
JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

Sebastian Pointner, Martin Brunner, Rainer Findenig & Robert Wille

Johannes Kepler University Linz & Infineon Technologies Linz

TuZ Workshop

22.02.2021, Virtual Conference

Efficient Post-Silicon Run-
Time Error Detection for

Systems-on-Chip

Big Picture of this work

• Ensure that a system works as intended

• Systems which are safe (e.g., functional safety)

• Systems which are failsafe (e.g., redundant systems)

• Systems capable to react to certain scenarios

Ensuring Safe Systems: Design Phase

• Classical approach

◦ I.e., ISO26262 flow

• Pre-Silicon Verification:

◦ Do we design the thing right?

• Post-Silicon Test:

◦ Do we have the right thing?

Ensuring Safe Systems: After Deployment

• Post Silicon Test

◦ Covers only a point of time

• Utilizing BIST capabilities

◦ Check certain properties during e.g. boot routine

◦ Does also not cover entire run-time

• Goal: run-time error detection 

Ensuring Safe Systems: Using Redundancy

• Lock-step approach

◦ Utilize more instances e.g. of a CPU

◦ Compare result for error detection

◦ Insert delay to exclude external influences

Ensuring Safe Systems: Using Redundancy

• Lock-step approach

◦ Utilize more instances e.g. of a CPU

◦ Compare result for error detection

◦ Insert delay to exclude external influences

• Advantages:

◦ Simple and robust design 

Ensuring Safe Systems: Using Redundancy

• Lock-step approach

◦ Utilize more instances e.g. of a CPU

◦ Compare result for error detection

◦ Insert delay to exclude external influences

• Advantages:

◦ Simple and robust design 

• Disadvantages:

◦ More chip area is needed 

◦ Higher power consumption 

◦ Delayed computation 

Analysis of the Lock-Step Approach I

• Redundant usage of CPUs

• Same inputs for the CPUs

• Same firmware used for the CPUs

• Delay to exclude external influences

Analysis of the Lock-Step Approach I

• Redundant usage of CPUs

• Same inputs for the CPUs

• Same firmware used for the CPUs

• Delay to exclude external influences

• Idea: Make usage of firmware to get current execution information

Analysis of the Lock-Step Approach II

• Both CPUs run the same firmware

• Both CPUs have seen the same history of inputs

• Both CPUs should be in the same execution state

Analysis of the Lock-Step Approach II

• Both CPUs run the same firmware

• Both CPUs have seen the same history of inputs

• Both CPUs should be in the same execution state

• Idea: Explore the firmware for valid states

Symbolic Execution

• Generate Control Flow Graph symbolically

• Explore firmware’s state space

• Utilize symbolic values as placeholders

• Decision finding based on reasoning engines

Symbolic Execution

• Generate Control Flow Graph symbolically

• Explore firmware’s state space

• Utilize symbolic values as placeholders

• Decision finding based on reasoning engines

(declare-fun mem_1 () (_ BitVec 32))

(assert (= mem_1 #x00000004)

(declare-fun mem_1 () (_ BitVec 32))

(assert (= (= mem_1 #x00000004) false))

General Idea: Utilize State Space

• Utilize the explored states

• Is the state the system has reached valid?

General Idea: Utilize State Space

• Utilize the explored states

• Is the state the system has reached valid?

• Taken branch as state

General Idea: Utilize State Space

• Utilize the explored states

• Is the state the system has reached valid?

• Taken branch as state

• Non-taken branch

General Idea: Utilize State Space

• Utilize the explored states

• Is the system allowed to take the branch?

• Considering the execution history?

General Idea: Utilize State Space

• Utilize the explored states

• Is the system allowed to take the branch?

• Considering the execution history?

• Idea:

◦ Pre-compute valid execution states

◦ Compare current state with stored values

General Idea: Utilize Checkpoints

• Insert check points during symbolic execution

• Hash based on execution history

• Stored in check point registers

• System can compare:

◦ Value stored in check point register

◦ Run-time calculated hash value

Check Point Insertion

• Automatically after each branch

• Only for certain states

◦ Marked by the designed

◦ Using Checkpoint Functions

• Hash value for every checkpoint to be stored

Check Point Insertion: Full Coverage

• Automatically after each branch

• ALU CFG already leading to 8 register

• Does it make sense for every branch?

• Hardware overhead vs. coverage

Check Point Insertion: Designer Guided

• Checkpoint after each branch needed?

• Designer know functional safety critical code sections

• Guide the symbolic execution for the insertion

• Place “Checkpoint Functions” into the firmware

• Trade-off: hardware overhead vs. coverage

Advantages/Disadvantages
• Lockstep:

• Duplicating or tripling the entire CPU

Advantages/Disadvantages
• Lockstep:

• Duplicating or tripling the entire CPU

• Program Analysis approach:

• Additional memory needed

Advantages/Disadvantages
• Lockstep:

• Duplicating or tripling the entire CPU

• Program Analysis approach:

• Additional memory needed

• Pros of the approach:

• Easy to realize

• Less hardware overhead

Advantages/Disadvantages
• Lockstep:

• Duplicating or tripling the entire CPU

• Program Analysis approach:

• Additional memory needed

• Pros of the approach:

• Easy to realize

• Less hardware overhead

• Cons of the approach:

• CPU/firmware based

• Corrupted memory for checkpoint register

• Not feasible for AMS circuits

Conclusion and Future Work

• Demanding requirements

• Low power applications

• Production costs

• Approach being considered for industrial use 

• Further work for better cost/benefit estimate needed

