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Abstract— This paper introduces a method to represent
Takagi-Sugeno Fuzzy Control System (FCS) as computational
graphs, so they can be adjusted through a supervised training
process based on gradient descent. It has been tested both with
values extracted from a fuzzy controller created for the test and
also for a set of real data extracted from real drivers. Obtained
results show high conformance to synthetic data, and seem to
describe a car-following behavior with quite good precision,
which suggests that it is possible to model the behavior of
conductors in a longitudinal model based on if-then type
rules.

I. INTRODUCTION

The fuzzy systems are an application of fuzzy logic in the
area of Computational Intelligence that have been success-
fully applied over a great variety of control problems [1],
[2], [3], whose potential values are what are known as fuzzy
sets, that is, concepts defined in a vague way. In this way we
are able to embrace uncertainty within our system, which is
more robust.

In systems of which we know their inner workings, we
can have a domain expert to help us to define the problem
and, if possible, to solve it based on if-then rules based on its
inputs and outputs variables [4]. In systems that are unknown
to us, however, we do not have these experts [5]. Therefore,
other techniques are needed for their modeling.

One of the most widely used techniques is undoubtedly
supervised training on neural networks. In this way, having
a set of inputs and their corresponding outputs, the Artificial
Neural Network (ANN) is modelled in such a way that
approximates the inputs to the expected outputs, even for
unknown cases. The less stochastic the system is depending
on its inputs, the better it is modeled by a neural network.
But there is a critical problem with this kind of approach:
we can’t explain why ANNs make the decisions they do.
Therefore, the adjustment of a FCS based on a supervised
scheme is relevant, since as well as neural networks, FCSs
are also universal approximators. [6].

The manual adjustment process in this kind of controllers
is a two-step process consisting on:
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1) Fuzzy partition definition where, for each input vari-
able, a linguistic variable is defined in the form of a
partition of fuzzy sets.

2) Fuzzy rules definition, where the knowledge of the
problem is codified as a sequence of if-then rules,
to be used later by the inference component.

The self-adjusting techniques available in the literature 
for this type of controllers are basically focused on one 
of the two steps: either adjusting fuzzy partitions fixing 
the rule-base, or adjusting the rules fixing t he s tructure of 
the linguistic variables partitions. In both cases, the more 
usual methods are those based on evolutionary computa-
tion [7], [8], gradient descent [9], [10] (in the case of 
rules, after representing them according to their error) or 
hybrid approaches between these and other techniques [11]. 
However, the problem is as follows: there are techniques 
for the adjustment of existing controllers, of rules based 
on their already fixed partitions and vice versa, and when 
the approaches try to adjust the FCS as a whole, they rely 
on separate space state search techniques (such as meta-
heuristics, has seen in [12]). However, there seems to be no 
effective techniques for the efficient generation of controllers 
from scratch. There are approaches with different techniques 
of representation of controllers [13], [14], but usually suffer 
from limitations in representation capacity or learning speed.

In this paper we propose a compact representation of 
FCS based on computational graphs, in such a way that (i) 
the operation is quite fast, especially when inferring many 
values at once, (ii) it is possible to use the gradient descent 
following a supervised training scheme, and (iii) it is possible 
to explain why the system makes decisions at each moment.

The system will be tested with a random sample of values 
taken from a known FCS, where we will see that the fuzzy 
surface of the inferred system approximates the fuzzy surface 
of the true system. Later, we will use the same technique on 
an unknown system, the longitudinal driver’s behavior based 
on some variables. We will see that a relatively high degree 
of precision is achieved, which indicates that it is possible 
to be modeled.

II. COMPUTATIONAL GRAPH REPRESENTATION

Depending on the author, a Fuzzy Control System can
be depicted into a different number of components. In our
case, we break it down into three main components, each
of them responsible of one operation: (i) fuzzification, (ii)
inference (where we include the if-then rules), and (iii)
defuzzification.
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Fig. 1: The fuzzification component will transform the crisp input values into fuzzy input ones.

Our approach will be representing the FCS as a computa-
tional graph in such a way that their parameters are adjusted
through a gradient descent of the space they define.

For this purpose, a number of design decisions have been
taken to simplify the development of the controller. These
assumptions are relatively easy to modify without altering
the representation greatly:

• Each linguistic variable will contain only fuzzy sets
defined one line-descending, one line-ascending and n
trapezoidal membership functions.

• The t-norm and s-norm operations will be min and max
functions respectively. The max function will be also
used as the accumulation operation.

• The FCS will be an order 0 Takagi-Sugeno controller.
That is, the output will be constant values, and therefore
will be represented as a singleton fuzzy set. The defuzzi-
fication method will be the operation CoGS (Center of
Gravity for Singletons), defined as follows:

CoGS =

n∑
i=1

xi · µi

Being xi the characteristic point of the singleton func-
tion and µi the membership of the output value for this
point.

• The fuzzy partitions size will be an algorithm meta-
parameter, and will not vary throughout the adjustment 
process.
• The number of output variables will be 1.
We now move on to the controller representation. Let V =

V1, V2, . . . , Vn and O the ordered set of input and the output
linguistic variables of our FCS to be modelled respectively.
Each of them will contain a pre-defined number of fuzzy sets
NV1

, . . . , NVn
for the input variables and NO for the output

one.
The FCS will receive as an input an (m,n) matrix and will

return a (m) vector, where m is the number of examples to
be inferred. The development process will be as follows:

1) Construction of each fundamental component of the
FCS as an independent computational graph.

2) Construction of the FCS as a computational graph
composed by each of the sub-graphs developed in the
previous step.

A. Fuzzification component

The component will take the (m,n) input matrix which
will contain, for each of the m examples to infer, the n values
that each of the Vi input variables will take. The output of
this graph will be a (m,

∑n
i=1NVi

) matrix where all the

member, where the membership degrees of those values will
be stored for each fuzzy set of their corresponding variable
(Figure 1).

To do this, as many operations (membership functions) as
fuzzy sets are present will be applied to each column of the
input matrix. Specifically, line-descending, trapezoidal and
line-ascending functions will be applied.

The line-ascending and line-descending computational
graphs have a similar shape. Their characteristic equations
would be those shown in Equations 1 and 2 respectively:

µasc(X) = min(max(
X − a
δb

, 0), 1) (1)

µdesc(X) = min(max(
a−X
δb+ 1

, 0), 1) (2)

The network associated with the line-ascending formula is
shown in Figure 2, which is the one that would correspond
to the last set of a fuzzy partition.

Fig. 2: Computational graph corresponding to the line-
ascending membership function.

The computational graph for the line-descending function
is quite similar to the one in the figure.

It can be seen that the only adjustable variables are a and
δb, which define the interval (a, a+ δb) ⊂ R.

The trapezoid membership function is defined in a similar
way according to the parameters (a, δb, δc, δd), which de-
fines the intervals I1 = [a, a+δb), I2 = [a+δb, a+δb+δc)
and I3 = [a+δb+δc, a+δb+δc+δd). It can be defined as a
combination between the line-ascending and line-descending
computational graphs, as is shown in Equation 3 3.

µtrap(X) = min(max(min(µasc(X), µdesc(X)), 1), 0)
(3)

The associated graph is described in Figure 3.
Knowing the computational graphs for each membership

function, we can define the graph associated with the fuzzy
partition of a linguistic variable. Assuming that the variable
Vi is divided into NVi

distinct fuzzy sets, the partition will
be composed of:

• A first fuzzy set defined by a descending slope.



Fig. 3: Computational graph corresponding to the trapezoidal
membership function.

• NVi
fuzzy sets defined by trapezoid membership func-

tions.
• A last fuzzy set defined by a line-ascending membership

function.
The adjustment process will try to approximate the values

of the variables in this graph to minimize an error. The values
will correspond to the points of the membership functions,
as shown in Figure 4. Thus, besides a standardized and
complete fuzzy partition for the linguistic variable, each
small variation in the gradient has the potential to cause a
variation in all the related variables.

Fig. 4: Relationship between the variables to be adjusted and
the membership functions that define.

Our fuzzification graph is defined in such a way that, for
an input matrix m × l being m each tuple of values to be
inferred and l each of the linguistic variables, it will generate
an array of the form m×

∑l
i=1 |li|, being |S| the number of

fuzzy sets contained in the linguistic variable.

B. Inference component

This block will take as input a (m,
∑n

i=1Ni) matrix, i.e.
the output matrix of the fuzz block, and will generate a
(m,NO) matrix containing the fuzzy output (one output for
each output fuzzy set). To do this, it will make use of a set
of rules upon which it will base its inference.

This set of rules is what we will try to adjust. The repre-
sentation will be that of a (vi+1)-dimensional matrix, being
vi =

∑n
i=1 li the total number of fuzzy inputs that come to

the inference block. The additional dimension corresponds to
the output linguistic variable. In other words, each possible
fuzzy output set (each value within the axis corresponding
to the output) will correspond to a vi-dimensional matrix
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Fig. 5: The cartesian product of the input fuzzy variables
generates all possible rules that can be defined in a fuzzy
controller.

resulting from the cartesian product of the input variables.
That is, each one of the possible combinations of rules, to
which we can associate a value. In the Figure 5 an example
of inference with two linguistic variables is shown after
applying the t-norm to them.

Since the s-norm and the accumulation operations are
defined with the same function, an OR type rule is equivalent
to two or more AND type rules, since the accumulation of
its results is equivalent. Therefore, by applying the t-norm
to these combinations we have all possible combinations of
rules. But so far we don’t have any adjustment.

If we apply Hadamard’s product to a matrix of weights
with the same dimension and round its values to {0, 1} ∈
N, we have a way of adjusting which rules are the most
relevant and which are not. However, this representation has
a problem: these two values define a step function where the
error does not propagate because its gradient is 0.

However, if instead of a discrete value, the weight takes a
real value and we apply a sigmoid function, the value will be
kept between (0, 1) ⊂ R with the advantage that the gradient
does not freeze, and in a later process the rules whose values
exceed certain established ranges can be discarded.

At the end of the inference graph, after applying accumu-
lation, we have as many fuzzy values as there are fuzzy sets
at the output for each of the examples in our (m,NO) output
matrix.

C. Defuzzification component

This block has the particularity that it does not have any
variable to adjust. It is simply an operation that takes a two-
dimensional array, i.e. our (m,NO) matrix with the fuzzy
output values, and returns a vector of range (m) with the
values in the domain of the output linguistic variable.

III. TESTING AGAINST A KNOWN CONTROLLER

To check the validity of the approach, a known fuzzy
controller has been adjusted solely from its inference data,
the tipping problem. Its input linguistic variables are food and
service, and its output is texttip. Its fuzzy rules are defined
in the Equation 4).



service IS good→ tip IS high
food IS good→ tip IS high

service IS good ∧ food IS average→ tip IS low
service IS average ∧ food IS good→ tip IS high

service IS bad→ tip IS low
food IS bad→ tip IS low (4)

These components, where t-norm equals the minimum
function and s-norm equals the maximum function, describe
a surface as shown in Figure 6

Fig. 6: Fuzzy control surface for the food-service-tip defined.

After collecting a uniform 100-point random sample of 
this surface, a FCS is created following the technique de-
scribed in this paper, by defining 2  i nputs, e ach composed 
of three fuzzy sets.

The controller is trained by applying the ADAM [15] 
gradient descent algorithm with a learning rate of α = 0.01 
for 500 epochs. In the Figure 7 the correct evolution of the 
controller through the 500 epochs can be appreciated.

This process shows us that it is possible to obtain FCS 
adjusted to a pattern of data with a high degree of precision, 
with the advantage that it is possible therefore to explain 
the why behind the predictions made by the model with if-
then rules, unlike other techniques such as ANNs.

IV. APPLICATION TO THE LONGITUDINAL
BEHAVIOR

We present in this section the approach to check whether 
the behaviour of a real driver in an urban environment can

(a) Random sample across the sur-
face (100 points)

(b) Adjustment after 500 training
steps

Fig. 7: Adjusted surface after 500 training steps over a 
sample of 100 points along the controller surface: (a) The 
points, and (b) the resulting surface after the training process.

(a) Route R1 (b) Route R2

Fig. 8: The two routes, (a) R1 (training route), and (b) R2 
(test route).

be represented by a FCS. To do this, the technique described 
in the previous section on a training set has been used, and 
its performance has been tested on a test set.

Both data sets have been collected from two urban circuits, 
R1 and R2 for three different drivers (Figure 8). These data 
have been collected at 10Hz on an instrumented vehicle with 
a Camera, a CAN bus reader and a LiDAR attached. Those 
devices provide enough information to get, after a post-
processing task, the following variables: (i) vehicle speed,
(ii) distance to leader, (iii) speed of approach to the lead 
vehicle, (iv) distance to the next Traffic Light Signal (TLS), 
and (v) status of the next TLS. The training set contains a 
total of 4469 examples, whereas the test set contains 1771.

The parameters for the training process are 7 input vari-
ables (the next TLS status variable is divided in three vari-
ables: status red, status yellow and status green), a learning 
rate of α = 0.01, 250K epochs and a training-validation split 
ratio of 80-20. The results presented in Table I correspond to 
the Top-4 architectures tested from a wide range of them. 
The architecture is presented as a sequence of numbers, 
being each value the number of fuzzy sets the variable is 
comprised of.

TABLE I: The different trained architectures and their cor-
responding Root Mean Squared Error (RMSE).

Id Architecture RMSE
Training Validation Test

FCS1 2, 2, 2, 2, 2, 2, 2 0.059 0.064 0.062
FCS2 3, 3, 2, 2, 2, 3, 3 0.073 0.079 0.080
FCS3 4, 3, 2, 2, 2, 3, 3 0.072 0.078 0.088
FCS4 5, 5, 2, 2, 2, 5, 5 0.063 0.068 0.109

In this particular problem it has been observed that training
carried out in this fashion causes the RMSE to fall faster in
the same number of iterations. It can be observed that the
FCS1 architecture is the one that has obtained the smallest
error in training, and it is confirmed that it is the one that
has generalized the best. Figure 9 shows the fuzzy partitions
for the input variables before and after the training process.

The membership functions for the traffic light state are not
included because they are extremely similar to the speed in
the Figure 9.
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Fig. 9: Fuzzy partitions before (less opaque) and after (opaque) the training process for the FCS1 architecture.
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Fig. 10: Comparison between the four architectures over a 
small excerpt of the full test set.

One detail worth highlighting is the learning process 
for the linguistic variable Speed to Leader (the speed of 
approach to the lead vehicle. All of the training runs over 
the architectures described in Table I gave the same result: 
only one fuzzy set activated all over the domain, and the rest 
of them deactivated.

The most plausible reason we can find f or t his effect 
is that, as it is an urban environment, the speeds we treat 
are very low compared to those working on this sort of 
models, thus, the difference in speeds are not a determining 
factor compared to other variables. Figure 10 shows the 
acceleration profiles estimated by the FCSs against the actual 
acceleration at each moment in a small section of the whole 
test dataset.

It can be observed how the controller adjusts with less 
error in test compared to the rest. F CS1 presents peaks that 
approximate the inferred value to the real value, while the 
rest maintains constant values.

V. CONCLUSIONS

Applying gradient descent to adjust a FCSs quickly en-
ables an optimal controller to be found for a problem. 
However, the problem of the longitudinal model is not 
completely treatable with a controller, at least not with the 
posed variables and data set. However, as a result of the 
results obtained, we believe that by increasing the variables 
to be analyzed, with a better precision of the data, and 
with a greater volume of them, it is possible to increase the 
precision of these models generated notably.

The fuzzy control systems generated in this fashion are 
quick enough both training and inferring. They can therefore

be used as part of optimization models of their meta-
parameters (e.g. number of fuzzy sets per linguistic variable).
However, one of their problems is that the rule base generated
is extremely large. After all, no method of discarding rules
with weights very close to 0 or any method of simplifying
equivalent or antagonistic rules has been incorporated. These
issues will be addressed in further research.
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