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Abstract—Since the rise of deep artificial neuronal nets, object
detection and classification became an autonomous procedure,
where both, feature extraction and feature processing (e.g.:
classification) is done using an architecture based on artificial
neurons. The shortcomings of deep neuronal nets are mainly
based the black box models and the architecture of the networks,
which cannot be estimated. Unknown behavior and over-fitting
is still an unsolved problem. Thus, human-made parameters like
the number of neurons or the definition of activation functions
must be set. This work presents a non-parametric and non-linear
approach for image processing using latent variable models. We
used Gaussian process latent variable models for street sign
feature extraction, where a latent representation is estimated
without prior knowledge such as class label. Based on the latent
representation, we visualizes the features and use state-of-the-art
classifier for street sign classification. Our results proves, that our
approach extracts useful features for classification. Our approach
has still shortcomings, such as computational time, which are
current areas of research.

Index Terms—Gaussian Process Lantent Variable Models,
Image Classification, Feature Extraction

I. INTRODUCTION

The detection of streetsigns is a critical procedure in intelli-

gent transport systems [1], [2], where information from images

must be extracted and processed, e.g. classified. Different

methods, such as Boosting [3], [4] or support vector machines

[5] can be used. The rise of convolutional neuronal nets [6] in

2012 [7] and extensions for detection [8], [9] contributed to

object detection in autonomous driving [10]–[13] significantly

by automate both, the information extraction and processing.

On the one hand, high dynamical environment, such as

lightening condition and weather [1], [2], leads to uncertainty

and thus machine/statistical learning is required. On the

other hand, [14], [15] showed the restrictions of neuronal

nets in terms of robustness. Further, the layer architecture

including number of neurons and activation function must

be set manually. Different alternative algorithms such as

deep random forests [16], deep exponential families [17] or

deep Gaussian processes [18] were developed to overcome

limitations and simultaneously overcome general neuronal net

problems such as black-box modelling. Still, hyperparameters

such as number of features to extract must be set manually.

In this work we contribute to the state of the art by

extracting information regarding classification of traffic signs

through Gaussian process latent variable models (GPLVM)

[19], which results in a fully non-linear and non-parametric

approach.

We then visualize the latent space using an optimization

criterion based on the information loss of the latent space

estimation itself for further analysis and classification. Further,

classification based on the extracted information is performed

using state-of-the-art algorithms.

Thus, the contribution of this work is a fully explicable

methodology for unsupervised feature extraction for

classification using GPLVMs. To implement this, we

discuss (i) the extraction of a latent representation of a

street sign dataset using Gaussian process latent variable

models, (ii) the estimation of the latent dimension using the

reconstruction error, (iii) the visualization of the results in

terms of regions of interest and finally (iv) a classification

approach based on the extracted latent representation.

This work is structured as follows: chapter II gives an

overview of the current state in object classification and

detection. Chapter III introduces the used methods. The used

dataset and experimental results are discussed in chapter IV.

Finally, chapter V discusses the results before finally, chapter

VI summarizes this work and outlines further work.

II. STATE OF THE ART

Since the publication of AlexNet [7] in 2012, image

classification and object detection became a fully automated

task, where both, feature extraction and classification were

done using a neuronal net [8], [9], [20]. Convolutional

neuronal nets (CNN) [6], [21] are the backbone of the

classification and detection, where a deep architecture of

artificial neurons is used. In addition to object detection,

movement estimation [22] or segmentation (e.g.: pixel-wise

weed detection [23]) are typical applications of CNNs.

Since deep neuronal nets tends to become black-box

models and overfit using limited data [24], alternative deep

architecture rises [16]–[18], where the deep architecture are

created using alternative models. In [16], the authors stacked

C2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI:  
10.1109/ICCVE45908.2019.8964883.



Fig. 1: Visualization of the processing idea using Gaussian

process latent variable models. The data Y is compressed to

the latent representation X.

random forests to create a new deep architecture. [25] used

support vector machines to create a deep architecture for

regression problems.

Those alternative architectures try to overcome limitations

of neuronal nets. Gaussian processes [26, Ch. 6.4] were used

in [19], [27] to estimate a latent representation of a dataset. In

[18], [28], this idea was extended by stacking models based

on [29], where the limitations and similarities of neuronal nets

in contrast to Gaussian processes were discussed.

Independent from the algorithm itself, a latent representation

of the data is estimated during the training process. Using

neuronal nets or other deep architectures, this is typically

done using a supervised learning procedure, thus a class label

is used.

Different to those approaches, Gaussian process latent vari-

able models (GPLVM) [19], [30] is an unsupervised learning

approach, where no prior knowledge such as the class label

is needed. A latent representation of the data is estimated,

which ”compresses” the data using model capabilities and

data. By estimating the latent representation, the compression

results in a lower dimensional space, where the most important

information remains. Different to classic approaches such

as the principal component analysis (PCA) [26, Ch. 12.1],

Gaussian process latent variable models using non-parametric

and non-linear regression for latent space estimation. In [31],

the latent space is estimated using variational inference [32].

This approach needs less data to create useful models, which

is a strong benefit compared to artificial neuronal nets, where

a small number of examples is critical [24].

Note, that this approach must not lead to a latent repre-

sentation useful for processing but unfolds the structure in

the data. This process is visualised in figure 1, where a 3D

dataset Y is compressed to the latent representation X. We aim

to find a function, which allows us to project data into a latent

representation and back using GPLVMs. Note, that currently,

we do not use a deep architecture.

III. METHODS

In CNN applications [7], [33], image matrices are used for

processing. Using latent variable models such as GPLVMs,

grey-scale images1 with R rows and C columns Ij ∈
R

R×C must be ”flattened” to ~ij ∈ R
R·C×1, where ~ij =

(

jp0,0, . . . ,j pC,0,j p1,0, . . . ,j pC,R

)T
. jpa,b describes the pixel

in the a-th row and b-th column in image j. Latent variable

models estimates a compressed representation of each sample

based on the dataset finding representative information in the

dataset. Note, that this representation is strongly connected to

model restrictions, which limits the capability of modelling

real coherences.

Historically, the PCA [26, Ch. 12.1] [34, Ch. 23.1] were

used as a latent variable models for feature extraction. The

PCA was successfully used for autonomous driving [35],

[36], face detection [37] and computer vision based quality

management [38].

The PCA estimates a projections matrix W ∈ R
D×d, which

projects the dataset in the latent space. W is estimated using

argmin
W

d
∑

i=1

||~yi − W−1W~yi||
2

2
(1)

The samples are projected into the feature space using WT~xj .

Note, that the PCA assumes a Gaussian distributed dataset,

which is a strong restriction. This restriction will not hold in

real applications. Extensions of the PCA, namely independent

component analysis (ICA) [36], [39] or reconstruction ICA

[40], soften this restrictions.

In comparison, Gaussian process latent variable models use

non-linear and non-parametric regression rather than linear

projections for latent space estimation. Different to PCA,

ICA or reconstruction ICA, GPLVM [19], [27], [30] use

Gaussian process regression (GP) [26, Ch. 6.4] [41], a non-

linear and non-parametric regression approach, for latent space

estimation. Gaussian processes were successfully used in tran-

sition modelling for autonomous driving [42]–[45], stochastic

extensions of differential equations [46] or global optimization

[47], [48] for hyperparameter estimation. Based on [29], who

proved, that a multi-layer perceptron with infinite neurons can

converge to a Gaussian process several extensions [49], [50]

are available today.

The GPLVM formulates the problem using the mean field

family by introducing an independent latent space [19]

p(Y|X) =

D
∏

d=1

p(~yd|X) =

D
∏

d=1

N
(

~yd|~0,KNN + β−1IN
)

(2)

Where KNN is a kernel matrix, β is the precision and

IN is the identity matrix. Note, that for each dimension, a

Gaussian process is used to estimated the original data Y,

based on the latent representation X. Further, equation is a

1Note, that this approach is not limited to grey-scale images. Using RGB

images, the flattening procedure would lead to ~ij ∈ R
R·C·3×1.



general approach, where the number of latent dimensions is

not defined.

The estimation of this function can be implemented using

several approaches [30], where the location of the latent

representation is estimated. The extension to a fully Bayesian

approach, the Bayesian GPLVM (bGPLVM), is discussed in

[31].

The number of latent dimensions is still unknown. In this

work, we used bGPLVM to estimate a latent representation of

images of street signs and the reconstruction capability (see

equation 1) for the estimation of the latent dimension d∗. Thus,

we estimate d∗ using

d∗ = argmin
d

N
∑

n=1

√

√

√

√

P
∑

k=1

(

npk −n,d p
∗

k

)2

(3)

Where npk is the original k-th pixel of the n-th image and

n,dp
∗

k is the corresponding reprojected pixel value of the

bGPLVM using d latent dimensions. P is the number of pixel

in image In. d∗ is the latent dimension, where the reproduction

error is minimal.

Note, that this is a novel approach in comparison to [18],

where the latent dimension is estimated using the lower bound

[32]. We used the reconstruction error to separate the model

estimation and model selection.

We used d∗ for the estimation of the latent dimension d∗X.

d∗X and the correspondence class labels (e.g.: street sign class)

are then used for classification, where we used state-of-the-art

machine learning algorithms.

Note, that we used a fixed number of inducing points [31]

and the optimal number of inducing points can be estimated

equivalently to the latent space optimization.

For visualization of the extracted features, we calculated

d main components using d
~f =

(

df1 . . . dfd
)T

for each

latent dimension and

dfj =







max
n

(~x:,d) if j = d

mean
n

(~x:,d) else
(4)

Where ~x:,d describes the d − th column vector of dX. Thus

for each estimatet latent variable model, a set of d∗ images

visualizing the features can be generated.

For the estimation of d∗, a street sign database based on [51]

was used. Due to limited computational power, the database

was reduced to 20 street sign classes including total 3054

images. Later, the full dataset (43 classes) and d∗ are analysed.

The street signs were extracted from background and resized

to
[

25× 25
]

pixels due to processing limitations.

IV. EXPERIMENTAL RESULTS

The images were centered and scaled, were unit variance

and zero mean were set. Based on [31] and the implementation

in [52], dX were extracted, for d = 1 : 100, the inducing

points are fixed to 50. For each dX, the reproduction error

and visualization according to equation 3 and 4 are calculated.
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Fig. 2: The reproduction error for d = 1 : 100. Note, that the

minimum of the error is reached at d∗ = 53. For the purpose

of this work, this dimension is used.

The reproduction error according to the latent dimension is

shown in figure 2. Note, that we are using d∗ based on

the reproduction error, no further information measurement is

used. Further, this measurement estimates the latent dimension

based on the capability of information reprodcution rather then

information gain or capability of feature processing according

to prior knowledge such as image label. This is a major

different to CNN [6], [7], [20], where the feature extraction is

based on the capability of the model and prior information.

According to [53], [54], neuronal net-like structures tend

to confounding. Thus, the benefit of our approach is the

explicability of the model.The reconstruction of the all features

of d∗ is visualized in figure 3. Note, that the features are sorted

according to the automatic relevance determination capability

of the bGPLVM implementation [52] visualized in figure 4.

We used the radial base function kernel, which is defined as

[26, Ch. 6]2

k(~x, ~x′) = exp
(

− 1

2

∑d∗

j=1

1

l2
d

(xj , x
′

j)
2

)

(5)

~x and ~x′ are two samples and ld is the lengthscale of

dimension3 d. Thus, the lowest values corresponds to the

highest relevance. Note that the main shapes of the street signs

in the dataset, namely circle-like or triangular-like shapes, are

clearly visible in figure 3.

2The implementation in [52] is described in
https://gpy.readthedocs.io/en/deploy/GPy.kern.src.html#module-
GPy.kern.src.rbf

3The ARD values (e.g.: ld values) are stored inverted in [52].



Fig. 3: Visualization of all features using d∗ latent dimensions.
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Fig. 4: Automatic relevance determination at d∗. Note, that the

lengthscale is inverted and thus, the lowest value represents the

features with highest relevance.

A. Classification Using Initial Dataset

Since the optimization of the latent dimensions using the

reconstruction error focuses on the original dataset reproduc-

tion rather than feature processing, classification using d∗X

must not lead to satisfying classification results. Thus, we do

classification to evaluate the usefulnes of the estimated data

structure.

In this work, classic classifications algorithms were used.

We implemented the classification approach using logistic

regression (LR) [26, Ch. 4.3.2] and support vector machines

(SVM) [26, Ch. 7.1], where the ν-SVM approach [55], [56]

is extended using global Bayes optimization [48] for the esti-

mation of the kernel parameter γ and SVM hyperparameters

ν. For the training and testing of the classifier, the reduced

dataset (20 classes) was divided in 75% training and 25%

evaluation data. The classification approaches were done using

5 fold cross validation, where the training datasets were split

randomly. The result of the classification is shown in table

I, where ν = 0.075 and γ = 0.01253 was estimated by the

optimization approach.

B. Classification of all Classes

Based on the described method and d∗, we estimated a

latent representation of all 43 classes. We used 1960 examples

of the dataset (39209 examples) for latent space estimation.

37244 examples, which are not used for latent space esti-

mation, including all 43 classes were projected in the latent

space. Afterwards, the data were split 50% training and 50%
evaluation examples.

Again, we used a ν-SVM including hyperparameter opti-

mization for classification and 5 fold cross validation with a

random split. The result is shown in table II, where ν = 0.0495
and γ = 0.0251 was estimated by the optimization approach.

The minimal classification accuracy is 91.84%. The mean

accuracy is 98.02%.

V. DISCUSSION

We presented a combination of supervised and unsuper-

vised image processing, which were combined in a fully

explicable model, where no image pre-processing or image

feature extraction was performed. The ν-SVM classification

result lies between 93.62% and 100%. In comparison to the

original benchmark [51], we used
[

25× 25
]

pixels instead

of
[

40× 40
]

. Further, no further image feature (e.g.: HOG

features) were used which leads to less classification accuracy.

Regardless of the application, the backbone of the approach

is a sparsed Gaussian process [49], where a fixed number of

inducing points is used for prediction. This is critical for real-

time applications and current part of research [57]. Thus, the

benefits of (b)GPLVM are currently restricted by computa-

tional limitations. Simultaneously, the rise of computational

power will lead to significant gain in computational power

and thus, the shortcomings of GPLVM will decrease. The GPU

optimized implementation [57] based on [52] is currently in

development.

Further, due to the usage of unsupervised learning approach

the latent representation can lead to inferior classification

results in contrast to supervised approaches such as CNNs.

Thus, the bGPLVM approach is used for unsupervised

feature extraction rather than feature selection. For better

classification results, feature selection must be performed

additional to the latent space estimation. This is visualized in

table III, where 40 dimensions performs slightly better than

50 dimensions.



TABLE I: Class accuracy of bGPLVM based classification of half dataset.

Classes
Classifier 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ν-SVM 0.993 0.975 0.965 0.936 0.907 0.964 0.994 0.961 0.843 1.000 1.000 0.927 0.934 0.961 1.000 1.000 0.968 1.000 0.989 0.821
Log. Regr 0.949 0.916 0.921 0.883 0.753 0.973 0.852 0.919 0.893 0.978 0.963 0.847 0.865 0.942 0.986 0.987 0.917 0.959 0.938 0.765

TABLE II: Class accuracy of bGPLVM based classification on full dataset

Classes
ν-SVM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1.000 0.995 0.978 0.954 0.958 0.938 0.993 0.984 0.995 0.936 0.997 0.997 0.924 0.972 0.974 0.970 0.991 0.974 0.986 0.987 0.918 0.994

ν-SVM 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
0.975 0.995 0.997 0.949 0.976 0.993 0.959 0.987 0.999 0.990 0.999 0.980 0.989 0.998 0.995 0.989 0.967 0.985 0.997 0.999 0.995

TABLE III: Class Accuracy of bGPLVM Based Classification

using different latent dimensions

Latent dimension
Class 10 20 30 40 50

1 0.99 0.98 0.99 0.99 0.98
2 0.81 0.88 0.95 0.96 0.95
3 0.84 0.93 0.95 0.91 0.98
4 0.68 0.94 0.87 0.96 0.93
5 0.64 0.83 0.90 0.81 0.81
6 0.97 1.00 1.00 0.97 0.96
7 0.88 0.90 0.97 0.96 0.91
8 0.96 0.90 0.96 0.96 1.00
9 0.82 0.83 0.76 0.83 0.95
10 0.97 1.00 1.00 1.00 1.00
11 0.98 0.98 0.99 0.99 0.98
12 0.72 0.89 0.83 0.93 0.89
13 0.86 0.89 0.94 0.96 0.94
14 0.86 0.91 0.96 0.92 0.96
15 0.81 0.85 0.83 0.90 0.95
16 1.00 1.00 1.00 1.00 0.95
17 0.91 0.96 0.96 0.98 0.98
18 0.92 1.00 1.00 0.95 1.00
19 0.90 0.97 0.97 0.98 0.95
20 0.85 0.93 0.90 0.93 0.80

Mean 0.87 0.93 0.93 0.94 0.94

Finally, we use the methodology presented in this work for

latent dimension estimation, which is the base to investigate

the full effect of inducing points. This is a current part of

research.

VI. SUMMARY AND OUTLOOK

In this work, we used Gaussian latent variable models for

non-parametric and non-linear feature extraction without any

image pre-processing. The extracted latent representation was

used for classification using ν-SVM and logistic regression,

where the SVM clearly outperforms the logistic regression

approach. In contrast to state-of-the-art algorithms, we did

not use any image feature extraction such as HOG features.

Further, due to computational limitations, we resized the

images significantly. Both, the omission of image features and

significant resizing leads to a mean accuracy of 98.17%.

Our next steps are the optimization of the latent space es-

timation to overcome computational limitations, the extension

to street sign detection and the usage of a fully Bayesian

approach including classification. Based on that, we will be

able to used image sizes similar to [51], which is necessary

for state-of-the-art comparison.

Further, CNN-like structures, deep architectures and object

detection are current part of research, where we will use fully

Bayesian approaches instead of SVM based classification.
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