinguishable from noise. Then the quantum state provided in
Fig. 1a is approximated by setting the amplitudes α100 and α111

to 0. To normalize the state, we scale the remaining amplitudes by
dividing them by

√
|2/√10|2 + |2/√10|2 = 2/

√
5—leading to the state

shown in Fig. 2a.
The decision diagrams representing the original and the approxi-

mated quantum state are shown in Fig. 1b and Fig. 2b, respectively.
The original paths following the right successor of the q0 node each
have a probability of |±1/

√
10|2 = 1/10 and, therefore, are removed.

This reduces the size of the decision diagram from six nodes to three,
yielding an approximation that constitutes an acceptable trade off for
certain applications, where probabilities below a certain threshold
are useless anyway.

Approximating quantum states requires a metric to quantify how
much the resulting state deviates from the original one—describing
the effect of the approximation and whether the obtained results
are useful. Here, we use the fidelity metric [1], which describes
the similarity between two quantum states. The fidelity of two pure
quantum states |ϕ〉 and |ψ〉 is defined by

F (|ϕ〉 , |ψ〉) = |〈ϕ |ψ〉|2 = |(ϕ∗)T · ψ|2 . (1)

The fidelity metric describes the likelihood that both quantum states
produce equal outcomes after they are measured. Further, this metric
is preserved when applying unitary operations. The fidelity metric
can be efficiently computed in terms of decision diagrams, i.e., in a
linear fashion with respect to the number of DD nodes.

Example 3 (continued). Consider again the decision diagrams
shown in Fig. 1b and Fig. 2b (representing the original and the
approximated quantum state |ϕ〉 and |ψ〉, respectively). The fidelity
according to Eq. (1) of these two quantum states is computed as

F (|ϕ〉 , |ψ〉) = |(ϕ∗)T · ψ|2 =

∣∣∣∣ 2√
10
· 1√

2
+

2√
10
· 1√

2

∣∣∣∣2 =
4

5
.

That is, in 80 % of the cases, a measurement of both states yield the
same result. Hence, the size of the decision diagram is reduced by
50 %, while the fidelity was only reduced by 20 %.

The above observations illustrate the potential of approximating
quantum states to obtain more compact DD-based representations
and motivate to further explore this direction. To this end, the next
section proposes several approximation schemes that explicitly trade
off state fidelity for memory reduction.

IV. APPROXIMATION SCHEMES

This section introduces four schemes to approximate a quantum
state based on the ideas described in Section III—two based on a
repeated traversal and two based on considerations regarding the
impact of the sub-vectors represented in the decision diagram. These
schemes aim to identify DD-nodes that do not significantly contribute
to the overall state vector, eliminate them (i.e., setting certain small
amplitudes to zero), and, by this, yield more compact representations.

A. Approximation based on Traversal

The general idea of approximation based on traversal is to sample
L bitstrings according to the probability distribution described by the
state vector. A bitstring is sampled by following a path from the root
node of the decision diagram to the terminal. Taking the left (right)
successor of a node results in basis state |0〉 (|1〉) for the respective
qubit. To sample according to the probability distribution given by
the quantum state, the upstream probabilities are determined for each
node. The upstream probability of a node (determining the summed
probability of all paths from the node to the terminal) is computed
in a depth-first fashion as sum of the upstream probabilities of the
successor nodes—weighted by the squared magnitude of the weight
attached to the connecting edge. Then, the probability for choosing
the right (left) successor is given by the upstream probability of
these nodes (again weighted by the attached weight of the connecting
edge). Since this is similar to measuring a quantum state (without
collapsing it to a basis state), we refer to [20] for further details.

Nodes that are not traversed during this sampling procedure hardly
contribute to the overall quantum state, and are hence eliminated
(i.e., replaced by zero-stubs) while keeping the fidelity of the ap-
proximated state close to one (assuming a sufficiently large number
of samples L is chosen). This results in an approximation scheme that
requires O(L ·n) time since each traversal visits the DD nodes from
the root node to the terminal. Calculating the upstream probabilities
requires to visit each node, and has to be done only once before
starting to draw samples.

Example 4. Consider again Fig. 1b. The left (right) successor of
node q0 has a probability of 0.8 (0.2) to be chosen during traversals.
Assuming the number of traversals L = 3, a possible distribution
of traversed paths contains basis states |001〉 (twice) and |011〉
(once). Therefore the nodes visited on these paths are kept, whereas
the right-successor node q1 and in turn its successors labeled q2
are eliminated from the decision diagram. The traversed nodes are
sketched in Fig. 3a (the eliminated nodes are shown with a dashed
outline). Eliminating the remaining node results in the approximated
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decision diagram shown in Fig. 2b and a fidelity of 80 % with respect
to the original quantum state.

B. Approximation based on Traversal with Threshold
The traversal scheme above can be generalized by counting how

many times a node has been visited. Additionally, we introduce a
threshold τ and only keep nodes that are visited more than τ times,
so that nodes visited τ times or less are eliminated. The idea of the
threshold is to filter “outliers” that do not contribute significantly to
the quantum state but are nonetheless encountered by chance during
the traversals.

Example 5. Consider again Fig. 1b and Example 4. Increasing
the number of traversals to L = 10 may lead to the possible
distribution of following the left (right) successor of q0 8 times
(2 times) as illustrated in Fig. 3b. This distribution is closer to the
actual probabilities but also includes the right-hand nodes q1 and q2.
Introducing a threshold on how many times a node has to be visited
during the traversals serves as a cut-off point for nodes with a lower
probabilities. Selecting a threshold of τ = 3 leads to the elimination
of the dashed nodes and, hence, to the approximation depicted in
Fig. 2b.

C. Approximation with a Target Fidelity
As discussed in the previous section, it is desirable to approximate

quantum states with the fidelity desired in a given application context.
The traversal-based approximation schemes so far do not provide
this feature. Hence, we present further schemes that guarantee the
minimum fidelity of the approximated state.

To this end, the entire decision diagram is traversed twice: once
in a depth-first fashion to compute the upstream probabilities (as
discussed above) and once in a breath-first fashion to compute
the downstream probabilities (i.e., the summed probabilities of all
paths from the root node to the considered one). The downstream
probability of a node is recursively computed as a sum of the
downstream probabilities of its parents—weighted by the squared
magnitude of the weight attached to the connecting edge.

To guarantee a target fidelity f , a level is chosen and the nodes of
this level are sorted by their contribution for the overall state vector
in ascending order. The contribution is calculated by multiplying the
downstream probabilities of the nodes with the summed upstream
probabilities of the successors (considering again the weight attached
to the connecting edge). These numbers sum up to 1 since a quantum
state has a norm of one. An approximated state vector with fidelity
f is now determined by summing up the sorted significance of the

nodes until the sum exceeds 1 − f , followed by the elimination of
all nodes included in the sum so far. Eliminating only these nodes
guarantees that the approximated state vector has at least fidelity f .

The difficulty in this approach is to choose the level from which
the nodes shall be eliminated in order to obtain the most compact
decision diagram. One possibility to tackle this issue is to precompute
how many nodes can be eliminated at each level. However, this still
does not allow predicting how the elimination of nodes affects nodes
below the chosen level. In fact, computing how the elimination of
certain nodes affects the DD size requires determining all nodes to
be removed.

Example 6. Consider again Fig. 1b. The calculated contributions
based on upstream and downstream probabilities are depicted in
Fig. 3c. Given a target fidelity of 0.5 and choosing the second level
(i.e., the nodes labeled q1), the probabilities in ascending order are
0.2 and 0.8. The sum 0.2+0.8 exceeds 0.5, therefore only the q1 node
on the right will be eliminated including its both successors (shown
with a dashed outline)—leading to the approximation depicted in
Fig. 2b.

D. Approximation with a Target Fidelity per Level

Approximating a quantum state by targeting the fidelity of a single
level requires determining a suitable level to eliminate nodes. As
mentioned earlier, a possible solution is to calculate the fidelities for
each level and choose one. Assuming that the target fidelity f is not
required to be the absolute minimum fidelity acceptable, the visited
nodes of each level can be eliminated instead of only eliminating the
nodes for one level. This cannot guarantee fidelity f , but the resulting
fidelity admits a lower bound fn−1 with n denoting the number of
qubits. Notably, this bound was hardly reached in our experiments.

Example 7. Consider again Fig. 1b and the associated contributions
to the quantum state depicted in Fig. 3c. To apply the fidelity-per-
level scheme, the downstream probabilities are summed up for each
level until reaching the target of 0.5 and all nodes visited up to
this point are eliminated. More precisely, for the first level q0 the
single node cannot be eliminated as it contributes to every basis
state. On the second level the right node q1 is eliminated as in the
previous example. Finally, on the third level the two nodes q2 on the
right are eliminated as they only contribute 20 % to this level.2 These
eliminations (i.e, the nodes drawn with a dashed outline) result in
the approximation depicted in Fig. 2b.

V. EVALUATION

In order to evaluate the potential of approximation for obtaining
more compact DD-based representations of quantum states, we
implemented the four schemes discussed in Section IV (on top of
[25]). Afterwards, the respectively approximated decision diagrams
have been evaluated regarding their resulting fidelity and the size
compared to the original (i.e., non-approximated) decision diagrams.
To this end, quantum states generated by representative quantum
functionalities from the following groups have been considered as
benchmarks:

• Quantum circuits provided by researchers from Google [26]
as candidates to establish quantum-computational supremacy
using controlled-phase gates (denoted “supremacy_AxB_C”,
representing a circuit on an A×B surface with depth C),

2This step is kept in the example as these nodes would have been eliminated
automatically along with the q1 node.
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Fig. 4: Approximation based on the number of traversals
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Fig. 5: Approximation based on traversals with a threshold
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Fig. 6: Approximation for a target fidelity
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Fig. 7: Approximation for a target fidelity per level

• quantum circuits realizing Shor’s algorithm to factorize in-
tegers [2] (denoted “shor_A_B” for factorizing A with the
coprime value B), and

• a quantum circuit simulating the uniform electron gas (taken
from [27] and denoted “qua_chem_3x3”).

In the following, we present our main empirical results and put
them in perspective.

A. Comparison of Approximation Schemes

In a first series of evaluations, the different approximation schemes
are compared against each other. To this end, Figures 4 to 7 show
the respectively attained fidelity and the relative DD size of the
approximated decision diagrams (compared to the original decision
diagrams) for each of the four approximation schemes. Here, the plots
nicely show the overall trade-off between the attained fidelity and the
DD size as well as the effect of the respective parameter associated
with each scheme. More precisely, Fig. 4 shows how the number of
traversals relates to the attained fidelity and relative DD size (more
traversals yield more accurate decision diagrams which increase the
fidelity but also the resulting DD size). Fig. 5 demonstrates the same
effect with a decreasing threshold, i.e., the smaller the threshold the
more accurate (but also the larger) the decision diagrams.3 Fig. 6
shows that the scheme in Section IV-C always guaranteed the target
fidelity (besides that, the smaller the target fidelity is given the smaller
decision diagrams are obtained). Finally, Fig. 7 shows that the scheme
in Section IV-D might not always guarantee the target fidelity but still
yields fidelities which are close to the targeted one.4

3One million traversals have been carried out before the threshold has been
applied.

4Fig. 6 and Fig. 7 confirm that the corresponding schemes indeed approx-
imate a quantum state towards a desired fidelity.

Overall, these results show that for all schemes the DD size is
greatly reduced with moderate effects on the fidelity in many cases.
The actual effects significantly depend on the respectively consid-
ered quantum functionality. Quantum states obtained from quantum-
supremacy circuits are the hardest to approximate (but some schemes
at least lead to improvements which are proportional to the fidelity
losses). This can be explained by the fact that most amplitudes have
comparable magnitudes in these cases and, hence, approximations
harm the fidelity in the same proportion as the size is reduced. In con-
trast, quantum states arising in the remaining benchmarks frequently
have many amplitudes which, probabilistically, are negligible and,
hence, can easily be approximated. Eventually, this reduces the DD
sizes to a fraction of its original size while controlling the attained
fidelity for almost all schemes. This validates the initial idea proposed
in this paper that approximating quantum states using decision
diagrams is an effective technique for more compact representations.

B. Application from a Designer’s Perspective

In a second series of evaluations, we additionally evaluated how
the idea and findings proposed in this work explicitly aid quantum
circuit designers and/or the development of corresponding design
automation tools for quantum computing. Due to space limitations,
we consider a representative scenario in which the acceptable fidelity
is specified by the application context.5 More precisely, assume that
a fidelity of 0.5 is acceptable. Then, the designer can easily decide
when to apply the scheme from Section IV-C to obtain an approx-
imated quantum state, e.g., each time the decision diagram grows
to big during simulation, in a fashion similar to garbage collection.
Further, since the fidelity metric of a sufficiently entangled quantum
state is multiplicative, the overall fidelity after each step can be easily

5Assumptions about the “acceptable fidelity” of a result obtained from a
quantum computer can be made based on the considered functionality [28].



TABLE I: Target fidelity scheme targeting 0.5 fidelity

Benchmark Orig. size Approx. size Compression Fidelity

supremacy_4x4_10 65 071 23 305 0.3581 0.5000
supremacy_4x4_15 65 536 24 592 0.3752 0.5000
supremacy_5x4_10 482 408 127 412 0.2641 0.5000

shor_33_2 48 980 2115 0.0432 0.5249
shor_55_2 93 541 344 0.0037 0.5064
shor_69_4 196 234 16 462 0.0839 0.5117
shor_221_4 1 048 575 198 0.0002 0.5197

qua_chem_3x3 59 594 147 0.0025 0.5098

tracked. Table I shows the corresponding characteristics of those
decision diagrams (here, the name of the benchmark, the original
DD size, the DD size of the approximated decision diagram, the
relative size, and the fidelity of the approximated decision diagram
is given). These results show that exact quantum state representations
can be replaced with approximations in practice (e.g., for purposes
of simulation, verification, synthesis)—leading to reductions of the
DD size of several orders of magnitude while, at the same time,
controlling the attained fidelity. In the best case, this reduces the DD
size from over a million nodes to just under 200 nodes.

VI. CONCLUSION

In this work, we proposed and evaluated the idea of approximating
quantum states using decision diagrams. To this end, we exploited
the inherent error resistance in quantum algorithms, i.e., small
inaccuracies of the state representation do not (or hardly) affect
the measurement outcome, in order to approximate the state of
a quantum system. We applied this idea to decision diagrams by
carefully analyzing their structure to quantify the contribution of
each node to the quantum state. This resulted in four dedicated
approximation schemes—leading to a reduction of several orders
of magnitude in DD size while, at the same time, controlling the
obtained fidelity. Moreover, our best approximation schemes closely
match the desired quantum fidelity or even guarantee it. The findings
of this work provide the basis for several design automation tools,
e.g., for simulation, for verification, and for synthesis, that previously
suffered from unaffordable memory requirements and may become
practical at greater scales through the use of approximate quantum
state representations in a fashion similar to garbage collection.
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