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Abstract—The field of intelligent technologies that range
from intelligent control systems to wireless communications
and sensing technologies is rapidly increasing, advancing thus
the research on the Intelligent Transportation Systems (ITS)
field and the related innovative intermodal transport services,
traffic management and road safety. Driving simulators make it
possible to study driver reactions in a controlled environment.
Accordingly, this paper presents the design and development
of a flexible, modular tailored simulation tool to the specific
requirements for investigating the effect of automation and V2X
communication on drivers. Moreover, the simulator is linked
to Simulation of Urban MObility (SUMO) for micro traffic
emulations and connected to Robot Operating System (ROS)
for architecture management and nodes handling. The proposed
simulator was validated through various driving experiments,
which were carried out over a selected scenario trajectory. The
obtained results were compared with the results from field tests
and different path tracking algorithms for automated driving
showing the outcome a good and efficient performance.

I. INTRODUCTION

Road safety is one of the top priorities for the European
Commission. Even if the number of fatalities in the European
Union (EU) has decreased a lot in recent years (by 52%
between 2001 and 2015), and the EU has the lowest fatality
rate of any region in the world [1], in 2016, traffic accidents
are still the fifth cause of death [2].

Accordingly, researchers in the Intelligent Transportation
Systems (ITS) field are investigating the implementation of
novel approaches, Advanced Driving Assistance Systems
(ADAS) and algorithms to increase road safety. In this
context, the introduction of autonomous vehicles on our
roads represents an opportunity to alleviate the number of
accidents as the automation will make driver intervention in
the control of the vehicle unnecessary [3].

This paper introduces 3DCoAutoSim, which is an ab-
breviation for 73D Simulator for Cooperative ADAS and
Automated Vehicles Simulator”. It is a vehicle simulator
with high quality 3D visualization based on Unity [4], which
makes it possible to emulate a variety of controlled driving
environments. The version presented in this paper is an
extension of the capabilities presented in [5], where a driver-
centric driving platform visualized the mobility behavior of
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other vehicles based on traffic models and a TraCI protocol
allowed communication between Unity3D and the micro-
scopic traffic simulator SUMO; in [6], in which the optimal
speed while approaching an intersection was calculated by
retrieving the traffic light timing program from the road
infrastructure and in [7], in which Vehicular Ad Hoc Network
(VANET) communication capabilities were used to assess
different information paradigms.

Driving simulators have been used in many applications,
including traffic safety, ADAS implementation, driver dis-
traction, human-machine-interaction, among-others. For ex-
ample, to evaluate the usability of head-up displays (HUDs)
in forward collision warning systems [8] or to assess a user
interface for a novel traffic regulation system [9]. Several
platforms that simulate V2X have been also developed in
recent works. Some example simulation models are described
in [10]. The authors in [11] combined the network simulator
ns-2 [12] with the open source traffic simulator SUMO [13]
to evaluate Vehicle Ad-Hoc Networks (VANET) and devel-
oped a TraCI in which SUMO and ns-2 communicated over a
Transmission Control Protocol (TCP) connection to simulate
vehicle-to-vehicle connections. In a further work SUMO was
also integrated with the network simulator OMNeT++ to
evaluate inter-vehicle communication (IVC) protocol [14].
In the field of Robotic simulation the combination of the
3D simulator Gazebo and ROS as interface make it possible
to create realistic simulations [15]. Furthermore, the Udacity
self-driving car nanodegree program offers a simulator to
teach students how to train cars how to navigate road courses
using deep learning [16], the authors utilized Unity game
engine for the simulation environment. On the other hand,
authors in [17], utilized Unreal engine to develop CARLA
simulator, which has been developed to support training, and
validation of self-driving urban systems.

All these simulations platforms have been created to
address specific needs of the systems to be tested. In the
same way, through the approach presented in this paper a
tailored simulation platform has been developed to contribute
to research in the field. We contribute to the research field
by introducing 3DCoAutoSim, a modular simulation plat-
form that integrates all the capabilities that other simulators
offers. 3DCoAutoSim includes cooperative ADAS capabil-
ities, which use vehicular data connection among multiple
simulators to be able to test a variety of applications that are
based on Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure
(V2I) or Vehicle-to-Pedestrian (V2P) communication, it also
makes it possible to evaluate operational interconnectivity
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that results from the collected data coming from various
vehicle, pedestrians and infrastructure. The 3DCoAutoSim
simulator is also linked to Simulation of Urban MObility
(SUMO) [18] for microscopic road traffic simulation and
traffic congestion identification. Furthermore, the simulator
is connected to Robot Operating System (ROS) to get access
to various software libraries and tools related to intelligent
vehicle applications.

The reminder of this paper is organized as follows:
Section II describes the proposed simulator in terms of
implementation, features and capabilities. The experimental
setup, selected scenario and evaluation metrics follow in
Section III. Section IV presents the obtained results for the
validation process. Finally, Section V concludes the paper.

II. 3DCOAUTOSIM

The simulator is implemented using Unity, since it is a
powerful 3D visualization tool, which is platform indepen-
dent and has a strong physics engine. Figure 1 depicts the
proposed simulator architecture hierarchy. It is divided into
four main categories; features, devices, outputs and mode.
The required configuration can be selected from the main
menu. After clicking on the Start button the selection is
compiled and the pertinent experiment loaded. The following
sub-sections describe all the implemented technologies in the
proposed simulator.
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Fig. 1. Proposed simulator architecture hierarchy

A. Environments

There are several options of environments available for
selection, which are summarized as follows:

o« FHTW Environment, which is a 3D constructed map
of the campus of University of Applied Sciences, Tech-
nikum Wien (FHTW) in the city of Vienna. The map
construction was carried-out using the CityEngine soft-
ware [19], achieving thus a one-to-one scale with high-
quality visualization to emulate the real environment.

o Race City, which is provided as a testing environment
by the Realistic Car Controller asset in Unity [20]. It
includes several buildings, a parking lot and a large
circular racing track for high-speed experiments.

e SUMO Open Street Maps (OSM) based environments,
are dynamically configured by the user through adjust-
ing a configuration file from any where in OSM and
link it SUMO, further details are shown in the next
sub-section.

o Scenario based selection are environments that are de-
signed for a specific use-case, for instance, all experi-
ments in this work were carried out using the validation
scenario, which is explained in the experimental work
section.

B. SUMO

The communication between Unity3D and the microscopic
traffic simulator SUMO makes it possible to use real-world
road networks together with realistic traffic models to simu-
late a variety of driving conditions for evaluating interaction
with other road users (e.g. the uses cases mentioned in the
next subsections).

Integrating traffic environment into the driver centric sim-
ulator has a series of restrictions, SUMO overcomes most of
them as illustrated below.

o Macroscopic simulators lose the ability of referring to
a single element in the environment, however SUMO
is of a microscopic granularity nature, which allows
identifying each different element.

o Time discrete and space continuous simulator. Whereas
the latter can be simulated, the former is a requirement
because the status of the whole simulator will be asked
in a regular pace of 60Hz.

e A way to establish a bidirectional communication.
Through the TraCI API, the simulator is able to provide
and embody information related to each of the elements
in the environment.

The SUMO OSM option requires a previously created
scenario. When this option is selected and the simulation
initiated, a new SUMO simulation runs in server mode. The
loading operation is explained in [5]. The simulation process
is as follows:

1) SUMO is started in server mode (i.e. stopped and
waiting for a connection to a newly create socket in an
free port), specifying the scenario the user has entered
in the configuration box.

2) A new connection is made to the port from the
3DCoAutoSIM simulator.

3) All the roads are loaded to create all the network in
the 3d environment.

4) All the traffic lights are loaded : the states and con-
figuration of the traffic lights are cached in order to
decrease the calls to the SUMO server.

5) All the initial cars are loaded.

The simulation is then started. For each game loop a new
simulation step is performed in the micro-simulator through



the API, asking for the position of the System-Controlled
Vehicles (SCV) and communicating the current position of
the User-Controlled Vehicle (UCV).

C. Automated Driving and ROS

Automated driving is a feature that controls the vehicle
navigation to follow a set of waypoints, generated by an
offline path planning. In the proposed simulator, there are
two methods of path tracking.

1) The first method is path following behavior available
from Unity [21]. The logic consists of moving the
object from one point to another, and upon reaching
that point, moving to the next one. All the calculations
are on the direction vectors among the points.

2) The second method is based on the ROS link to the
simulator, which is explained in detail as follows:

In order to link ROS with the implemented simulator,

a communication bridge is implemented as depicted in
Figure 2. Based on the first bridge package back in 2011,
rosbridge, the server node uses WebSocket as transport
layer and enables a two-way communication between a client
and a server [22]. Unlike HTTP, WebSocket keeps the con-
nection open, and do not require HTTP handshakes for every
message. In [23], [24], the authors built on the aforemen-
tioned package and implemented rosbridgelib, which
is a library for working with JSON (JavaScript Object Nota-
tion). In this work, the library was utilized and extended to
share back-and-forth ROS standard messages between ROS
nodes and the Unity simulator.

ROS

Unity

ROS Bridge Node Rendering Library

Other Unity
Scripts

Other ROS
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Fig. 2. Link from ROS environment to Unity simulator

By sharing messages the simulator outputs can be retrieved
to be recorded through the ROS environment, thus allowing
an easy comparation with data from real platforms. More-
over, messages sharing allows the simulator to read high-
level control commands and transform the vehicle into an
autonomous entity.

Accordingly, if the automated driving feature is selected
while the ROS link is active, the path tracking algorithm
based on the time-elastic-bans is executed. This approach
has been implemented and tested over electric golf carts
platforms [25]. The algorithm is adaptive to the environment
changes, since it uses the vehicle on-board sensors to create
a local map and avoids the obstacles in the environment.

D. Traffic Sign Detection

3DCoAutoSim is also able to detect and recognize traffic
signs or obstacles such as construction cones in the simulated
environment, using the mounted frontal camera and the
works completed in [26], [27]. The objective is to increase

drivers’ awareness by informing them about the detected
traffic signs or obstacles in the environment.

E. Traffic Light Assistance

The Traffic Light Assistance (TLA) option is an ADAS,
which communicates with the traffic lights of the environ-
ment and provides the driver with information regarding
the optimal speed to arrive at the intersection in the green
phase [6].

F. Tailgate (Keep-Distance)

The tailgate feature is based on the works presented in [28]
and [29]. The feature utilizes vehicular communication or
mounted sensors, to measure the distance between the driven
vehicle and the car ahead, relying on the work in [7].

G. Devices

3DCoAutoSim provides an extension API to create devices
to be attached to the cars. Each new device has to be
comprised at least of a prefab element (to be attached to
the vehicles) and of a subclass of the Device abstract class,
as described in Figure 3.

Device
+logFrequency: float
- registeredDevices: Dictionary<string, int>
- dataLogger: DeviceDatal ogger

~ . - de Id: string DeviceD, I
GameObject F‘_ rd:z:gzMe:anggngv string Losger
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M é::";fo N lvfegd(\)aLoggnglr()
+ GetDescription()
+ Getlnfo()
Fig. 3. Device abstract class as the parent for all the device classes

The figure depicts the relationship between the devices and
the associated loggers to dump their data. The reason for it is
that API is internally connected with the logging framework
(as described in II-H). As a consequence any data related to
a device can be easily created and logged.

The 3DCoAutoSim vehicles include four devices that can
be enabled or disabled and allow to record their associated
data for further analysis:

o CAN Bus. This is the only device that cannot be dis-
abled. It gathers internal information about the vehicle,
such as current speed, odometry, wheels torque and con-
sumption. Some of these values are extracted directly
from the simulator itself, whereas some others (such as
the fuel consumption) are extracted from SUMO. The
logging rate defaults to 10Hz.

e GPS. Emulates a GPS located in the middle of the
vehicle. It provides the 3D position of the vehicle inside
the scenario at a regular rate (defaults to 10Hz).

o LiDAR. Emulates a LiDAR located on top of the vehi-
cle with the frontal position heading to the forward and
with the O-plane horizontal to the ground. It has some
parameters that are configurable such as the number of
planes (defaults to 8 planes), the horizontal resolution
(defaults to 1deg) or the vertical separation of planes
(defaults to 2.5deg). The default logging rate is 1Hz.

« Camera. A monocular camera which takes photos at a
regular rate (defaults to 2Hz).



H. Output

As introduced in section II-E, 3DCoAutoSIM logs data
for each of the devices that are used in the experiments.

To this end, methods and attributes of the Device
subclass need to be implemented (i.e. Row (attribute for
getting the last row of data) of GetDescription () (the
textual information of the device object)). An overview of
the logging framework that defines the methods required for
the subclasses to implement is presented in Figure 4. In the
framework Datalogger and DeviceDatalogger are
the abstractions of the design for which CsvDatalogger
and CsvDeviceDataLogger are concrete implementa-
tions.

DataLogger <

+ GetDeviceDataLogger()

DeviceDataLogger CsvDataLogger

+ baseOutputPath: string
- experimentPath: string
- experimentFile: StreamWriter

+Log()
+MediaLoggingDir()
Py

+ CsvDatalogger()
- LogDevicelnformation()

CsvDeviceDataLogger
- experimentPath: string
- devicePath: string
- experimentFile: StreamWriter

+ CsvDeviceDatalogger()

Fig. 4. Logging framework design

CSV logging is a default implementation. For each ex-
periment, it creates a new folder with the summary of the
enabled devices and their configurations as well as the time
stamp for starting and ending. Each of the devices create a
new csv file with all the data logged at the specified step.

The SQL option is a further implementation. It requires a
query string and the drivers’ device class to connect to the
database. It adds a new row to the experiment tables with the
configuration and devices. In case of missing device tables
or data columns, the implementation will create them.

1. Multiple Simulators

Networked driving simulation represents an effective vir-
tual prototyping tool, which supports the development of
intelligent vehicles and accelerates system deployment [30].
Accordingly, 3DCoAutoSim supports the options of single
or multiple nodes. The two systems have all aforementioned
features and capabilities, in addition to Unity Multiplayer
Service, which creates real-time networked instances of the
simulator, each on a separate computer.

III. EXPERIMENTAL WORK

In this section, the experiment setup is explained, followed
by the scenario description and the evaluation metrics.

A. Setup

The utilized software are: Unity 2017.3 [4], SUMO
v0.32.0 [18] and ROS Kinetic Kame [31].

In order to control the vehicle in the simulator, a Thrust-
master T500 RS controller is used as the manual steering
wheel, in addition to its throttle, brake and clutch pedals,

and the TH8 RS gear shifter, as shown in Figure 5. It
has unprecedented 1080-degree rotation and powerful force
feedback effects. The controller is connected to a car play
seat to simulate a real vehicle and the simulator visuals are
displayed using overhead HD beamer with resolution of 1400
x 1050, in addition to a five point one surround sound system.

- THRUSTMASTER

Fig. 5. Thrustmaster T5S00 RS wheel, pedals and TH8 RS gear shifter

B. Scenario

The selected scenario was the surroundings of the FHTW
in the city of Vienna. The trajectory was a total distance
of 2.6 km, which included intersection, traffic lights, a
roundabout and pedestrians crossing. The route was defined
over OSM, as shown in Figure 6, which is considered as the
theoretical path in all experiments. The theoretical path is
represented as the waypoints that the center of the vehicle
should reach, in the center line of the road lane. This path
is obtained through defining multiple destination points over
the map, and run trajectory planning algorithm [32].

#

o

Fig. 6. Selected path over the OSM of Vienna, where the green pin is the
starting point and the red pin is the ending point

Multiple experiments were carried-out for the selected

scenario, which are summarized as follows:

o Driver Real Car, users drive through the selected route
using a car equipped with ADAS system. Recorded data
are the vehicle GPS coordinates, orientation, velocity,
acceleration, and CAN bus data.

o Driver Simulator, users drive through the selected
route using a car in the simulator, same data parameters
are recorded for later comparison.



o« Automated Simulator, the simulator uses the route
waypoints and the path tracking methods of Unity to
navigate the same car on its own. Same data parameters
are recorded for later comparison.

o Automated ROS, the simulator connects to ROS, where
optimal path tracking nodes use the route waypoints to
navigate the same car on its own. Same data parameters
are recorded for later comparison.

C. Metrics

In order to evaluate the functionality and efficiency of
the simulator, for the Ackermann modeled vehicles [33]
evaluation metrics are calculated for the vehicle position.
Accordingly, the mean and maximum relative position error
percentages are calculated as shown in Equations (1) and (2)

respectively.
1 N Tk Tk
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where Z, 9y are the coordinates of the vehicle and zg, yi
are the theoretical coordinates of the vehicle at time step k.
The metrics represent the vehicle lateral deviation from
the center of the lane in which the vehicle drives. They char-
acterize driving performance and performance degradation.
The lane position was measured as the distance between the
vehicle center and the lane center and depends on the lane
geometry. Coordinates re-sampling and interpolation were
implemented to calculate the lateral path deviation for all the
vehicles that were driving at different velocities. To this end
each point in the experiment path was orthogonally projected
to the lane center. The standard deviation of lateral position
(SDLP) is calculated as the root mean square of the error.

IV. RESULTS AND DISCUSSION

In this section, the obtained results from all experiments
are presented for validation purposes of the simulation func-
tionality and efficiency.

A. Qualitative Analysis

Figure 7 depicts the followed trajectory by the vehicle for
each carried-out experiment, where the green point represents
the starting position, and the red point represents the final
position. The compared trajectories correspond to the four
experiments (Driver Real Car, Driver Simulator, Automated
Simulator and Automated ROS) mentioned in Section III-B,
in addition to the theoretical path, which is the waypoints of
the path shown in Figure 6.

The Automated Simulator experiment using ROS path
tracking delivered the best results in terms of deviation
from the lane center. This was due to the fact that it
relied on the Ackermann modeling for the simulation of
kinematic and dynamic parameters. The Driver Real Car and
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Fig. 7. Paths comparison against the theoretical one

Automated Simulator experiments delivered similar results in
terms of smoothness and overall error. The Driver Simulator
experiment delivered however a constant lateral-error during
a period of 13 minutes on average per driver.

B. Quantitative Analysis

Table I summarizes quantitative results for the trajectories
shown in the aforementioned section. The obtained results
emphasis the qualitative analysis, where the automated driv-
ing using ROS obtained PFE,,cqn of 0.38% (SD: 0.21%),
followed by the automated driving using Unity with PE,,cqn
of 0.64% (SD: 0.28%). The manual driving of the cars in
both real and simulator obtained less accurate results, due to
the fact that human error is involved. Driving the simulator
car obtained the maximum PFE,,cqn of 1.01% (SD: 0.48%).

TABLE I
EVALUATION METRICS QUANTITATIVE RESULTS

. PEmean PEnax Umean
Metrics [%] [m] [m/s]
Driver
Real Car 0.88% 37.692 4.79
Driver 1.01% 25523 | 5.69

Simulator
Automated | 1o | 16879 | 5.1
Simulator
Automated
ROS 0.38% 13.421 4.89

The obtained results shows the viability of the proposed
simulator to emulate ideal conditions (such as trajectories)
that can be defined for autonomous vehicles and being
then compared with manual driving in a real test field
or in a simulator environment. The simulator functionality
and efficiency was validated by the performed experiments.
The performance decrease shown in the Driver Simulator
experiment was due to the settings difference in terms of
velocity in the simulator.



V. CONCLUSION AND FUTURE WORK

In this work, the development of a the ”3D Simulator
for Cooperative ADAS and Automated Vehicles Simulator”
(3DCoAutoSim) has been presented. It is based on the 3D
graphic engine Unity, connection to the microscopic traffic
simulator SUMO, and connection to the ROS architecture
for intelligent vehicles.

3DCoAutoSim was validated by carrying out four driving
experiments with the same trajectory using four different
experiments; two for which manual driving was required
(with a real car and with a simulated ca) and two that in-
volved automated driving (Unity and ROS). The comparative
analysis of the obtained results showed the good performance
and efficient functionality of the simulator under different
conditions.

The findings from the decrease in performance that re-
sulted from the Driver Simulator experiment will help to
adjust the calibration of the simulator in future research
experiments in different controlled environments, with differ-
ent scenarios and more users. Additionally, driving behavior
will be evaluated by using different vehicles, since the
proposed simulator have a variety selection of vehicles from
small cars to big buses and trucks. Last but not least, the
connection of multiple simulators will provide cues related
to the interaction of several road users.
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