Efficient Post-Silicon Run-
Time Error Detection for
Systems-on-Chip

Sebastian Pointner, Martin Brunner, Rainer Findenig & Robert Wille
Johannes Kepler University Linz & Infineon Technologies Linz

TuZ Workshop
22.02.2021, Virtual Conference

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

(infineon

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Stral3e 69
4040 Linz, Austria

jku.at

Big Picture of this work

Ensure that a system works as intended

Systems which are safe (e.g., functional safety)

Systems which are failsafe (e.g., redundant systems)

e Systems capable to react to certain scenarios

J z JOHANNES KEPLER
UNIVERSITY LINZ

Ensuring Safe Systems: Design Phase

* Classical approach
° l.e., 1S0O26262 flow

* Pre-Silicon Verification:
° Do we design the thing right?

* Post-Silicon Test:
° Do we have the right thing?

J z JOHANNES KEPLER
UNIVERSITY LINZ

Implementation

Design
Specificaton

v

Coﬁcept
Design

v

Design
Implementation

v

Physical

First
Silicon

 J

Mass
Production

| Verification |

Design Verification
(Pre-Silicon)

Test

Test
(Post-Silicon)

Ensuring Safe Systems: After Deployment

* Post Silicon Test

° Covers only a point of time
Inputs N
0 Circuit Outputs
1 under test >
e _ | (CUT)
e Utilizing BIST capabilities Test |l
)) . . generator R
° Check certain properties during e.g. boot routine (TGC) | et |__Error
° Does also not cover entire run-time] (RM)

Control

* Goal: run-time error detection ©

J z U JOHANNES KEPLER
UNIVERSITY LINZ

Ensuring Safe Systems: Using Redundancy

Instruction & Data

* Lock-step approach \ v
o Utilize more instances e.g. of a CPU Rl
o Compare result for error detection ¢

° Insert delay to exclude external influences

\J
CPU 2
Delay
\J \J
Compare Unit
' .

Output Data Execution Status

J z JOHANNES KEPLER
UNIVERSITY LINZ

Ensuring Safe Systems: Using Redundancy

* Lock-step approach
o Utilize more instances e.g. of a CPU
o Compare result for error detection

Instruction & Data

° Insert delay to exclude external influences

* Advantages:
o Simple and robust design ©

\J
Output Data

J z JOHANNES KEPLER
UNIVERSITY LINZ

v v l
Delay
CPU 1 .
¢ Delay
\J
CPU 2 l
Delay
CPU n
\J \J ¢

Compare Unit

'

Execution Status

Ensuring Safe Systems: Using Redundancy

* Lock-step approach
o Utilize more instances e.g. of a CPU
o Compare result for error detection

Instruction & Data

° Insert delay to exclude external influences

* Advantages:
o Simple and robust design ©

* Disadvantages:
° More chip area is needed ®
° Higher power consumption ® \/
o Delayed computation ® Output Data

J z U JOHANNES KEPLER
UNIVERSITY LINZ

v v l
Delay
CPU 1 .
¢ Delay
\J
CPU 2 l
Delay
CPU n
\J \J ¢

Compare Unit

'

Execution Status

Analysis of the Lock-Step Approach |

* Redundant usage of CPUs %"
e Same inputs for the CPUs = [Majority
— 1l f Gate
e Same firmware used for the CPUs
— gale

Delay to exclude external influences

J z JOHANNES KEPLER
UNIVERSITY LINZ

Analysis of the Lock-Step Approach |

gate

—

Redundant usage of CPUs

Same inputs for the CPUs

gate Majority
11 | Gate

N

| |

Same firmware used for the CPUs

— gale
— I

Delay to exclude external influences

Idea: Make usage of firmware to get current execution information

J z JOHANNES KEPLER
UNIVERSITY LINZ

Analysis of the Lock-Step Approach li

* Both CPUs run the same firmware %"
* Both CPUs have seen the same history of inputs - [Majority
— 1l f Gate
* Both CPUs should be in the same execution state
— gale

J z JOHANNES KEPLER
UNIVERSITY LINZ

Analysis of the Lock-Step Approach li

* Both CPUs run the same firmware %"
* Both CPUs have seen the same history of inputs - [Majority
— 1l f Gate
* Both CPUs should be in the same execution state
— gale

Idea: Explore the firmware for valid states

J z JOHANNES KEPLER
UNIVERSITY LINZ

Symbolic Execution

Generate Control Flow Graph symbolically

Explore firmware’s state space

Utilize symbolic values as placeholders

Decision finding based on reasoning engines

J z JOHANNES KEPLER
UNIVERSITY LINZ

a==4

/\

if.then

if.else

\ Y/

return

Symbolic Execution a==

Generate Control Flow Graph symbolically / \

if.then if.else

Explore firmware’s state space

Utilize symbolic values as placeholders \ /

return

Decision finding based on reasoning engines

(declare-fun mem_1 () (_ BitVec 32)) (declare-fun mem_1 () (_ BitVec 32))
(assert (= mem_1 #x00000004) (assert (= (= mem_1 #x00000004) false))

J z JOHANNES KEPLER
UNIVERSITY LINZ

General Idea: Utilize State Space

e Utilize the explored states

* |s the state the system has reached valid?

JX

JOHANNES KEPLER
UNIVERSITY LINZ

d ==

/\

if.then

if.else

\/

return

General Idea: Utilize State Space

* Utilize the explored states q ==

* |s the state the system has reached valid? ‘~ / \
e Taken branch as state ‘ if.then if.else

\/

return

J z JOHANNES KEPLER
UNIVERSITY LINZ

General Idea: Utilize State Space

Utilize the explored states q==

Is the state the system has reached valid? ‘~ / \
Taken branch as state ‘ 1f.then if.else

Non-taken branch \ /

return

J z JOHANNES KEPLER
UNIVERSITY LINZ

General Idea: Utilize State Space

e Utilize the explored states
* |s the system allowed to take the branch?

* Considering the execution history?

J z JOHANNES KEPLER
UNIVERSITY LINZ

d ==

~ / \

if.then

if.else

\/

return

General Idea: Utilize State Space

Utilize the explored states

Is the system allowed to take the branch?

Considering the execution history?

ldea:
° Pre-compute valid execution states
o Compare current state with stored values

J z JOHANNES KEPLER
UNIVERSITY LINZ

d ==

~ / \

if.then

if.else

\/

return

General Idea: Utilize Checkpoints

Insert check points during symbolic execution

Hash based on execution history

Stored in check point registers

System can compare:
° Value stored in check point register
° Run-time calculated hash value

J z U JOHANNES KEPLER
UNIVERSITY LINZ

Instruction & Data

'

CPU 1

TN
S

Checkpoint

'

Output Data

Register

N~

Check Point Insertion

* Automatically after each branch

* Only for certain states
o Marked by the designed
o Using Checkpoint Functions

* Hash value for every checkpoint to be stored

J z JOHANNES KEPLER
UNIVERSITY LINZ

Check Point Insertion: Full Coverage

* Automatically after each branch
* ALU CFG already leading to 8 register
* Does it make sense for every branch?

* Hardware overhead vs. coverage

End Algorithm

J z JOHANNES KEPLER
UNIVERSITY LINZ

Check Point Insertion: Designer Guided

Checkpoint after each branch needed?

* Designer know functional safety critical code sections

Guide the symbolic execution for the insertion

Place “Checkpoint Functions” into the firmware

Trade-off: hardware overhead vs. coverage

J z JOHANNES KEPLER
UNIVERSITY LINZ

Instruction & Data

Advantages/Disadvantages o l
* Lockstep: o | CPUL D(iay R
« Duplicating or tripling the entire CPU T-jay -~ i :
CPU n

Compare Unit

\j
Output Data

'

Execution Status

Instruction & Data

Checkpoint
Register

Output Data

J z JOHANNES KEPLER
UNIVERSITY LINZ

Instruction & Data

- |

Advantages/Disadvantages P l

Delay

» Lockstep: CPU1 I
« Duplicating or tripling the entire CPU _ { elay

Deolav CPU 2 i

* Program Analysis approach: = :

« Additional memory needed CPU n

Compare Unit

\j
Output Data

'

Execution Status

Instruction & Data

Checkpoint
Register

Output Data

J z JOHANNES KEPLER
UNIVERSITY LINZ

Instruction & Data

- |

Advantages/Disadvantages P l

Delay

» Lockstep: CPU1 I
« Duplicating or tripling the entire CPU _ { elay

Deolav CPU 2 i

* Program Analysis approach: = :

« Additional memory needed CPU n

» Pros of the approach:

« Easy to realize

Compare Unit

* Less hardware overhead v
Output Data

'

Execution Status

Instruction & Data

Checkpoint
Register

Output Data

J z JOHANNES KEPLER
UNIVERSITY LINZ

Instruction & Data

Advantages/Disadvantages P l
Delay
» Lockstep: CPU1 I
« Duplicating or tripling the entire CPU _ { elay
Deolav CPU 2 i
* Program Analysis approach: = :
« Additional memory needed CPU n

Pros of the approach:

« Easy to realize

Compare Unit

* Less hardware overhead v
Output Data

Cons of the approach:

'

Execution Status

e CPU/firmware based Instruction & Data
» Corrupted memory for checkpoint register ¢
* Not feasible for AMS circuits

Checkpoint
Register

Output Data

J z JOHANNES KEPLER
UNIVERSITY LINZ

Conclusion and Future Work

* Demanding requirements

* Low power applications

Production costs

Approach being considered for industrial use ©

Further work for better cost/benefit estimate needed

J z JOHANNES KEPLER
UNIVERSITY LINZ

JOHANNES KEPLER
UNIVERSITY LINZ

