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Abstract—Realizing a conceptual quantum algorithm on an
actual physical device necessitates the algorithm’s quantum
circuit description to undergo certain transformations in order to
adhere to all constraints imposed by the hardware. In this regard,
the individual high-level circuit components are first synthesized
to the supported low-level gate-set of the quantum computer,
before being mapped to the target’s architecture—utilizing sev-
eral optimizations in order to improve the compilation result.
Specialized tools for this complex task exist, e.g., IBM’s Qiskit,
Google’s Cirq, Microsoft’s QDK, or Rigetti’s Forest. However, to
date, the circuits resulting from these tools are hardly verified,
which is mainly due to the immense complexity of checking if
two quantum circuits indeed realize the same functionality. In
this paper, we propose an efficient scheme for quantum circuit
equivalence checking—specialized for verifying results of the IBM
Qiskit quantum circuit compilation flow. To this end, we combine
characteristics unique to quantum computing, e.g., its inherent
reversibility, and certain knowledge about the compilation flow
into a dedicated equivalence checking strategy. Experimental
evaluations confirm that the proposed scheme allows to verify
even large circuit instances with tens of thousands of operations
within seconds or even less, whereas state-of-the-art techniques
frequently time-out or require substantially more runtime. A
corresponding open source implementation of the proposed
method is publicly available at https://github.com/iic-jku/qcec.

I. INTRODUCTION

Quantum computing has gained considerable momentum
over the past years, as actual quantum computers are reaching
feasibility and more and more algorithms for potential ap-
plications are discovered. Similar to the conventional realm,
a conceptual quantum algorithm needs to be compiled to a
representation that conforms to all restrictions imposed by
the device it shall be executed on. To this end, fast-evolving
compilation flows such as those of IBM’s Qiskit [1], Google’s
Cirq [2], Microsoft’s QDK [3], or Rigetti’s Forest [4] are
available.

Naturally, it is of utmost importance that the results of
such compilation flows are correct, i.e., that the compiled
quantum circuit still realizes the originally intended func-
tionality. This motivates the development of methods for
verification or, more precisely, equivalence checking. Concep-
tually, equivalence checking is simple, since each quantum
circuit G realizes a unitary transformation U and comparing

two quantum circuits G and G′ boils down to comparing
the corresponding unitary matrices U and U ′, respectively.
However, since these matrices U and U ′ are exponentially
large, many existing approaches to this problem (e.g., [5]–[9])
remain unsatisfactory and can hardly be employed on a large
scale.

Recently, a promising solution to address this problem
has been proposed in [10]. There, the use of dedicated
data-structures, in particular decision diagrams [9], [11], [12],
has been proposed which allow for a non-exponential rep-
resentation of matrices in some (albeit not all) cases. To
further improve upon that, it is exploited that G′−1 · G = I
holds if two circuits G and G′ are indeed equivalent, i.e.,
the cascade composed of one circuit with the inverse of the
other should eventually yield the identity function. Because
of that, checking whether G and G′ are in fact equivalent
can be conducted by starting with the identity matrix (which
can be represented in linear rather than exponential space)
and, then, applying operations of G and G′ in a particular
order until all operations have been applied. If all those
operations can be applied so that the respective intermediate
computations remain as close to the identity as possible,
substantial improvements can be achieved [10]. However, how
to determine the “perfect” order of applications, i.e., whether
to apply operations from G or from G′ in order to keep the
respective intermediate representation close to the identity,
remains an open problem.1

In this paper, we address this problem. We show that, by
utilizing knowledge about the compilation flow, a verification
methodology can be obtained which keeps the respectively
occurring intermediate representations close to the identity
in an almost perfect fashion. By this, the exponential com-
plexity is frequently reduced to a linear or close-to-linear
complexity—substantially reducing the runtime of the verifica-
tion process. In order to showcase the possible improvements,
we consider the compilation flow as it is currently conducted
by IBM’s Qiskit.2 Experimental evaluations show that, using

1This is discussed and illustrated in more detail later in Section III.
2However, the methods proposed in this work can be tailored to any other

compilation flow as well.
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the proposed method, circuits composed of tens of thousands
of operations can be verified within seconds or even less,
whereas state-of-the-art techniques frequently time-out or re-
quire substantially more runtime. A corresponding open source
implementation of the proposed method is publicly available
at https://github.com/iic-jku/qcec.

The rest of this work is structured as follows: In Section II,
we review the necessary basics of quantum circuits and the
IBM Q systems needed to keep this work self-contained. Then,
Section III reviews the compilation flow as it is conducted
by IBM’s Qiskit and elaborates on verifying results of this
flow. Based on that, Section IV illustrates how all different
aspects are exploited and consequently orchestrated to form a
dedicated verification strategy. The strategy’s performance is
then evaluated in Section V, before Section VI concludes the
paper.

II. QUANTUM COMPUTING AND THE IBM Q SYSTEMS

In this section, we briefly review the concepts of quantum
computing [13] and introduce the notation used in this work.
Besides that, we also review the considered platform, i.e.,
IBM Q systems [14]. For more detailed information, we refer
the interested reader to the provided references.

A. Quantum Circuits

In quantum computing, the main computational unit is the
qubit. In contrast to classical bits, a single qubit q can be in
an arbitrary superposition of the basis states |0〉 and |1〉, i.e.,

|q〉 = α0 |0〉+ α1 |1〉

with α0, α1 ∈ C and |α0|2 + |α1|2 = 1. An n-qubit quantum
system can be in an arbitrary superposition of the 2n basis
states

|bn−1〉 ⊗ · · · ⊗ |b0〉 = |bn−1 . . . b0〉 =

∣∣∣∣∣
n−1∑
i=0

bi2
i

〉
with bi ∈ {0, 1}, i.e.,

|q〉n =

2n−1∑
i=0

αi |i〉 with αi ∈ C and
2n−1∑
i=0

|αi|2 = 1.

In the circuit model of quantum computation, qubits are rep-
resented by wires and are manipulated by quantum operations
(quantum gates). Specifically, a quantum circuit G with m
gates, operating on n qubits, is denoted by G = g0 . . . gm−1,
where each gi represents a quantum gate acting on (a subset
of) n qubits. This is usually visualized through quantum circuit
diagrams, where the qubit wires are drawn as horizontal lines,
gates are drawn using a variety of symbols, and progression
of time is assumed to happen from left to right.

Example 1. An example of a quantum circuit G with 16 gates
acting on three qubits is shown in Fig. 1a. This sequence of
operations describes a small instance of the famous Grover

search algorithm [15]. The small boxes with identifiers corre-
spond to operations applied to single qubits such as X gates
(the quantum analogue to the NOT gate) and H (adamard)
gates (which can be used to set a qubit into superposition).
Moreover, there are multiple-controlled X operations, where
an X operation is only applied to a target qubit (denoted by ⊕)
if all of its control qubits (denoted by •) are in state |1〉. In
case there is only one control qubit, such a gate is also called
CNOT or controlled-NOT , while in case of two control
qubits it is also called a Toffoli gate.

Initially, quantum algorithms are described in a way which
is agnostic of the device they are planned to be executed on.
However, physical devices today only support very low-level
quantum operations. In this work, we focus on devices pro-
vided by IBM, which are briefly reviewed next.

B. The IBM Q Systems

In 2016, IBM launched the IBM Quantum Experience cloud
platform which, for the first time, provides public access
to a quantum computer. Today, eight devices with either
one, five, or 15 qubits are freely available for development.
All quantum computers developed at IBM provide the same
limited gate-set consisting of arbitrary single-qubit gates U
and the two-qubit CNOT operation.3 Although seemingly
small, this already constitutes a universal gate-set, i.e., every
possible quantum computation can be realized using only gates
from this set [13]. In addition, the IBM Q systems (or in
general quantum computers based on superconducting qubits)
feature a severely limited connectivity of their qubits. This
is usually described by a coupling graph, where the graph’s
nodes represent the qubits and an edge between two nodes
indicates that a CNOT operation may be applied to those
qubits4.

Example 2. The coupling graph of the IBM Q London system
is shown in Fig. 1c. It consists of five (physical) qubits Qi
and a CNOT operation may only be applied to the qubits
(Q0, Q1), (Q1, Q2), (Q1, Q3), or (Q3, Q4).

A device’s physical qubits are inherently affected by noise—
leading to rather short coherence times and limited fidelity of
the individual operations. Until a certain threshold concerning
the number of available qubits is reached, error correction
is not yet an option. Throughout this work, we will refer
to the physical qubits of a device using upper case Qi and
denote the logical qubits of a quantum algorithm with lower
case qi. Additionally, Qi : qj denotes that the logical qubit qj
is assigned to the physical qubit Qi.

3Specifically, U = U3(θ, φ, λ) with 0 ≤ θ ≤ π and 0 ≤ φ < 2π are sup-
ported. Special cases are U2(φ, λ) = U3(

π
2
, φ, λ) and U1(λ) = U3(0, 0, λ).

4Nowadays, these edges are typically undirected, i.e., it does not matter
which qubit acts as control or target—whereas past architectures actually
prescribed the direction.
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Figure 1: Exemplary illustration of the IBM compilation flow

III. MOTIVATION AND CONSIDERED PROBLEM

In order to execute a conceptual quantum algorithm on
an actual device such as provided by the IBM Q systems,
several transformations have to be applied to the original
circuit in order to conform to all the restrictions imposed by
the targeted device. This transformation process is frequently
called compilation5 due to its similarity to a classical com-
piler transforming high-level code into a (machine-executable)
assembly. Many specialized tools for this complex task exist,
e.g., IBM’s Qiskit [1], Google’s Cirq [2], Microsoft’s QDK [3],
or Rigetti’s Forest [4]. However, to date, the circuits resulting
from these tools are hardly verified, i.e., it is hardly checked
whether the resulting quantum circuit description still realizes
the same functionality as the originally given circuit. In the
following, we review this compilation flow using IBM’s Qiskit
compilation flow as a representative. Afterwards, we elaborate
on the problem of verifying results of this flow, which will
eventually motivate this work.

5Other terms (interchangeably) referring or relating to (steps of) this process
are synthesis, mapping, qubit allocation, qubit routing, or transpilation. In this
work, we consider the complete process as compilation—split into the three
main tasks synthesis, mapping, and optimization.

A. The IBM Qiskit Compilation Flow

Compilation of quantum circuits addresses the three kinds
of restrictions which limit the usability of a quantum com-
puter and have been reviewed above: The first two, i.e., the
limited gate-set and connectivity, constitute hard constraints—
a computation not conforming to these restrictions may not
be executed on the device. In contrast, the short coherence
time and limited gate fidelity represent a soft constraint—a
quantum circuit may be executed on a device, but it is not
guaranteed to produce meaningful results if the circuit, e.g., is
too large for the state to stay coherent. The Qiskit compilation
flow is structured as a collection of individual passes, each of
which is responsible for dealing with a certain constraint (or an
aspect thereof). Just as traditional compilers, there are different
optimization levels offering a trade-off between compilation
runtime and quality of the compilation result. More precisely:

First, the gates of the original quantum circuit are synthe-
sized to the gate-set supported by the targeted device. Most im-
portantly, since devices typically only support up to two-qubit
gates, any gate acting on more than two qubits is broken
down into “elementary” gates. This process may require the
use of additional ancillary qubits for realizing the desired



operation. In this regard, Qiskit provides several modes, e.g.,
for the decomposition of multi-controlled gates—offering a
trade-off between circuit size and number of required ancillary
qubits [16]–[18].

Example 3. Consider again the circuit G from Ex. 1 as
shown in Fig. 1a. If this circuit shall be executed on an
IBM Q system, the Toffoli gate (the two-controlled NOT )
first has to be realized using only arbitrary single-qubit gates
and CNOT s. One possible synthesized version is shown in
Fig. 1b. It takes six CNOT s, nine single qubit gates, and no
additional ancillaries to realize the desired gate.

Now, the circuit just contains elementary gates supported by
the device, but it may not yet conform to the device’s limited
connectivity. Thus, the quantum circuit is mapped to the target
architecture, i.e., a mapping between the circuit’s logical and
the device’s physical qubits is established. Qiskit provides
several heuristics for determining an initial mapping—from
a trivial one-to-one mapping (Qi : qi) to explicitly considering
calibration data and picking the most reliable set of qubits for
the computation [19]. However, in most cases, it is not possible
to globally define a mapping which conforms to all connec-
tivity limitations. As a consequence, the logical-to-physical
qubit mapping usually is changed dynamically throughout the
circuit. Typically, this is accomplished by inserting SWAP
gates into the circuit—effectively allowing to change the map-
ping of logical qubits to physical qubits so that all operations
can be executed while, at the same time, all connectivity
constraints are satisfied. To this end, Qiskit per default uses
a very fast, stochastic solution (based on Bravyi’s algorithm).
Several other approaches have been proposed for tackling this
immensely complex task6 [7], [19]–[25] and some of them
have even been integrated into Qiskit.

Example 4. Consider again the circuit G from Ex. 1 and
assume that the Toffoli gate has been synthesized as shown in
Fig. 1b. Further, assume that the circuit is to be executed on
the IBM Q London architecture shown in Fig. 1c. Then, Fig. 1d
shows one possible circuit G̃ resulting from this mapping
process. The physical qubits Q0, Q1, and Q2 were chosen and
initially assigned logical qubits q0, q2, and q1, respectively.
Just one SWAP operation applied to Q0 and Q1 (indicated
by ×) was added in the middle of the circuit in order to
conform to the target’s connectivity constraints7.

After this step of the compilation flow, circuits are ready
to be executed on the targeted devices (corresponding to the
most basic optimization level O0). However, the previous steps
significantly increased the size of these circuits—impacting the
achievable performance due to the limited coherence time and
gate fidelity. Thus, several optimizations may be employed to

6In fact, the mapping task has been shown to be NP-complete [20].
7A SWAP operation is eventually realized using three CNOT operations

as indicated in the middle of Fig. 1.

reduce the circuit’s size and, hence, improve the actual perfor-
mance on the quantum computer. Since the IBM Q systems
natively support arbitrary single-qubit gates, any number of
subsequent single-qubit gates may be fused into one single
gate. Additionally, adjacent-gate-cancellations can be used to
eliminate instances where a gate is directly followed by its
inverse, e.g., two consecutive CNOT operations with the same
control and target qubits can be cancelled. These are the most
basic optimizations that constitute the standard optimization
level O1 of Qiskit. Naturally, more sophisticated optimization
techniques have been developed, e.g., gate transformation and
commutation [26] (which is included in optimization level O2)
or re-synthesis of two-qubit unitary blocks [27] (which is part
of the top optimization level O3).

Example 5. Consider again the circuit G̃ from Ex. 4
shown in Fig. 1d that has been mapped to the IBM
Q London architecture. Applying one-qubit-fusion and
adjacent-gate-cancellation eventually allows to eliminate nine
single-qubit gates and results in the optimized circuit G′

shown in Fig. 1e.

B. Verifying Results of the Compilation Flow

Naturally, it is of utmost importance that the originally
intended functionality of a quantum algorithm is preserved
throughout the whole compilation flow. This can be guaranteed
by verifying the results of the compilation flow. To this end,
two possible approaches can be employed: (1) systematically
verifying the compilation methods themselves, e.g., by using
formal verification techniques [28], [29], or (2) checking the
functional equivalence of the original circuit to the respectively
compiled circuit [5]–[10]. In this work, we consider the
second approach, because, although the first approach allows
to guarantee the validity of results for arbitrary circuit inputs,
their applicability is severely limited by the effort required to
adapt and extend these methods for new developments, such
as new optimizations or mapping strategies.

Checking the equivalence between two circuits boils down
to checking whether they indeed realize the same function-
ality. Mathematically, the quantum gates gi of an n-qubit
quantum circuit G are defined by 2n × 2n unitary matri-
ces Ui. Consequently, the functionality of a quantum circuit G
with gates g0, . . . , gm−1 is described by a unitary matrix U ,
which is obtained by consecutively multiplying the unitary
matrix representations Ui of each gate gi in reverse order,
i.e., U = Um−1 · · ·U0. Thus, checking the equivalence of two
circuits G and G′ amounts to building and comparing the
circuits’ system matrices U and U ′. While simple in its
concept, the exponential size of the involved matrices quickly
renders many direct approaches infeasible8.

In order to cope with this complexity, decision diagrams
have been proposed as an efficient data-structure for canoni-

8Equivalence checking of quantum circuits has even been proven to be
QMA-complete in the general case [30].



cally representing and manipulating quantum functionality in
the recent past [9], [11], [12]9. While decision diagrams indeed
frequently allow to represent quantum functionality in a very
compact fashion, the decision diagrams corresponding to the
circuits G and G′ may still grow exponentially in the worst
case.

Hence, to further improve upon that, a promising ap-
proach was recently proposed in [10] utilizing the follow-
ing observation: Consider two equivalent quantum circuits
G = g0 . . . gm−1 and G′ = g′0, . . . , g

′
m′−1. Then, due to the

inherent reversibility of quantum circuits, this certainly allows
for the conclusion that G′−1 ·G = I, where G′−1 denotes the
inverse of G′ and I denotes the identity function. Moreover,
it holds that

I = G′−1 ·G = (g′−1m′−1 . . . g
′−1
0 ) · (g0 . . . gm−1)

≡ (Um−1 · · ·U0) · (U ′†0 · · ·U
′†
m′−1)

= Um−1 · · ·U0 · I · U ′†0 · · ·U
′†
m′−1

=: G � I � G′.

As a consequence, checking whether G and G′ are in fact
equivalent can be conducted by starting with the identity and,
then, either applying operations of G “from the left” (denoted
by G � I) or (inverted) operations of G′ “from the right”
(denoted by I � G′) until all operations have been applied.
If, afterwards, the identity still remains, the circuits G and G′

have been proven to be equivalent.

The intention of this idea is to keep the intermediate
computations as close to the identity as possible, since the
identity constitutes the best case for most representations of
quantum functionality (e.g., linear in the number of nodes with
respect to the number of qubits for decision diagrams).

Example 6. Assume, w.l.o.g, that m ≤ m′, i.e., G′ has at least
as many gates as G. Further assume an oracle ω : G→ (G′)∗

exists that, given a gate gi ∈ G, returns a consecutive
sequence of gates g′k . . . g

′
l ∈ G′ such that gi ≡ g′k . . . g′l. Then,

subsequently applying one gate g ∈ G and |ω(g)| inverted
gates from G′ constitutes a “perfect” strategy—yielding the
identity after each pair of applications. As a result, only
matrices representing, or staying close to, the identity occur.
Since these can usually be represented very efficiently using,
e.g., decision diagrams, the process of equivalence checking
is substantially improved.

However, a major problem remains in how to obtain the
“perfect” oracle ω(·), i.e., in deciding when to apply operations
of G (“from the left”) and when to apply operations of G′

(“from the right”). In [10], several strategies for this purpose
have been proposed and, indeed, substantial speed-ups in
checking the equivalence of two quantum circuits have been
achieved with that (cf. Table 1 in [10]). But after all, those

9Canonicity implies that a comparison of the root pointers of two decision
diagrams allows to decide their equivalence.

strategies remain rather simple (e.g., they employ a one-to-one
or size-proportional application of gates from G and G′)
and certainly do not resemble a “perfect” strategy which can
indeed keep the computation of G � I � G′ close to the
identity.

In contrast, the compilation flow as reviewed in Sec-
tion III-A provides detailed insights how a circuit G is even-
tually compiled to a circuit G′—providing ideal knowledge
about how to derive the “perfect” oracle ω(·). In this work, we
propose a verification scheme which uses the idea of applying
G � I � G′ and, at the same time, utilizes the knowledge
about an actual compilation flow (namely the Qiskit flow). As
the experimental evaluations (summarized later in Section V)
confirm, this allows for drastic speed-ups and, eventually,
makes equivalence checking feasible on a large scale.

IV. PROPOSED VERIFICATION SCHEME

In this section, we propose a verification scheme which
rests on the ideas discussed above, but additionally utilizes
knowledge about the Qiskit quantum circuit compilation flow
to derive a much better oracle ω(·). For each step in the
compilation flow (i.e., for synthesis, mapping, and optimiza-
tion), a corresponding strategy for ω(·) is derived which keeps
applying G � I � G′ close to the identity. Those strategies
are described in the following subsections. Afterwards, they
are combined to an overall scheme.

A. Utilizing Knowledge about the Synthesis Step

Considering the first step of the compilation flow, two issues
become relevant for determining the “perfect” G � I � G′

strategy: (1) each gate g ∈ G is compiled to a sequence of
gates g′k . . . g

′
l ∈ G′ and (2) the circuits G and G′ may operate

on different numbers of qubits due to the addition of ancillary
qubits required for the synthesis.

For the first issue, it can be exploited that the actual
decomposition scheme, i.e., into how many elementary gates
each of the original circuit’s gates is decomposed, is known
a priori. Thus, an oracle ω(·) which, given a gate g ∈ G,
returns the corresponding sequence of gates g′k . . . g

′
l ∈ G′,

is explicitly known in this case. Assuming that G′ resulted
from the synthesis of a given quantum circuit G, applying one
gate from G and |ω(g)| inverted gates from G′ constitutes an
optimal strategy for conducting G � I � G′—yielding the
identity after each step.

Example 7. Consider the original circuit G shown in Fig. 1a.
As indicated by Fig. 1b, the Toffoli gate of G needs to be
decomposed into elementary gates supported by the archi-
tecture, while all other gates of G are already supported.
Thus, |ω(g)| = 1 holds for all g ∈ G except for the Toffoli
gate, where |ω(g)| = 15 holds.

In case both circuits do not operate on the same number of
qubits, the corresponding unitaries have different dimensions
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Figure 2: Handling of ancillary qubits

and cannot be applied directly. Unfortunately, it is not suf-
ficient to match the qubit count of G′ by just augmenting
the original circuit with idle qubits. Since ancillary qubits
are always initialized in a particular state (typically |0〉),
this leaves some degree of freedom in the overall unitary
representation U ′. In order to compensate for this degree of
freedom, the eventually resulting matrix U ′ has to be modified
as shown in the following example.

Example 8. Consider a unitary 2n×2n matrix U and assume
that, w.l.o.g., the last qubit qn−1 acts as an ancillary qubit
initialized to |0〉. In general, the action of U depending on
the state of qn−1 is described by the four 2n−1 × 2n−1

sub-matrices Uij as illustrated in Fig. 2a. Since the ancillary
is initialized to |0〉, the sub-matrices corresponding to the
transformation from |1〉 can be ignored—resulting in the
modified matrix Ũ shown in Fig. 2b.

B. Utilizing Knowledge about the Mapping Step

Mapping to the targeted architecture establishes a connec-
tion between the circuit’s logical and the device’s physical
qubits. Consequently, while the description of G is expressed
in terms of logical qubits q0, . . . , qn−1, the circuit G′ operates
on (a subset of) the device’s physical qubits Q0, . . . , QN−1.
If a non-trivial initial mapping (i.e., anything but Qi : qi)
is employed, this leads to the situation that gates from G′,
although functionally equivalent, are applied to different qubits
than the gates of G. Thus, concluding the equivalence of
both circuits is not possible by straight-forwardly using the
oracle function ω(·). Instead, a qubit map m(·) is employed,
which stores the mapping between the physical qubits of the
circuit G′ and the logical qubits of the original circuit G,
i.e., m(Qi) = qj if physical qubit Qi is initially assigned
logical qubit qj . Whenever a gate from G′ is to be applied
to a certain physical qubit Qi, this is translated to the corre-
sponding logical qubit m(Qi) = qj—again allowing to stay
close to the identity.

Example 9. Consider the original circuit G and the mapped
circuit G̃ shown in Fig. 1a and Fig. 1d, respectively. While the
X gate at the beginning of G is applied to the logical qubit q2,
it is applied to the physical qubit Q1 in the circuit G̃. In order
to fix this mismatch, the qubit map m(·)—mapping Q0 7→ q0,
Q1 7→ q2, and Q2 7→ q1—is employed. Consequently, the X

gate of G̃ is applied to m(Q1) = q2 which now matches the
original gate from G perfectly.

However, as discussed in Section III-A, the
logical-to-physical qubit mapping of a compiled circuit
in general changes dynamically throughout the circuit in
order to satisfy all constraints imposed by the device’s
coupling map. As a consequence, the potential of using
the (static) qubit map m(·) in combination with the oracle
function ω(·) to stay close to the identity is significantly
diminished. That is, because the dynamically changed
mapping again results in a scenario where gates from G′ are
applied to different qubits than in the circuit G. Therefore,
a perfect verification strategy needs to keep track of the
changes in the logical-to-physical qubit mapping caused by
SWAP operations10 and, accordingly, needs to update the
qubit map m(·) throughout the verification procedure.

Example 10. Consider again the scenario of Ex. 9. If the
G � I � G′ scheme is carried out using the qubit map m(·)
defined there, the result would not represent the identity. That
is, because the logical-to-physical qubit mapping is changed
in the middle of G̃ by a SWAP operation applied to Q0

and Q1. Thus, at that specific point, the qubit map m(·) has
to be updated accordingly, i.e., it then has to map Q0 7→ q2,
Q1 7→ q0, and Q2 7→ q1. Through this dynamic change, the
computation of G � I � G′ remains close to the identity and,
eventually, proves the equivalence of both circuits.

C. Utilizing Knowledge about the Optimization Step

If no optimizations were to be applied to the circuit resulting
from the synthesis and mapping step (which is equivalent
to applying Qiskit’s O0 optimization level), the strategies
proposed above allow to conduct G � I � G′ in a per-
fect fashion—yielding the identity after each step. However,
optimizations as discussed in Section III-A further alter the
circuit—making it harder to verify the resulting circuit. In the
following, we cover how to anticipate the effects of the two
most common optimizations employed in Qiskit—single-qubit
gate fusion and adjacent gate cancellation (see Section III-A).

Example 11. Consider again the circuit G̃ shown in Fig. 1d.
There, the grey box indicates the gates of G̃ realizing the Tof-
foli gate of the original circuit G shown in Fig. 1a. The middle
qubit thereby contains a T gate, which is directly followed
by an H gate. Accordingly, in the optimized circuit shown in
Fig. 1e, these have been merged into a single U2 (0 ,

5π
4 ) gate.

Thus, |ω(g)| = 15 does no longer hold, but has to be modified
to |ω(g)| = 14 instead in case of the Toffoli gate (see Ex. 7).

In addition to anticipating fusions within individual gate
realizations through adaptations of the oracle function ω(·),
a pre-processing pass is conducted which fuses consecutive

10SWAPs can be reconstructed from consecutive sequences of three
CNOT s in G′ as indicated in the middle of Fig. 1.
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Figure 3: SWAP and CNOT cancellation

single-qubit gates where they are present in the original
circuit G (e.g., fusing the H −X −H cascade at the end of
the circuit G shown in Fig. 1a to a single Z gate). However,
reductions across multiple gates that were decomposed during
synthesis cannot be accounted for in this fashion. Thus, the
formerly constructed perfect oracle function ω(·) becomes
approximate.

Example 12. Consider again the circuit G̃ shown in Fig. 1d
and its optimized variant G′ shown in Fig. 1e. Then, the
cancellation of the two consecutive H gates in the beginning of
G̃ cannot be anticipated through a straightforward adaptation
of ω(·). However, as also confirmed by the experimental eval-
uations in Section V, ω(·) remains a suitable approximation
for staying close to the identity.

The second optimization employed per default—adjacent
gate cancellation—introduces a peculiar issue for the verifi-
cation strategy as shown in the following example.

Example 13. Consider a SWAP operation directly followed
by a CNOT operation. Since the SWAP operation itself
is realized by three consecutive CNOT s, this sequence of
operations may be simplified by cancelling two of them as
shown in Fig. 3. While the qubit map m(·) can be easily
adapted in the first two cases, the optimized circuit shows
no sign of an applied SWAP and, furthermore, introduces
an additional CNOT gate to the compiled circuit which
previously did not exist in G. This makes it hard for the
proposed strategies to still identify the SWAP and, hence,
update the qubit map m(·) as described in the previous
section.

As a solution, any occurrence of two consecutive CNOT
operations in G′ as shown on the right of Fig. 3 that is not
followed by a third matching CNOT is substituted by the
sequence shown on the left of Fig. 3. Overall, this again allows
to accurately track the qubit mapping m(·) and conduct the
equivalence check in an optimal fashion.

D. Resulting Verification Scheme

All of the considerations above finally result in a dedicated
verification scheme that is tailored for verifying results of the
Qiskit compilation flow. First of all, a pre-processing step fuses
subsequent single-qubit gates in the circuit G and substitutes
SWAP (and possibly a CNOT ) gates where applicable in the
circuit G′. Afterwards, if necessary, the circuit G is augmented
with idle ancillary qubits. Then, the general G � I � G′

scheme is employed—utilizing the oracle function ω(·) to
determine which gates from G′ are to be applied for each
application of a gate from G.

The actual application of gates from G′ happens with
regard to the qubit map m(·) which establishes the connection
between the circuit G’s logical qubits and G′’s physical qubits.
During these steps, this qubit map is dynamically updated
to account for the insertion of SWAP operations during the
mapping. After applying all gates from both circuits, the result
of this scheme is modified as illustrated in Ex. 8. Eventually,
the two circuits are shown to be equivalent if the modified
result resembles the identity for the non-ancillary qubits.

As confirmed by the experimental evaluations, which are
summarized next, this scheme allows to efficiently verify even
large instances consisting of tens of thousands of gates within
seconds. Additionally, in contrast to formally verifying the
individual compilation steps (see Section III-B), this approach
remains generic enough to work well out of the box, even
when optimizations are employed that have not been directly
accounted for, e.g., commutation rules.

V. EXPERIMENTAL EVALUATIONS

The proposed verification scheme has been implemented
on top of the tool proposed in [10] (which is available at
https://iic.jku.at/eda/research/quantum_verification). More pre-
cisely, we took the recent version (revision 1.2) and ex-
tended this tool with the strategies described in Section IV.
Afterwards, we conducted extensive experiments to evaluate
the performance of the resulting approach. In this section,
we summarize our evaluations. To this end, we first briefly
review the setup and, afterwards, present as well as discuss
the obtained results.

A. Setup

In our evaluations, we considered circuits that are fre-
quently used to benchmark compilers. Using IBM Qiskit [1]
(specifically, Qiskit Terra 0.12.0), each original circuit G has
been compiled for a specific target device—resulting in an
alternative circuit G′. During this process, multi-controlled
Toffoli gates have been synthesized using the “basic” mode
(yielding the smallest circuits, with the highest number of
additionally needed qubits) and the target device has been
chosen as the smallest possible one capable of accommodating
the resulting number of qubits. Specifically, IBM Q Boeblingen
has been chosen for circuits with up to 20 qubits, while IBM
Q Rochester has been used for circuits with up to 53 qubits.

As discussed in Section III-A, Qiskit offers several op-
timization levels for compiling circuits. In our evaluations,
we considered Qiskit’s default optimization level (i.e., O1)
and—in order to show the proposed approach’s applicability
to scenarios it has not been explicitly tailored towards—the
more advanced O2 level. All evaluations have been performed
on a 4 GHz Amazon EC2 z1d instance running Ubuntu 18.04

https://iic.jku.at/eda/research/quantum_verification


with at least 32 GB per job using GNU Parallel [31]. A hard
timeout of 1 h (i.e., 3 600 s) was set for each run.

B. Obtained Results

In a first series of evaluations, we considered Qiskit’s default
optimization level O1. A subset of the respectively obtained
results is shown in Table I11. Here, the first columns describe
the original circuit G (its name, number of qubits, and number
of gates) as well as the device the circuit was mapped to. Then,
the size of the resulting circuit G′ is listed, along with the
runtimes of (1) the equivalence checking routine from [11],
(2) its advanced improvement from [10] (utilizing G � I �
G′)12, and (3) the strategy proposed in this work.

The results clearly show the superiority of the proposed
method. While the first approach using G � I � G′ (as
proposed in [10]) allows to reduce the equivalence checking
runtime down to a third or a half in most cases (sometimes
even more), substantial runtimes (or even timeouts) are still
reported. On the contrary, additionally exploiting explicit
knowledge about the compilation flow as proposed in this
work allows for drastic further improvements. In fact, all
considered instances are successfully verified within (fractions
of) seconds, whereas state-of-the-art equivalence checking
methods and even the recently proposed advanced techniques
frequently time-out or require substantial runtime.

In a second series of evaluations, we considered Qiskit’s
more advanced optimization level O2. In this regard, Table II
shows a representative subset of the obtained results13. While
the proposed methodology was explicitly tailored for the
default optimization level of Qiskit, i.e., O1, its performance
remains almost on an equally high level in case of verifying
circuits compiled with optimization level O2—where several
more advanced optimization techniques, such as gate commu-
tation rules, are employed, which are not directly accounted
for in the proposed scheme. This shows that even utilization
of partial knowledge about the underlying compilation flow
is sufficient to drastically improve the verification of the
correctness of its result.

VI. CONCLUSION

In this work, we proposed a dedicated scheme for verifying
results of the IBM Qiskit compilation flow. To this end,
we exploit characteristics unique to quantum computing and
explicitly incorporate knowledge about the compilation flow
in order to design a strategy that allows to keep the overhead

11Due to space limitations, only a small subset of benchmarks is listed
here. However, the proposed scheme is publicly available at https://github.
com/iic-jku/qcec to conduct further evaluations.

12The “Proportional” strategy was used, as it produced the best results in [10].
13In some instances, the circuit resulting from optimization level O2 is

actually larger than the circuit resulting from O1. This is due to the fact
that the default SWAP -insertion technique employed in Qiskit is stochastic.
However, this does not influence the general observations gained from this
evaluation, since the actual number of SWAPs actually does not influence
the performance of the proposed strategy.

of verifying compilation results minimal. Experimental eval-
uations confirm that the proposed strategy consistently allows
to verify instances with more than ten-thousand gates within
seconds—even if optimizations are employed which are not
directly accounted for. Compared to the state of the art, which
often requires substantial runtimes or even time-outs in these
tasks, this is a drastic improvement. The resulting tool is
publicly available at https://github.com/iic-jku/qcec and can
easily be adapted to different compilation flows or additional
optimizations in the future.
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Table I: Optimization Level O1

Benchmark Results

Name n |G| Architecture |G′| tsota [s] tadv [s] tprop [s]
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apla_203 22 80 Rochester 13 548 >3 600.00 >3 600.00 0.10
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rd84_313 34 113 Rochester 2 295 >3 600.00 >3 600.00 2.64
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cycle17_3_112 20 48 Rochester 14 987 1 111.38 1 284.86 0.34
rd73_312 25 76 Rochester 1 426 1 108.62 196.10 0.20
cm150a_210 22 53 Rochester 3 788 761.82 577.95 0.05
ryy6_256 17 44 Rochester 13 103 504.42 316.13 0.08
c2_181 35 116 Rochester 2 708 403.80 4.06 0.03
alu3_200 18 94 Rochester 10 285 255.25 151.17 0.07
decod_217 21 80 Rochester 6 197 192.30 121.17 0.05
example2_231 16 157 Rochester 19 411 187.63 79.62 0.21
cu_219 25 40 Rochester 5 031 177.15 72.20 0.02
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C7552_205 21 80 Rochester 6 384 158.30 80.38 0.05
alu2_199 16 157 Rochester 19 007 139.00 68.86 0.17
dk17_224 21 49 Rochester 6 650 105.19 36.56 0.04
mlp4_245 16 131 Rochester 14 513 79.06 22.69 0.09
mux_246 22 35 Rochester 3 679 71.17 39.75 0.04
urf1_150 9 1 517 Boeblingen 134 216 68.45 43.96 9.52
clip_206 14 174 Rochester 20 872 62.91 43.62 0.20
plus63mod4096_163 12 429 Rochester 82 195 58.47 44.01 1.46
dist_223 13 185 Boeblingen 19 458 19.93 12.08 0.13
inc_237 16 93 Rochester 7 523 18.02 8.46 0.04
urf5_159 9 499 Boeblingen 57 099 15.99 9.17 0.90
alu1_198 20 32 Rochester 1 377 13.19 4.02 0.01
cmb_214 20 18 Rochester 2 589 11.47 10.76 0.01
sqr6_259 18 81 Rochester 4 436 10.89 4.50 0.02
5xp1_194 17 85 Rochester 5 487 10.78 4.59 0.04
rd84_253 12 111 Boeblingen 7 857 9.99 6.78 0.05
root_255 13 99 Boeblingen 8 594 7.97 5.15 0.05
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Table II: Optimization Level O2

Benchmark Results

Name n |G| Architecture |G′| tsota [s] tadv [s] tprop [s]

sym9_317 27 64 Rochester 1 566 >3 600.00 81.40 0.03
c2_182 35 305 Rochester 2 692 963.18 99.00 0.22
cm163a_213 29 39 Rochester 3 704 2 004.05 515.69 0.03
apla_203 22 80 Rochester 13 212 >3 600.00 >3 600.00 0.11
cm151a_211 28 33 Rochester 3 798 >3 600.00 >3 600.00 0.04
rd84_313 34 113 Rochester 2 158 >3 600.00 >3 600.00 12.47
mod5adder_306 32 110 Rochester 2 380 >3 600.00 >3 600.00 0.37
add6_196 19 229 Rochester 26 201 455.70 138.65 1.29
cycle17_3_112 20 48 Rochester 13 876 777.82 667.16 1.80
rd73_312 25 76 Rochester 1 498 199.84 226.25 0.65
cm150a_210 22 53 Rochester 3 678 795.15 583.42 0.07
ryy6_256 17 44 Rochester 13 100 22.17 23.40 0.20
c2_181 35 116 Rochester 3 271 >3 600.00 >3 600.00 0.04
alu3_200 18 94 Rochester 10 463 44.81 27.40 0.11
decod_217 21 80 Rochester 6 289 35.55 23.60 0.05
example2_231 16 157 Rochester 19 207 38.57 16.77 0.62
cu_219 25 40 Rochester 4 863 136.76 48.83 0.03
plus63mod8192_164 13 492 Rochester 111 258 110.21 78.31 8.61
C7552_205 21 80 Rochester 6 291 60.18 32.07 0.04
alu2_199 16 157 Rochester 19 080 23.56 12.42 0.27
dk17_224 21 49 Rochester 6 589 7.70 2.99 0.05
mlp4_245 16 131 Rochester 14 394 12.41 4.59 0.17
mux_246 22 35 Rochester 3 829 156.01 91.49 0.06
urf1_150 9 1 517 Boeblingen 132 898 75.19 44.03 21.89
clip_206 14 174 Rochester 21 407 44.16 23.82 0.26
plus63mod4096_163 12 429 Rochester 83 835 67.01 45.24 4.71
dist_223 13 185 Boeblingen 18 721 28.09 16.70 0.24
inc_237 16 93 Rochester 7 624 55.03 42.83 0.05
urf5_159 9 499 Boeblingen 56 089 15.52 8.77 3.00
alu1_198 20 32 Rochester 1 424 14.56 1.42 0.01
cmb_214 20 18 Rochester 2 669 15.03 15.31 0.02
sqr6_259 18 81 Rochester 4 536 5.31 2.03 0.03
5xp1_194 17 85 Rochester 5 420 6.89 3.52 0.04
rd84_253 12 111 Boeblingen 7 715 4.48 2.77 0.06
root_255 13 99 Boeblingen 8 729 6.10 3.82 0.06
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tadv : Runtime of advanced methodology EC routine [10] tprop : Runtime of proposed, dedicated EC scheme
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