
Exact Physical Design of Quantum Circuits
for Ion-Trap-based Quantum Architectures

Oliver Keszocze∗, Naser Mohammadzadeh†, and Robert Wille‡§
∗Department of Computer Science, Friedrich-Alexander-Universität (FAU), Erlangen, Germany

†Department of Computer Engineering, Shahed University, Tehran, Iran
‡Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
§Software Competence Center Hagenberg GmbH (SCCH), Austria

oliver.keszoecze@fau.de, mohammadzadeh@shahed.ac.ir, robert.wille@jku.at

Abstract—Quantum computers exploit quantum effects in a
controlled manner in order to efficiently solve problems that are
very hard to address on classical computers. The ion-trap-based
technology is a particularly advanced concept of realizing quan-
tum computers with advantages with respect to physical real-
ization and fault-tolerance. Accordingly, several physical design
methods aiming at realizing quantum circuits to corresponding
architectures have been proposed. However, all these methods
are heuristic and cannot guarantee minimality. In this work, we
propose a solution which can generate exact physical designs, i.e.,
solutions which require a minimal number of time steps. To this
end, satisfiability solvers are utilized. Experimental evaluations
confirm that, despite the underlying computational complexity of
the problem, this allows to generate minimal physical designs for
several quantum circuits for the first time.

I. INTRODUCTION

Allowing for quantum effects in a controlled manner might
be exploited as a feature. Richard Feynman originally proposed
using a well-controlled quantum system to efficiently solve
problems that are very hard to address on classical computers
and named the device a quantum computer [1]. They operate on
the entangled superposition states, where the power of quan-
tum algorithms comes from. Factorization, unsorted database
search, and the simulation of quantum-mechanical systems
are some classic hard problems that benefit from quantum
algorithms [2].

Several candidate technologies have been proposed for the
realization of a quantum computer to date [3]. Of these
technologies, trapped ions are currently one of the most ad-
vanced. It not only adequately fulfills the DiVincenzo criterion
but also possesses several prominent properties demonstrated
experimentally which are conducive to architectures for the
fault tolerant quantum computation [4]. Kielpinski et al. [5]
proposed a multiplexed trap architecture which was modular
and more scalable. Current scalable ion-traps have precision
electrode structures that can be fabricated by using standard
semiconductor processing techniques [4]. Because of these
promising attributes, the ion-trap technology is considered in
this paper.

However, to use this technology, corresponding quantum
circuits need to be properly realized onto the architecture –
requiring a design flow. In an abstract fashion, this quantum
circuit design flow can be divided into two main processes:
synthesis and physical design [6]. The synthesis process takes a
description and generates an optimized technology-independent

netlist. The purpose of physical design is to embed an abstract
circuit description, such as a netlist, into a detailed geometric
layout. Physical design consists of scheduling, placement, and
routing processes. The scheduling process determines the ex-
ecution order of gates. The placement one figures out where
blocks are placed. The routing process routes data between
blocks [7].

Some heuristics for these processes have been proposed
for ion-trap-based architectures, see, e.g. [8–13] for schedul-
ing, [14–17] for the placement and routing of operations,
or [18–22] for optimization techniques. They try to minimize
metrics such as the number of required time steps [6]. However,
all of them are heuristic, i.e., none of them can guarantee
minimality. This is a severe problem, as it leaves uncertainties
on the best possible realizations, spoils comparisons between
heuristics, and makes the design of larger functionality relying
on (preferably minimal) building blocks rather inefficient.

In this paper, we are closing this gap by proposing an
exact approach for the physical design of quantum circuits
for ion-trap-based architectures. The proposed approach takes
an initial quantum circuit and a corresponding architecture as
inputs and determines the optimal initial locations for qubits,
the optimal locations for gates, the optimal routing, and the
optimal order for the execution of gates so that all operations
can be executed within a minimal number of time steps.

In order to guarantee minimality, we consider all possible
solutions in a symbolic fashion. Afterwards, we apply sat-
isfiability solvers together with an objective function (here,
minimizing the number of time steps) to eventually determine
an explicit instance representing the minimum. Although the
underlying solving process is computationally rather expensive,
today’s satisifiability solvers are capable of tackling this in-
stance at least for selected relevant quantum functions. In fact,
experimental evaluations confirm that, using the proposed ap-
proach, minimal physical designs for several quantum circuits
can be derived for the first time.

The remainder of this article is organized as follows: the
background material including a review of quantum circuits
and an abstraction of the ion-trap technology is provided in
Section II. Section III includes the main motivation of our
work. We propose the exact approach for physical design in
Section IV. Section V provides the experimental results. Finally,
Section VI concludes the paper.

q0

q1

q2

q3

q4

G1 G2

G3

G4

G5

q5

Fig. 1: A sample circuit including six qubits and five two-gubit gates.

II. BACKGROUND

In this section, we present background material on the quan-
tum circuit model and the abstraction of the considered target
technology (namely ion-trap-based quantum architectures).

A. Quantum Circuits
There are several models of quantum computing, including

the quantum circuit model, the quantum Turing machine, the
adiabatic quantum computer, the one-way quantum computer,
topological quantum computing, and various quantum cellular
automata [23]. The quantum circuit model is the most popular
and developed model for quantum computation. The quantum
circuit model uses a notation similar to representations of
classical circuits, where qubits are represented as signals and
operations are represented as gates. In fact, sequences of
one- and two-qubit gates represent the fundamental logic for
transforming a quantum state over time. However, there are
several unique features for quantum computing including the
inability to copy or clone arbitrary quantum states. Furthermore,
the number of inputs into the circuit must be equivalent to the
number of outputs and all quantum gates are unitary and can
be described by unitary matrices [2].

More precisely, an n-qubit circuit is represented with n
horizontal lines, with time flowing from left to right. A quan-
tum computation typically requires the application of several
quantum gates, sequentially or in parallel, to various subsets of
qubits [2]. Note that, in the following, the precise functionality
of those gates is not important, but the information on which
qubits the respective operation has to be conducted. For more
details on the functionality of quantum gates, we refer to [2].

Example 1. Fig. 1 provides an example of a quantum circuit
composed of six qubits and five two-qubit gates. As can be seen,
the first gate works on qubits q1 and q3. The second and the
third gate (working on qubits q0 and q1 as well as q3 and q4,
respectively) can be executed in parallel.

B. Ion-Trap-based Quantum Architectures
In this work, we consider ion-trap-based quantum architec-

tures. In this technology, an ion represents a physical qubit
which can be transported through rectangular channels, lined
with electrodes, called wires. Within these channels, each qubit
could be trapped or physically moved between gate locations
by applying pulse sequences to the discrete electrodes. By this,
qubits are moved through an architecture towards certain gate
locations where the respective operation on those qubits is
eventually executed.

In ion-trap technology, some details, such as which type of
ion is used, specific electrode sizing and geometry, as well as

Straight channel 3-way intersection Corner

4-way intersection Straight Channel gate Dead-end gate

P0

P1

P2

P3

P0 P1 P0

P0 P1 P0 P1

P2

P0

P1

Fig. 2: Basic macroblocks for ion-trap layouts. Black boxes are gate locations,
gray boxes are abstract electrodes, and wide white channels are valid paths for
qubit movement [14]. Each macroblock has a specific number of ports (shown
as P0-P3) along with a set of electrodes used for ion movement and trapping.

exact voltage levels necessary for trapping and movement, may
vary. Therefore, it is necessary to use a structure for certain
design tasks that is independent of these details. Whitney et
al. [14] defined a library of macroblocks and used them as the
basic building blocks of layouts. By using these macroblocks,
some low-level details, such as ion types, size of electrodes,
and precise voltage levels needed for trapping and moving
ions, are omitted. All of these details are condensed within
the macroblocks. The basic blocks of an ion-trap layout are
depicted in Fig. 2. In this figure, gate locations are indicated
by black squares. Each macroblock has some ports to allow
qubits to move between the macroblocks. Various orientations
of each macroblock could be used in a layout. In this article
and also many other studies in the field of physical design of
quantum circuits [21, 22, 24], these macroblocks are used to
construct quantum circuit layouts.

Overall, this leads to a model of ion-trap-based quantum
architectures composed of [14]:
• Qubits, i.e., physical ions representing a quantum state

which may be held in gate locations or moved between
gate locations through a channel of control electrodes.

• Wires, i.e., channel elements with electrodes that allow to
move trapped ions via pulses applied to those electrodes.

• Gate Locations, i.e., certain positions in the architecture
which allow to execute quantum operations by applying
laser pulses to the ions occupying this location (note that
multiple gates may use the same gate location).

• Macroblocks, i.e., a certain combination of gate locations
and wires which work as building blocks. Each mac-
roblock has one or more “ports” through which qubits
may enter and exit and which connect to an adjacent
macroblock.

Example 2. Fig. 3a shows a sample layout generated from
macroblocks for the circuit depicted in Fig. 1. Trap regions are
white spaces between electrodes that ion-qubits can be trapped
in and, hence, moved along. For example, if qubits q0 and q3
are initially in macroblocks B1 and B6, respectively, to execute
gate G1 in macroblock B6 qubit q0 should move through
macroblocks B3, B5, B7, B6 in order to reach macroblock B6.

In order to evaluate the quality of a realization, usually the
execution time (i.e., the number of time steps) is considered as
main cost metric. To calculate the number of time steps that
one circuit needs to be run on a layout, physical delays for
the gates and for the two types of move operations are used
whose values are provided in Table I [25]. One microsecond
corresponds to one time step.

TABLE I: Latency values for various physical operations in the ion-trap
technology [25]

Operation Latency [µs]

Single Gate 1
Double Gate 10
Move 1
Turn 10

q0

q2,G4 q1,G2

B2

B1

B3 B4

B5

B6 B7 B8

B9

q4,G3q3,G1

q5,G5 Electrodes

Trap regions

(a) Qubit initial placement and gate place-
ment. The list assigned to each gate lo-
cation determines the initial location of
each qubit and the gates that are to be
performed in that gate location.

Time 0: Move q0: Blocks B3,B5,B7,B6

Time 14: Gate laser (G1): Blocks B6

Time 24: Move q0: Blocks B7,B5,B3,B4

Time 36: Move q3: Blocks B7,B8

Time 38: Gate laser (G3): Block B8

Time 48: Gate laser (G2): Block B4

 Move q3: Block B7,B9

Time 58: Move q0: Block B3,B2

Time 60: Gate laser (G4): Block B2

 Gate laser (G5): Block B9

Time 70: Finished

(b) Scheduling of the circuit on the layout.

Fig. 3: A sample layout generated from macroblocks for the circuit depicted
in Fig. 1 and a sample mapping of the circuit onto the layout.

III. MOTIVATION

This section provides the motivation of our work. To this
end, we first review the physical design of quantum circuits for
ion-trap-based quantum architectures. Afterwards, we discuss
the currently available state-of-the-art implementations of its
main building blocks and their shortcomings. Based on that,
the remainder of this paper introduces an alternative method
which tries to address these shortcomings.

A. Physical Design for Ion-Trap Quantum Architectures

In this work, we consider the physical design for ion-trap
quantum architectures. The physical design process consists of
scheduling, placement, and routing processes. The scheduling
process determines the instruction execution sequence as well
as the order of qubit movements across channels; the placement
process assigns initial locations to qubits as well as locations of
gates; and the routing process determines the movement paths
of qubits.

Example 3. Fig. 3 shows a sample mapping of the circuit
depicted in Fig. 1 onto the layout. The macroblocks are labeled
by the macroblock number. The list assigned to each gate
location determines the initial location of each qubit and the
gates that are to be performed in that gate location. Fig. 3b
shows the schedule for the running sample circuit on the layout.
Times show the start time for an action. This circuit needs 70
time steps to be run on the layout. The blocks that a qubit
traverses are written in order in the front of ”Blocks.”

B. Related Work and its Shortcomings

In this section, a review on related work in the field of
quantum physical design for ion-trap architectures is pre-
sented to highlight the position of the proposed approach in
the current literature. Balensiefer et al. [8] developed some
tools to appraise layouts. Whitney et al. [14] proposed a
greedy algorithm that is appropriate for small circuits and a
dataflow-based algorithm for larger circuits aiming at placement
and routing. Metodi et al. [10] presented a physical operations
scheduler (QPOS) on a given physical layout. Dousti et al. [11]
developed an iterative heuristic approach for placement based
on forward and backward computations in a quantum instruc-
tion dependency graph (QIDG). Goudarzi et al. [17] proposed
a mapper which considers the effect of the routing time on
quantum instruction scheduling and placement. Goudarzi et
al. [17] used a net-weighting timing-driven placement solution
based on a modified version of the force-directed placement
tool. Yazdani et al. [16] presented a scheduler using ILP
and a layout generator using a graph-drawing algorithm [26].
In [20], a layout optimization technique, namely GLC, was
proposed to improve the number of time steps. Bahreini et
al. [27] proposed a mathematical model for scheduling and
placement. They solved the MILP model for scheduling by the
GAMS toolset [28] and the placement by a combination of
genetic algorithm and tabu search methods. Ahsan et al. [13]
proposed a physical design flow for the MUSIQC architec-
ture [29]. They used a greedy ASAP scheduling algorithm and
a partitioning-based placement approach. Mohammadzadeh et
al. [30] proposed the SAQIP architecture and a design flow
for it. Mohammadzadeh et al. [18] introduced the physical
synthesis concept and proposed four techniques [18, 19, 21, 22]
for it.

As can be seen, a substantial amount of work has been
developed in the past years aiming to provide efficient solutions
mapping a quantum circuit to ion-trap architectures. However,
all these work rely on heuristics, i.e., cannot guarantee mini-
mality with respect to the number of time steps. This is a severe
shortcoming, since
• it remains unknown for almost all quantum functionality

what the best possible realization would be,
• it makes it substantially harder to evaluate the quality

of heuristics (e.g., proposing a new heuristic improving
previous heuristics by 10% is marginal, if the actual
minimum is still factors away, but impressive if this yields
the minimum), and

• it makes the design of larger functionality relying on
(preferably minimal) building blocks rather inefficient.

Motivated by this, we are proposing an exact physical design
approach, i.e., a solution with the minimal number of time
steps, in the following.

IV. PROPOSED SOLUTION

In this section, we discuss the proposed solution in detail,
which precisely considers the ion-trap architectures introduced
in Section III-A and addresses the issues discussed in Sec-
tion III-B. The generated solution is guaranteed to implement
the desired circuit in as few time steps as possible. The
proposed design flow is to model the design problem as a series
of SMT (Satisfiability Modulo Theories, see, e.g., [31]) problem

Algorithm 1: Overall Exact Design Algorithm
input : Quantum circuit C, physical layout L
input : Initial number of time steps to use start t
input : maximal number of allowed time steps T
output: Exact design solution or no solution

1 for t← start t . . . T do
. Create SMT instance

2 instance← DESIGN(C,L, t)
. Try to satisfy the instance

3 res← solve(instance)
4 if res == SAT then
5 return extract solution(res)

6 return no solution

instances whose satisfying solution (if it exists) corresponds to
the solution of the design problem. In the literature, important
research results have been achieved with such schemes (see,
e.g., [32–35]), but none of them investigated the potential
for the physical design of quantum circuits for ion-trap-based
quantum architectures.

A. Overall Approach
Given a circuit C, a layout L, and a number of time steps t,

the idea is to formulate an SMT instance DESIGN(C,L, t)
that is satisfiable if and only if the circuit is realizable on
the layout within t time steps. This process is then iterated
with increasing values for t until a solution is found (or a
pre-specified maximal number of time steps is reached). This
process is illustrated in Algorithm 1. Note that a safe lower
bound for stating t is the sum of the gate operation times dg
(see Table I) along the longest path in the dataflow graph D(C)
of a given circuit C. Starting with this value will reduce the
overall computation time. Since, by this, all possible values for
the number of time steps are tested, the method is guaranteed to
determine the solution with the smallest number of time steps.

B. Modeling the Design Space
Let Q and a G denote the set of all (the IDs of the) qubits

and gates used in the circuit C, respectively.
To model the design space, we make use of the following

SMT variables (internally stored as bit-vectors):

q
(t)
i ∈ N for i ∈ Q, t ∈ {start t, . . . , T}
opg ∈ N for g ∈ G .

The value v of q(t)i indicates that the qubit with ID i at time
step t is at the trap position with ID v. The value w of opg in
turn indicates that the gate g has become operational in time
step w.

Example 4. Consider the circuit depicted in Figure 1 with
Q = {0, 1, 2, 3, 4, 5} and G = {1, 2, 3, 4, 5} and the layout
depicted in Figure 3 with L = {1, . . . , 9}. The variables and
their corresponding assignments describing the movement of
qubit q0 to the macro block B6 are given as follows.

q
(0)
0 = 1 q

(1)
0 = 3 q

(2)
0 = 5 q

(3−13)
0 = 7 q

(14)
0 = 6

The operation of G1 starting in time step 14 is indicated by
the assignment of op1 = 14.

C. Constraining the Design Space

So far, no constraints regarding the assignments of the vari-
ables have been made. This would allow to create nonsensical
assignments not representing a physically realizable solution. A
random assignment of the variables, for example, could have
qubits “jumping” between unconnected blocks in the layout.
Therefore, the design space has to be constraint further.

Note that in the following, in order to make the description
more concise and easier to follow, some implementation details
are omitted. We will, for example, not show explicit checks
ensuring that no negative time steps are used.

1) Qubit placement: Initially, qubits can only be placed on
macro blocks with a gate position. Let Mg denote the set of
macro blocks with a gate location. For the layout shown in
Fig. 3a, for example, the set is given byMg = {1, 2, 4, 6, 8, 9}.
The corresponding constraint is then given by∧

i∈Q
q
(0)
i ∈Mg. (1)

The next constraint is to make sure that the qubits do stay
within the bounds of the layout. This is enforced by∧

i∈Q
q
(t)
i ≤ #L, (2)

i.e., the qubits’ positions are valid macro blocks.
Every macro block, except blocks with a gate position, can

only have one qubit in it at a time. This is enforced by

T∧
t=start t+1

∧
m∈Mg

(∑
i∈Q

q
(t)
i ≤ 2

)
(3)

T∧
t=start t+1

∧
m∈L\Mg

(∑
i∈Q

q
(t)
i ≤ 1

)
. (4)

2) Movement constraints: For each macro block m ∈ L, we
denote all the neighboring macro blocks that are reachable by a
qubit with N(m). The set N(m) always contains m itself. To
ensure that only valid qubit movements take place, we enforce
that, if a qubit is present in a given macro block at time step t,
it had to be within the neighborhood of this particular macro
block in the previous time step, i.e.,

T∧
t=start t+1

∧
i∈Q
m∈L

(
q
(t)
i = m =⇒ q

(t−1)
i ∈ N(m)

)
. (5)

To ensure that the turning time is handled correctly, the
following constraints ensure that the qubit stays long enough in
the macro block that was used for turning. For a given macro
block m by N×(m), we denote the set of all macro blocks
that can be reached by turning once. Note that this set can be
empty.

Example 5. Consider the layout as shown in Figure 3. We have,
for example, the sets N×(B1) = {B2, B4} and N×(B7) = ∅.

G1

G2G3

G4G5

Fig. 4: Dataflow graph D(C) for the circuit C depicted in Fig. 1.

This allows to construct the following turning time con-
straint. The idea is that a qubit might not reach a block m
from N×(m) within dt time steps (dt = 10, see Table I).

∧
i∈Q
m∈L

∧
t=start t+1

(
q
(t)
i = m =⇒

t−1∧
t′=t−dt

q
(t′)
i 6∈ N×(m)

)
.

(6)

This does already correctly model the movement of the
individual qubits but does not prevent qubits from switching
places. This is not allowed since there is no “space” in an
individual channel for two qubits to move past each other. A
qubit q0 must not move from macro block B3 in time step
t to B5 in time step t + 1 if another qubit q1 moves from
macro block B5 to block B3. This is captured in the following
constraint:

t∧
t=start t+1

∧
i∈Q

j∈Q\{i}

∧
m∈L

n∈N(m)

¬
(
q
(t)
i = m ∧ q

(t)
j = n ∧ q

(t−1)
i = n ∧ q

(t−1)
j = m

)
(7)

3) Gate Operation Constraints: In order to ensure that the
operations are performed in the correct order, we construct the
dataflow graph D(C) of the circuit C. Each node g corresponds
to a gate in C while the edges (g∗, g†) connect gates that
consecutively operate on shared quits.

Example 6. Consider the circuit depicted in Fig. 1. The
corresponding dataflow graph D(C) is shown in Fig. 4.

Using the operation latency dg for gate g (see Table I), the
constraints for the correct ordering is then given by∧

(g∗,g†)∈D(C)

opg† ≥ (opg∗ + dg∗) (8)

These constraints automatically enforce that all operations
are started at all. The following constraint makes sure that the
operations are started early enough to finish their operation
within the specified time limit of T :∧

g∈C
opg ≤ T − (dg − 1) (9)

The last constraint in the formulation is making sure that, for
each gate in operation, the corresponding qubits are on the same

gate location during the full time of the gate being operational.
This is captured in the following constraint:

∧
g∈C

T∧
t=start t

(
(opg = t) =⇒

∧
i∈Q(g)

(
q
(t)
i ∈Mg︸ ︷︷ ︸

a)

∧
t+1+dg∧
t′=t+1

q
(t)
i = q

(t′)
i︸ ︷︷ ︸

b)

∧
∧

j∈Q(g)

q
(t)
i = q

(t)
j︸ ︷︷ ︸

c)

)

(10)

Here, Q(g) denotes the set of qubits being operated on by gate
g ∈ C. The individual parts ensure that a) the qubits are on a
gate location, b) stay on their position during the operation of
the gate, and c) are on the same macroblock.

Combining all these constraints faithfully models the design
problem. Passing the resulting instance to corresponding SAT
solvers (such as [36, 37]) allows to determine the solution with
the minimal number of time steps.

V. EXPERIMENTAL EVALUATION

In order to evaluate the proposed method, we implemented a
C++ program which takes a quantum circuit to be synthesized
as well as the considered layout and generates a corresponding
SMT instance as described in Section IV. Afterwards, we
passed the resulting instance to the SMT solver Z3 [36]. The
respectively obtained (minimal) results are finally compared to
the (heuristic) results reported in [27] which, to date, represents
one of the state-of-the-art (heuristic) solutions for physical
design of quantum circuits for ion-trap-based architectures. All
experiments have been conducted on a Ubuntu 18.04.4 LTS
machine with an Intel(R) Xeon(R) CPU E5-2630 v3 CPU
running at 2.40GHz and 8GB of main memory with a timeout
of 60 minutes.

The results of these comparisons are shown in Table II. The
first columns provide the name of the considered benchmarks
(taken from [27]) as well as their corresponding number of
qubits and number of gates. Afterwards, the latency (i.e., the
number of required time steps) of the solutions obtained by the
heuristic method proposed in [27] and obtained by the exact
method proposed in this work are given. Finally, the runtime of
the proposed approach (in minutes) is given. Since the runtime
of the heuristic method from [27] is negligible (i.e., always less
than a minute), it is not explicitly reported in Table II.

From these results we can see that doing exact physical
design of quantum circuits for ion-trap-based architectures is
computationally rather expensive and, hence, only applicable to
smaller quantum circuits. But, for the first time, this allows to
generate minimal results for the benchmarks listed in Table II.
Moreover, this additionally shows that there is still substantial
room for improvements in today’s heuristics. In fact, the
number of required time steps often is still more than twice as
large as the actual minimum. Finally, the results for benchmarks
such as 1bitadde-rd32 can now be used as minimal building
block for larger functionality. By this, all the shortcomings of
the state-of-the-art as summarized in the end of Section III-B
are addressed.

TABLE II: EXPERIMENTAL RESULTS

Benchmark #qubits #gates T [27] T proposed Runtime [m]

1bitadder-rd32 4 16 303 126 9.40
input4-2-2 4 7 108 75 3.36
mod5-D4 3 14 173 103 36.84
input7-1-3 7 18 157 84 18.25
input5-0-3 5 11 132 59 4.32
input5-2-2 5 8 81 57 2.45
input5-1-3 5 12 152 70 3.42
input6-0-2 6 6 14 13 0.42
input6-2-2 6 10 76 58 4.62
ham3-D1 5 12 217 101 1.87
ham3-D2 3 13 242 110 2.73
input7-0-3 7 20 247 118 54.03

VI. CONCLUSIONS

In this work, we proposed an exact method for the physical
design of quantum circuits on ion-trap-based architectures.
With the proposed method, we were able to generate minimal
results for the first time, to evaluate that heuristics available
thus far still have substantial room for improvement, and to
generate very compact building blocks to be used for realizing
larger functionality. We are confident that future work will build
up upon those results in the development of more sophisticated
and improved design methods for ion-trap-based architectures.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria
as well as by the BMK, BMDW, and the State of Upper Austria
in the frame of the COMET program (managed by the FFG).

REFERENCES
[1] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys,

vol. 21, no. 6/7, 1982.
[2] M. A. Nielsen and I. L. Chuang, “Quantum information and quantum

computation,” Cambridge: Cambridge University Press, vol. 2, no. 8,
p. 23, 2000.

[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53,
2010.

[4] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, p. 021314, 2019.

[5] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-
scale ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709–
711, 2002.

[6] N. Mohammadzadeh, “Physical design of quantum circuits in ion trap
technology–a survey,” Microelectronics journal, vol. 55, pp. 116–133,
2016.

[7] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of algorithms
for physical design automation. CRC press, 2008.

[8] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An evaluation frame-
work and instruction set architecture for ion-trap based quantum micro-
architectures,” in 32nd International Symposium on Computer Architec-
ture (ISCA’05). IEEE, 2005, pp. 186–196.

[9] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L.
Chuang, “A quantum logic array microarchitecture: Scalable quantum
data movement and computation,” in 38th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’05). IEEE, 2005, pp.
12–pp.

[10] ——, “Scheduling physical operations in a quantum information proces-
sor,” in Quantum Information and Computation IV, vol. 6244. Interna-
tional Society for Optics and Photonics, 2006, p. 62440T.

[11] M. J. Dousti and M. Pedram, “Minimizing the latency of quantum circuits
during mapping to the ion-trap circuit fabric,” in 2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2012, pp.
840–843.

[12] M. J. Dousti, A. Shafaei, and M. Pedram, “Squash: a scalable quantum
mapper considering ancilla sharing,” in Proceedings of the 24th edition
of the great lakes symposium on VLSI, 2014, pp. 117–122.

[13] M. Ahsan, R. V. Meter, and J. Kim, “Designing a million-qubit quantum
computer using a resource performance simulator,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 12, no. 4,
pp. 1–25, 2015.

[14] M. G. Whitney, Practical fault tolerance for quantum circuits. University
of California, Berkeley, 2009.

[15] M. C. Moghadam, N. Mohammadzadeh, M. Sedighi, and M. S. Zamani,
“A hierarchical layout generation method for quantum circuits,” in The
17th CSI International Symposium on Computer Architecture & Digital
Systems (CADS 2013). IEEE, 2013, pp. 51–57.

[16] M. Yazdani, M. S. Zamani, and M. Sedighi, “A quantum physical design
flow using ilp and graph drawing,” Quantum information processing,
vol. 12, no. 10, pp. 3239–3264, 2013.

[17] H. Goudarzi, M. J. Dousti, A. Shafaei, and M. Pedram, “Design of a
universal logic block for fault-tolerant realization of any logic operation in
trapped-ion quantum circuits,” Quantum information processing, vol. 13,
no. 5, pp. 1267–1299, 2014.

[18] N. Mohammadzadeh, M. Sedighi, and M. S. Zamani, “Quantum physical
synthesis: improving physical design by netlist modifications,” Microelec-
tronics Journal, vol. 41, no. 4, pp. 219–230, 2010.

[19] N. Mohammadzadeh, M. S. Zamani, and M. Sedighi, “Auxiliary qubit
selection: a physical synthesis technique for quantum circuits,” Quantum
Information Processing, vol. 10, no. 2, pp. 139–154, 2011.

[20] N. Mohammadzadeh, M. Sedighi, and M. S. Zamani, “Gate location
changing: an optimization technique for quantum circuits,” International
Journal of Quantum Information, vol. 10, no. 03, p. 1250037, 2012.

[21] N. Mohammadzadeh, M. S. Zamani, and M. Sedighi, “Quantum circuit
physical design methodology with emphasis on physical synthesis,”
Quantum information processing, vol. 13, no. 2, pp. 445–465, 2014.

[22] Z. Mirkhani and N. Mohammadzadeh, “Physical synthesis of quantum
circuits using templates,” Quantum Information Processing, vol. 15,
no. 10, pp. 4117–4135, 2016.

[23] S. P. Jordan, “Quantum computation beyond the circuit model,” arXiv
preprint arXiv:0809.2307, 2008.

[24] G. Wang and O. Khainovski, “A fault-tolerant, ion-trap-based architecture
for the quantum simulation algorithm,” Measurement, vol. 10, no. 6, pp.
10–4.

[25] N. Isailovic, “An investigation into the realities of a quantum datapath,”
Ph.D. dissertation, UC Berkeley, 2010.

[26] G. D. Toolkit, “An object-oriented library for handling and drawing
graphs.”

[27] T. Bahreini and N. Mohammadzadeh, “An minlp model for scheduling
and placement of quantum circuits with a heuristic solution approach,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 12, no. 3, pp. 1–20, 2015.

[28] G. D. Corporation, “General Algebraic Modeling System (GAMS)
Release 24.2.1,” Washington, DC, USA, 2013. [Online]. Available:
http://www.gams.com/

[29] C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.-M.
Duan, and J. Kim, “Large-scale modular quantum-computer architecture
with atomic memory and photonic interconnects,” Physical Review A,
vol. 89, no. 2, p. 022317, 2014.

[30] S. Sargaran and N. Mohammadzadeh, “Saqip: A scalable architecture for
quantum information processors,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 16, no. 2, pp. 1–21, 2019.

[31] L. De Moura and N. Bjørner, “Satisfiability modulo theories:
Introduction and applications,” vol. 54, no. 9, pp. 69–77. [Online].
Available: https://doi.org/10.1145/1995376.1995394

[32] R. Wille, M. Soeken, N. Przigoda, and R. Drechsler, “Exact synthesis
of toffoli gate circuits with negative control lines,” in International
Symposium on Multiple-Valued Logic, 2012, pp. 69–74.

[33] O. Keszöcze, R. Wille, K. Chakrabarty, and R. Drechsler, “A general
and exact routing methodology for digital microfluidic biochips,” in
International Conference on Computer-Aided Design, pp. 874–881.

[34] M. Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler, “An
exact method for design exploration of quantum-dot cellular automata,”
in Design, Automation & Test in Europe Conference, 2018, pp. 503–508.

[35] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and H
operations,” in Design Automation Conference, 2019.

[36] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, C. R. Ramakrishnan and J. Rehof, Eds.
Springer, pp. 337–340. [Online]. Available: ttps://github.com/Z3Prover/z3

[37] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “SWORD:
A SAT like prover using word level information,” in International
Conference on Very Large Scale Integration of System-on-Chip, 2007,
pp. 88–93.

