Efficient Post-Silicon Run-Time Error Detection for Systems-on-Chip

<u>Sebastian Pointner</u>, Martin Brunner, Rainer Findenig & Robert Wille Johannes Kepler University Linz & Infineon Technologies Linz

TuZ Workshop 22.02.2021, Virtual Conference

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku.at

Big Picture of this work

- Ensure that a system works as intended
- Systems which are safe (e.g., functional safety)
- Systems which are failsafe (e.g., redundant systems)
- Systems capable to react to certain scenarios

Ensuring Safe Systems: Design Phase

- Classical approach
 - ∘ I.e., ISO26262 flow
- Pre-Silicon Verification:
 - Oo we design the thing right?
- Post-Silicon Test:
 - o Do we have the right thing?

Ensuring Safe Systems: After Deployment

- Post Silicon Test
 - Covers only a point of time
- Utilizing BIST capabilities
 - Check certain properties during e.g. boot routine
 - Does also not cover entire run-time

• Goal: run-time error detection ©

Ensuring Safe Systems: Using Redundancy

- Lock-step approach
 - Utilize more instances e.g. of a CPU
 - Compare result for error detection
 - Insert delay to exclude external influences

Ensuring Safe Systems: Using Redundancy

- Lock-step approach
 - Utilize more instances e.g. of a CPU
 - Compare result for error detection
 - Insert delay to exclude external influences
- Advantages:
 - Simple and robust design ©

Ensuring Safe Systems: Using Redundancy

- Lock-step approach
 - Utilize more instances e.g. of a CPU
 - Compare result for error detection
 - Insert delay to exclude external influences
- Advantages:
 - ∘ Simple and robust design ☺
- Disadvantages:
 - o More chip area is needed ☺
 - Higher power consumption ☺
 - ∘ Delayed computation ⊗

Analysis of the Lock-Step Approach I

- Redundant usage of CPUs
- Same inputs for the CPUs
- Same firmware used for the CPUs
- Delay to exclude external influences

Analysis of the Lock-Step Approach I

- Redundant usage of CPUs
- Same inputs for the CPUs
- Same firmware used for the CPUs
- Delay to exclude external influences
- Idea: Make usage of firmware to get current execution information

Analysis of the Lock-Step Approach II

- Both CPUs run the same firmware
- Both CPUs have seen the same history of inputs
- Both CPUs should be in the same execution state

Analysis of the Lock-Step Approach II

- Both CPUs run the same firmware
- Both CPUs have seen the same history of inputs
- Both CPUs should be in the same execution state
- Idea: Explore the firmware for valid states

Symbolic Execution

Generate Control Flow Graph symbolically

Explore firmware's state space

Utilize symbolic values as placeholders

Decision finding based on reasoning engines

Symbolic Execution

- Generate Control Flow Graph symbolically
- Explore firmware's state space
- Utilize symbolic values as placeholders
- Decision finding based on reasoning engines

Utilize the explored states

• Is the state the system has reached valid?

• Utilize the explored states

• Is the state the system has reached valid?

• Taken branch as state

- Utilize the explored states
- Is the state the system has reached valid?
- Taken branch as state
- Non-taken branch

- Utilize the explored states
- Is the system allowed to take the branch?
- Considering the execution history?

- Utilize the explored states
- Is the system allowed to take the branch?
- Considering the execution history?
- Idea:
 - Pre-compute valid execution states
 - Compare current state with stored values

General Idea: Utilize Checkpoints

- Insert check points during symbolic execution
- Hash based on execution history
- Stored in check point registers
- System can compare:
 - Value stored in check point register
 - Run-time calculated hash value

Check Point Insertion

- Automatically after each branch
- Only for certain states
 - Marked by the designed
 - Using Checkpoint Functions
- Hash value for every checkpoint to be stored

Check Point Insertion: Full Coverage

- Automatically after each branch
- ALU CFG already leading to 8 register
- Does it make sense for every branch?
- Hardware overhead vs. coverage

Check Point Insertion: Designer Guided

- Checkpoint after each branch needed?
- Designer know functional safety critical code sections
- Guide the symbolic execution for the insertion
- Place "Checkpoint Functions" into the firmware
- Trade-off: hardware overhead vs. coverage

- Lockstep:
 - Duplicating or tripling the entire CPU

- Lockstep:
 - Duplicating or tripling the entire CPU
- Program Analysis approach:
 - Additional memory needed

- Lockstep:
 - Duplicating or tripling the entire CPU
- Program Analysis approach:
 - Additional memory needed
- Pros of the approach:
 - Easy to realize
 - · Less hardware overhead

Output Data

- Lockstep:
 - Duplicating or tripling the entire CPU
- Program Analysis approach:
 - Additional memory needed
- Pros of the approach:
 - Easy to realize
 - Less hardware overhead
- Cons of the approach:
 - CPU/firmware based
 - Corrupted memory for checkpoint register
 - Not feasible for AMS circuits

Conclusion and Future Work

- Demanding requirements
- Low power applications
- Production costs
- Approach being considered for industrial use ©
- Further work for better cost/benefit estimate needed

JOHANNES KEPLER

UNIVERSITY LINZ