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Big Picture of this work

Ensure that a system works as intended

Systems which are safe (e.g., functional safety)

Systems which are failsafe (e.g., redundant systems)

e Systems capable to react to certain scenarios
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Ensuring Safe Systems: Design Phase

* Classical approach
° l.e., 1S0O26262 flow

* Pre-Silicon Verification:
° Do we design the thing right?

* Post-Silicon Test:
° Do we have the right thing?
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Ensuring Safe Systems: After Deployment

* Post Silicon Test

° Covers only a point of time
Inputs N
0 Circuit Outputs
1 under test >
e _ | (CUT)
e Utilizing BIST capabilities Test |l
) ) . . generator R
° Check certain properties during e.g. boot routine (TGC) | et |__Error
° Does also not cover entire run-time ] (RM)

Control

* Goal: run-time error detection ©
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Ensuring Safe Systems: Using Redundancy

Instruction & Data

* Lock-step approach \ v
o Utilize more instances e.g. of a CPU Rl
o Compare result for error detection ¢

° Insert delay to exclude external influences

\J
CPU 2
Delay
\J \J
Compare Unit
' .

Output Data Execution Status
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Ensuring Safe Systems: Using Redundancy

* Lock-step approach
o Utilize more instances e.g. of a CPU
o Compare result for error detection

Instruction & Data

° Insert delay to exclude external influences

* Advantages:
o Simple and robust design ©

\J
Output Data
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Ensuring Safe Systems: Using Redundancy

* Lock-step approach
o Utilize more instances e.g. of a CPU
o Compare result for error detection

Instruction & Data

° Insert delay to exclude external influences

* Advantages:
o Simple and robust design ©

* Disadvantages:
° More chip area is needed ®
° Higher power consumption ® \/
o Delayed computation ® Output Data
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Analysis of the Lock-Step Approach |

* Redundant usage of CPUs %"
e Same inputs for the CPUs = [ Majority
— 1l f Gate
e Same firmware used for the CPUs
— gale

Delay to exclude external influences
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Analysis of the Lock-Step Approach |

gate

—

Redundant usage of CPUs

Same inputs for the CPUs

gate Majority
11 | Gate

N

| |

Same firmware used for the CPUs

— gale
— I

Delay to exclude external influences

Idea: Make usage of firmware to get current execution information
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Analysis of the Lock-Step Approach li

* Both CPUs run the same firmware %"
* Both CPUs have seen the same history of inputs - [ Majority
— 1l f Gate
* Both CPUs should be in the same execution state
— gale
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Analysis of the Lock-Step Approach li

* Both CPUs run the same firmware %"
* Both CPUs have seen the same history of inputs - [ Majority
— 1l f Gate
* Both CPUs should be in the same execution state
— gale

Idea: Explore the firmware for valid states
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Symbolic Execution

Generate Control Flow Graph symbolically

Explore firmware’s state space

Utilize symbolic values as placeholders

Decision finding based on reasoning engines
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Symbolic Execution a==

Generate Control Flow Graph symbolically / \

if.then if.else

Explore firmware’s state space

Utilize symbolic values as placeholders \ /

return

Decision finding based on reasoning engines

(declare-fun mem_1 () (_ BitVec 32)) (declare-fun mem_1 () (_ BitVec 32))
(assert (= mem_1 #x00000004) (assert (= (= mem_1 #x00000004) false))
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General Idea: Utilize State Space

e Utilize the explored states

* |s the state the system has reached valid?

JX
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General Idea: Utilize State Space

* Utilize the explored states q ==

* |s the state the system has reached valid? ‘~ / \
e Taken branch as state ‘ if.then if.else

\/

return
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General Idea: Utilize State Space

Utilize the explored states q==

Is the state the system has reached valid? ‘~ / \
Taken branch as state ‘ 1f.then if.else

Non-taken branch \ /

return
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General Idea: Utilize State Space

e Utilize the explored states
* |s the system allowed to take the branch?

* Considering the execution history?
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General Idea: Utilize State Space

Utilize the explored states

Is the system allowed to take the branch?

Considering the execution history?

ldea:
° Pre-compute valid execution states
o Compare current state with stored values
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General Idea: Utilize Checkpoints

Insert check points during symbolic execution

Hash based on execution history

Stored in check point registers

System can compare:
° Value stored in check point register
° Run-time calculated hash value

J z U JOHANNES KEPLER
UNIVERSITY LINZ

Instruction & Data

'

CPU 1

TN
S

Checkpoint

'

Output Data

Register

N~



Check Point Insertion

* Automatically after each branch

* Only for certain states
o Marked by the designed
o Using Checkpoint Functions

* Hash value for every checkpoint to be stored
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Check Point Insertion: Full Coverage

* Automatically after each branch
* ALU CFG already leading to 8 register
* Does it make sense for every branch?

* Hardware overhead vs. coverage

End Algorithm
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Check Point Insertion: Designer Guided

Checkpoint after each branch needed?

* Designer know functional safety critical code sections

Guide the symbolic execution for the insertion

Place “Checkpoint Functions” into the firmware

Trade-off: hardware overhead vs. coverage

J z JOHANNES KEPLER
UNIVERSITY LINZ



Instruction & Data

Advantages/Disadvantages o l
* Lockstep: o | CPUL D(iay R
« Duplicating or tripling the entire CPU T-jay -~ i :
CPU n

Compare Unit

\j
Output Data

'
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Instruction & Data

- |

Advantages/Disadvantages P l
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Instruction & Data

- |

Advantages/Disadvantages P l

Delay

» Lockstep: CPU1 I
« Duplicating or tripling the entire CPU _ { elay

Deolav CPU 2 i

* Program Analysis approach: = :

« Additional memory needed CPU n

» Pros of the approach:

« Easy to realize

Compare Unit

* Less hardware overhead v
Output Data
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Instruction & Data

Advantages/Disadvantages P l
Delay
» Lockstep: CPU1 I
« Duplicating or tripling the entire CPU _ { elay
Deolav CPU 2 i
* Program Analysis approach: = :
« Additional memory needed CPU n

Pros of the approach:

« Easy to realize

Compare Unit

* Less hardware overhead v
Output Data

Cons of the approach:

'

Execution Status

e CPU/firmware based Instruction & Data
» Corrupted memory for checkpoint register ¢
* Not feasible for AMS circuits

Checkpoint
Register

Output Data
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Conclusion and Future Work

* Demanding requirements

* Low power applications

Production costs

Approach being considered for industrial use ©

Further work for better cost/benefit estimate needed
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