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Abstract — Electric vehicles (EVs) are considered a key alternative

transportation for improving energy efficiency and reducing 

CO2 emissions in the traffic sector.  To promote the use of these 

vehicles a reliable, real-world close evaluation in terms of energy 

consumption and range is crucial. One of the most efficient and 

frequently adopted microscopic traffic simulation tools, 

simulation of urban mobility (SUMO), implements an energy 

estimation model that relies on vehicle and road characteristics. 

We conduct a comparative analysis of SUMO’s estimated energy 

consumption and state of charge (SOC) of a simulated battery 

electric vehicle (BEV) and the energy consumption of an actual 

2020 Toyota RAV4 Hybrid LE AWD. Results showed that the 

energy consumption model in SUMO delivers different results 

than the ones obtained from the real world driving experiments. 

These findings are discussed in this paper.   

Keywords – electric vehicles; battery energy consumption; 

microscopic traffic simulation. 

I. INTRODUCTION 

Transportation accounts for 23% of the global energy-related 
CO2 emissions. It continued to increase an average of 2.5% 
annually between 2010 and 2015 [1]. Electrification is 
considered one of the essential approaches to decrease CO2 
emissions in the transport sector [2]. Therefore, the deployment 
of BEVs is an option for significantly reducing oil dependency 
and providing environmental and economic benefits [3]. 
Significant progress has been observed in recent years in the 
technological development of BEVs [4], [5]. The accurate 
energy consumption estimation of BEVs is a key performance 
index that is of interest to automakers and policy-makers, since 
this aspect of the technology positively contributes to a decrease 
of pollutants and helps conserve the environment [6]. However, 
recent research studies on the future market diffusion of BEVs 
raise various challenges related to energy consumption, charging 
station deployment, ECO driving activities, route planning, etc. 
[7].  

Among the academic research studies on simulation tools for 
analyzing battery energy consumption, designing a realistic 
energy estimation model is reported to be challenging [8]. This 
challenge is mainly due to the scarcity of real-world measuring 
data, which make it difficult to build, evaluate and validate the 
energy consumption estimation models [9].    

In this paper, we present the analysis of a set of driving data 
that was collected using a 2020 Toyota RAV4 Hybrid LE AWD 
(Fig. 1). The vehicle drove in Upper Austria and was equipped 
with different devices for testing automation [10], [11], 
simultaneously serving our purposes as a BEV for estimating 
energy consumption using the extracted data. 

As the simulation platform Simulation of Urban Mobility 
(SUMO) includes an implemented energy estimation model that 
relies on vehicle and road characteristics [12], we generated in 
SUMO the driving route with the Toyota by considering the 
information extracted from the trip. We then compared the 
energy consumption from the trip with the estimated 
consumption from the energy model in SUMO.  

The remaining parts of this paper are organized as follows:  
Section II describes the related works in literature; Section III 
presents the methodology; the results from the analysis of the 
defined scenarios are presented in Section IV, in Section V, the 
discussion and the perspective for future work bring the paper to 
a close.     

II. RELATED WORK

The problem of how to overcome the challenges related to 
the estimation of BEV energy consumption is drawing 
attention from the scientific community and the industry. In 
recent literature, several energy consumptions models have been 
presented and discussed to simulate a realistic and accurate BEV 

Figure 1.  Vehicle used to acquire the driving data,  2020 Toyota 
RAV4 Hybrid LE AWD     
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energy consumption [13], [14]. Often, BEV is considered as a 
complex system [15]. Therefore, the energy consumption model 
can be formulated according to the consumption and the 
recuperation parts. 

The consumption part consists of the mechanical and 
electrical subsystems. Evaluating an energy estimation model of 
a BEV in a simulation environment requires adopting a set of 
real-world data and a set of comparisons between the obtained 
results with a real-life BEV [13]. In this section, we reviewed 
and summarized some related works and highlighted the gap in 
literature, to which we contribute with this paper. 

Energy consumption models have been implemented in 
several works [16], [17]. The authors in [18] presented a method 
to study the influence of different factors ranging from 
environmental, to vehicle auxiliary devices on battery energy 
consumption. Relying on a simulation tool that was validated 
through experiments on a climatic 4 Wheel Drive (4WD) chassis 
dyno, the authors concluded that driver aggressiveness, based on 
mean positive acceleration, increased the consumption 40% at 
a velocity of 20 km/h and about 15% at 60 km/h. 

A vehicle simulation model for a BEV that is equipped with 
a single pedal control system is described in [19]. The authors 
implemented a set of simulations to predict and analyze the 
effects of different environmental factors and control parameters 
on energy consumption. The simulator was calibrated using 
experimental data related to vehicle energy flow and driving 
range. The results of the study suggested that vehicle speed, 
running time, and frequency distribution of the braking process 
influenced energy consumption, the value in a congested traffic 
scenario being 46.07 kWh. 

In a further work, driving data from EV were analyzed to 
develop an analytical model of power estimation [20]. The data 
set was collected with one vehicle driving on the freeway. The 
reported results indicated that the energy consumption model 
appeared to work well and had potential as both a research tool 
and a resource for EV users.  

Adopting a data collection system using controller area 
network (CAN) bus data logger from an actual functioning EV 
and proposing an estimation energy consumption model based 
on the fundamental theory of vehicle dynamics was the main 
focus of [21]. According to the authors, the proposed model can 
accurately estimate and calculate the energy consumption by 
integrating the power over the time of the trip. 

SUMO can be used to estimate the energy consumption and 
required charging infrastructure for EV [22]. However, an 
accurate, direct evaluation of results with real driving data has 
not been performed.  

We contribute with this work to the research in the field by 
comparing the actual energy consumption of a BEV (2020 
Toyota RAV4 Hybrid LE AWD) operated in Upper Austria and 
the energy consumption estimation determined by SUMO.     

III. METHODOLOGY

As previously mentioned in the introduction, we collected 
the battery and driving data from a 125 km trip from St Pölten 
to Linz in Austria. We then generated the corresponding map 

and route in SUMO to reproduce the acquired information and 
calculate the energy consumption. The energy consumption 
model in SUMO requires a prior simulation to be performed, 
after the simulation is run, it evaluates the vehicle's energetic 
state and computes energy variations in the content of similar 
vehicles. The changes in the vehicle’s energy state are 
calculated through the sum of the kinetic, potential, and 
rotational energy gain components from one discrete time step 
to the following step [22].   

After having replicated the trip in SUMO with the 
corresponding data of the Toyota, including the battery 
specifications, we analyzed the energy consumption and state 
of charge (SOC) of the battery. We implemented the following 
scenarios in which the BEV traveled the same route of 125 km. 

 Scenario 1: a real world driving test in which the BEV’s
energy consumption was only affected by driving (no
other devices that could increase the consumption were
activated)

 Scenario 2:  a simulated BEV

A. Data collection and analysis

The data collected during the trip referred to the i) location
and trajectory of the vehicle and ii) the battery characteristics. 

To log the relevant information, we relied on two devices. 
First, we used a CAN bus data logger through an ELM327 
microcontroller [23], which is a personal computer to on-board 
diagnostics (PC-to-OBD) connector. To this end, we 
implemented the ELM327 to collect the battery data of the BEV 
while driving on the route. Through the second device, the 
global positioning system (GPS), we collected the BEV location 
data and trip trajectories. The trajectory data set (GPS data) was 
then synchronized with the data obtained from the ELM327 by 
adopting a nearest neighbor approach and relying on the 
timestamp recorded by each device.  

As the ELM327 records data at a lower frequency than the 
GPS, we recorded the timestamps of the ELM327 with its data. 
We then added the GPS coordinates to each of the timestamps 
that were recorded before 0.1 seconds had elapsed and that were 
the closest in time. Using the synchronized data, we generated 
the route with the trip parameters in SUMO. The detailed 
characteristics of the Toyota used in Scenario 1, including the 
battery specifications, are presented in Table I.  

The GPS and driving-related data, velocity, 
acceleration/deceleration and vehicle position are depicted in 
Table II. The steps of the simulation procedure are illustrated in 
Fig. 2.  

To calculate the real world battery’s actual energy 
consumption in terms of battery power (W), we multiplied the 
voltage (V) by the current (A).  

To obtain the energy consumption (kWh) of the battery, we 
multiplied the obtained power (W) by each time step in the 
whole trip. 



TABLE I.  PARAMETERS OF THE VEHICLE USED TO COLLECT THE 
DRIVING DATA  

Parameters Value 

Physical 

specifications  

Weight  
2231.68 kg 

Length  
4.6 m 

Max vehicle speed  
120 km/h 

Acceleration  
1.5 m/s2 

Battery 

characteristics      

Maximum voltage  
244.8 V 

Capacity  
6.5 Ah 

Power  88 kW 

 

The obtained energy consumption is derived from positive 
(propulsion) and negative (energy recovery through braking) 
power values of the traction battery. Thus, these negative values 
affect the power value as well. For the present analysis, which 
considers the impact of driving patterns such as speed and 
acceleration, this is disadvantageous. However, a separation of 
these effects was not technically possible. Therefore, in this 
work we multiplied the negative power values by 0.9 to correct 
for battery losses that occur when the battery is recharging. 
Battery losses depend on different parameters, and 10% is a 
value that has been considered for lithium-ion batteries in many 
works [24]. 

B. BEV traffic simulation implementation  

To examine and evaluate the estimated energy consumption 
model in SUMO compared to actual, real world consumption, 
we generated the simulation of the vehicle we used to collect the 
data on the road by defining it through the data obtained from 
the GPS and ELM327 devices.  

We first generated the traffic simulation network in SUMO 
by importing the corresponding OpenStreetMap (OSM) [25] 
based on the acquired GPS data. We then applied 
NETCONVERT [26] and POLYCONVERT [27] to process the 
network.  

We set the parameters for the vehicle in SUMO according to 
the characteristics of our vehicle. In order to generate the 
corresponding vehicle class, vClass “passenger”, we defined the 
vehicle types using the vType parameter. In addition, to specify 
the characteristics of the real BEV in the simulation, we set the 
parameter for the vehicleMass in SUMO. Finally, we added the 
route file. The route is depicted in Fig. 3. To model the battery 
characteristics, we adopted the electric vehicle model from 
SUMO [22] using generic vehicle parameters. To this end, we 
added the battery device [30] attribute with the 
maximumBatteryCapacity to the simulated Toyota in SUMO 
(Fig. 2). 

In order to have a better overview of the traveled route, we 
additionally visualized the route’s maximum speed limit, which 
is illustrated in Fig. 4. 

TABLE II.   INFORMATION COLLECTED THROUGH THE DEVICES 
INSTALLED IN THE VEHICLE  

Parameters Description 

 

GPS 

Time 
unix timestamp (format: ISO 8601: 
1970-01-01T00:00:00Z) 
 

Latitude north -south geographic coordinates  
 

Longitude east-west geographic coordinates 
 

Altitude 
elevation above sea  level 
(unit:meter) 
 

ELM327 

Acceleration unit : meter per square second 
 

Motor 
revolution unit: revolutions per minute 

Current unit: ampere 
 

Voltage unit: volt 
 

 

 
Figure 2.  Simulation process (adapted from [28, 29]) 

 

 
Figure 3.  SUMO network showing the traveled route of 125 km from the 

origin (St. Pölten) to the destination (Linz)  



 

Figure 4.  Visualization of the maximum speed limit during the trip in  m/s 

IV. RESULTS 
Results of this research are categorized into energy 

consumption and state of charge, presented in this section. 

A. Energy consumption  

The energy consumption development in the real-world 
scenario and its related speed profile are depicted in Fig. 5. 
Without any additional devices activated during the trip, the total 
accumulated energy consumption is associated with the 
mechanical part, resulting in a total of 82.853 kWh.  

The driving speed is reflected in the battery energy 
consumption. At the end of the trip, when the vehicle is 
decelerating at the time of 3.300 s, due to the speed limit in the 
city (see Fig. 3 and Fig. 4), the cumulative battery energy 
consumption decreases (see Fig. 5, bottom).  

The energy consumption in the SUMO scenario, calculated 
with the energy estimation model, is illustrated in Fig. 6.  As it 
can be observed, the cumulative energy consumption is 11.9% 
lower (72.98 kWh) in Scenario 2 than this in the real-world 
driving conditions of Scenario 1 (actual driving BEV, 82.85 
kWh). 

 

  

Figure 5.  Speed profile (top) and cumulative energy consumption in the real 
world scenario  (bottom) 

 
Figure 6.  Speed profile (top) and cumulative energy consumption in the 

simulated scenario  (bottom)   

Figure 7.  Comparison between SOC in the real driving Scenario I 
and the simulated Scenario II 

 
 

 
Figure 8.  Data from each of the scenarios related to the state of charge  

 

B.  State of charge  

Results from analyzing the SOC results and comparing      
Scenario 1 and Scenario 2 showed that the values obtained in the 



simulation, were about 11% higher than in real world      
conditions (Fig. 7 and Fig. 8).  

This means that the level of charged energy in the simulation 
environment was higher than in the real vehicle, these results in 
line with the lower energy consumption of the simulated vehicle 
obtained from the previous energy consumption analysis. 

 

I. CONCLUSION AND FUTURE WORK 
In this paper, we evaluated the accuracy of the energy 

estimation model in SUMO. We conducted a real world       
experiment by driving a BEV on Austrian roads between St. 
Pölten and Linz. We extracted the data from the battery of the      
driven BEV and calculated the energy consumption of the 
battery and SOC. The data was analyzed and implemented in 
SUMO to simulate the exact BEV with the same characteristics 
as the actual BEV. 

After a comparative analysis between the obtained results 
from the simulation and the actual BEV, we concluded that the 
consumption estimation resulting from the SUMO platform was 
lower than the real consumed energy on the road. This difference 
was in line with the level of charged energy in the simulation 
environment, which according to the results was higher than in 
the real vehicle.  

The reason for this discrepancy in the results can be 
attributed to the SUMO generalized model that is implemented 
with a constant parameter for propulsion efficiency. The model 
works with a constant value for regenerative braking and it does 
not consider in an accurate way the effect of acceleration on the 
battery consumption. 

In future work we aim to improve the current energy 
estimation model in SUMO by conducting more real world 
experiments and use the obtained results to increase the model 
accuracy under different scenarios, as well as consider other 
devices that consume energy in the vehicle. 
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