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Abstract 

Sensor-equipped vehicles are the way to provide autonomy as they allow to perceive the environment. 

The usual sensors include, among others, LiDARs to perceive and give a sense of the surrounding 

environment to the algorithms implemented on it. This paper proposes a way of inferring in real time 

the lane change intention in urban scenarios by using Convolutional Neural Networks (CNNs) and the 

environment where the driver is immersed. After a preliminary study conducted with real data, it is 

observed that the trained models are capable of mimicking lane change behaviours, depending on the 

environment that surrounds them, similar to what a real driver would do. The approach can therefore be 

considered as a way forward when it comes to incorporating human behaviour into autonomous vehicles, 

thus facilitating the transition period to fully autonomous driving. 
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Introduction 

In the next few years, driving, as we know it will undergo a dramatic transformation. We live in an era 

where companies assess fully autonomous vehicles in real environments, recording more than 800,000 

kilometres without a single incident [1]. However, during the transition period until reaching a 100% 

penetration rate, a series of measures to minimize risks and accidents will need to be adopted in order 

to integrate autonomous fleets in a mixed traffic flow.  

Artificial intelligence techniques based on supervised learning schemes have experienced a gigantic 

boom in the last decade, due to the raise of Deep-Learning methods. In the area of Intelligent 
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Transportation Systems (ITS), techniques based on Artificial Neural Networks (ANNs), such as obstacle 

warning systems or quasi-autonomous driving systems, are becoming more and more popular. 

This study will determine whether and to what extent it is possible to implement lane change manoeuvres 

that accurately reproduce human driving patterns by using Convolution Networks, a type of ANN being 

used in Machine Learning that can extract spatial data patterns.  

Lane change models 

Although there were prior ones, the Gipps model [1, 2] was a breakthrough in lane change behaviour 

modelling. It proposed a behavioural car-following model describing the longitudinal interaction 

between vehicles that considered the integration of lateral models. This model was extended by many 

authors to study different approaches, such as differentiation between slow and fast lanes [3], 

communication models for collaborative lane changes [4] or probabilistic decision trees [5]. 

In 2000 Naturalistic Driving Data began to be used for the training of longitudinal models based on 

ANN [6, 7]. Other noteworthy works are [8], where Elfman Networks are compared with Multilayer 

Perceptrons for their ability to infer time patterns, [9] where Fuzzy Logic models are used, or [10] where 

behaviours are adjusted via genetic algorithms. 

ANNs and Fuzzy Logic are not the only computational intelligence (CI) techniques used to model 

behaviours. Other works present models to characterize drivers based on Bayesian networks [11, 12], 

clustering techniques (through Latent Dirichlet Allocation) [13] or Hidden Markov Models [14, 15]. 

Convolutional Neural Networks 

One of the most popular techniques in computational intelligence nowadays are the Convolutional 

Neural Networks (CNNs). Thanks to the rise of Deep Learning, they are one of the great exponents 

when it comes to classifying images, especially working with 𝑛-dimensional feature maps. As its very 

name suggests, they are ANNs that use a combination of two images to form a third one (convolutions) 

for their operation. Its operation is different to the Multilayer Perceptrons as its topology is organized 

into two well-differentiated regions, one that is dedicated to the extraction of input characteristics 

(pattern extraction region) and other to the output classification or regression given the extracted 

features (inference region). 

CNNs are currently mainly used for trajectory tracking and prediction [16], lane change identification 

[17], or driver characterization. They are also used to model behaviour, specifically for lane change, 

both in decision making [18] and in their way of execution [19]. 

Problem formulation 

The lane change problem determines when and how a driver performs a lane change manoeuvre at a 
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given time. The intuition about the problem is that many of the key factors are not measurable in the 

real world (e.g. moods, physical condition, fortuitous events, etc.). In a previous paper [19] the authors 

tried to control these factors by dividing the problem into two parts, the intention and the execution of 

the lane-change, fixing the former and modelling the latter. This allowed studying how the various driver 

profiles executed lane changes in different ways and how this phenomenon can be modelled.  

In this work we present the model of the whole lane change manoeuvre in an urban environment, i.e. 

deciding whether to change a lane by considering the driving environment through the measurable 

variables. We first approach the problem by using classification, to maximize the number of matches 

between the real lane changes and those predicted by the model.  

Models will be trained with a set of driving data acquired in a real driving environment. The possibility 

of making predictions about future lane change manoeuvres by analysing available driving patterns from 

real data will then be examined by determining the best number of independent variables or potential 

predictors for our dependent variable lane change manoeuvre. and finally, the best matching CNN 

architecture to the results obtained will be determined. This process will provide a a foundation of the 

sensory input that intelligent agents (IA) in autonomous vehicles require to perform the correspondent 

driving action that relates to lane change. 

Methodology 

We propose to capture driver data from both the environment and the state of the vehicle on two different 

urban routes. These routes, from now on 𝑅1 and 𝑅2, will be considered equivalent as they are roads in 

an urban environment, with sections of between one and three lanes along the route and with maximum 

speeds established between 30𝑘𝑚ℎ−1 and 50𝑘𝑚ℎ−1. 𝑅1 has an estimated travel time of 30𝑚𝑖𝑛 and 
will be used as a data source for model training (training and validation datasets). 𝑅2 has an estimated 

travel time of 15𝑚𝑖𝑛 and its data is intended to serve as a test set. Both routes have been carried by 

three different subjects (male, 30 to 35 years old and more than six years of driving experience). The 

driving tests were made between 11:00 am and 12:00 pm on weekdays, allowing a road traffic with 

enough vehicles to require lane change manoeuvres. 

An instrumented vehicle, more specifically a Mitsubishi iMiEV, has been used with the following 

devices attached: a CAN Reader, to retrieve the internal state of the vehicle, a camera to provide a 

frontal view of the vehicle, a GPS to capture standard NMEA GGA (geopositioning) and VTG (speeds) 

messages and a 16-channel LiDAR. 

All devices are connected to a computer with Debian 9.5 GNU/Linux operating system on an Intel i7-

7500U CPU with 16GB of RAM. The data capture software has been developed on ROS, and each 

device has its own capture node to transfer the information to the general data repository (Figure 2).  
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Figure 2 – Data schematics for the instrumented vehicle and the data post-processing pipeline. 

Data 

Each sensor sends its own messages at a different rate, so the first step was fusing the different 

information at the same rate, in our case 10 𝐻𝑧. All the collected data and its sources are depicted in 

Figure 3, also indicating whether a manual post-processing was required after the synchronization step. 

Figure 3 – Data schematics for the instrumented vehicle and the data post-processing pipeline. 

The required description of the environment is deduced from the point cloud that is extracted from the 

LiDAR. These data required an additional post-processing as explained below 

1) CNNs requires a fixed sized input, but the point cloud has a variable number of points. Thus, depth

maps (Figure 4) are required to represent the environment as an image of a single channel where each 

pixel is the distance to a spherical sector of the original space. The points will therefore be generated 

with a 1𝑜 horizontal resolution, ranging the six channels from −7𝑜 to 3𝑜 (a smaller angle denotes

the impact with the roof of the car, and a larger one  denotes non-relevant information on the 

surrounding traffic). The process generates a 6 × 360 depth map. 

Figure 4 - Depth map as a grayscale image (orange tinted and blurred to improve figure appreciation). 

2) The point cloud is produced by a single laser attached to a mechanical device that operates with
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spherical coordinates at a horizontal resolution of 0.2𝑜  and vertical resolution of 2𝑜 , so the 

unobservable surface is larger as we move away from the origin. We have then considered 25𝑚 as the 

limit beyond which the elements cease to be recognisable. These will be the values of the depth map 

matrix, normalized to the interval [0,1]. 

The data transformation pipeline includes a data augmentation process. This is because the rate of lane 

changes is very low compared to the rest of the actions, in which there are not lane changes. Therefore, 

there is an evident bias of data towards no lane change. wo data augmentation techniques (mirroring 

and shaking, Figure 5) are used in this work to increase lane change actions and reduce the existing bias. 

mirroring generates a new point cloud for each point cloud, through symmetry with respect to the 𝑋𝑌 

plane. The other approach, shaking, generates a new point cloud. It with noise. 

(a) (b) (c) 

Figure 5 – A representation of (a) a point cloud, (b) the same point cloud after a shake of 1cm, and (c) the 

mirror image of the original. 

As the process of applying convolutional neural nets to time series implies missing an intuitional sense 

for time series data, we overcome this limitation, relying on the suggestion in [19] and selected as input 

for the models  temporary frames, specifically the times 𝑡0 (current moment) 𝑡10 (previous moment 

to the current one, 1 second before) and 𝑡20 (previous moment to the current one, 2 seconds before), 

Including three temporal moments helps models to know intuitively the patterns that correspond to the 

first and second moment derived from the position (speed and acceleration). 

In order to be able to fusion spatial data (depth map) with non-spatial data (additional input data) we 

slightly modified the CNN architecture. The depth maps were processed by the feature extraction region, 

and the rest of the parameters were inserted directly into the inference region. 

In addition, to minimize the loss of spatial data, the sides of the depth maps were enlarged with the 

opposite ends of the map itself, with a size of a half of the convolution filter applied in the first layer. In 

this way, the ends of the image are always analysed, instead of losing that region (Figure 6). 
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Figure 6 - The extensions prevent the loss of information at the ends of the image (the rear of the vehicle). 

Methodology 

After the data processing, two datasets are available (see Table 1), one corresponding to route 𝑅1 

(training and validation sets) and 𝑅2 (test set),  

Table 1 – Dataset description. 

Dataset Size 
Lane changes 

Left None Right 

Training 248930 12740 0,576 12740 

Test 82060 1211 0,569 533 

To minimize training and validation errors a series of training processes are applied on different CNN 

architectures. After the process, the best network will be further analysed to verify how much it differs 

from a human behaviour model. 

The training was performed on an Intel®Core i7-6700K computer at 4.00 GHz and 16 GiB of memory, 

with a Titan X GPU granted by NVIDIA. The operating system was a Debian GNU/Linux version 9.6. 

The training scheme between models coincides. Because the size of the training and validation sets was 

large, they were divided into subsets. Each training batch contained then a random selection of the 

sample equally distributed among the three classes of the solution in order to avoid bias. The training 

algorithm used was ADAM, with the cross entropy as cost function, and with ReLU type neurons except 

in the last layer, which maintained a linear activation scheme followed by a Softmax normalization layer 

(as the label classes are mutually exclusive). 

To reduce overfitting and to improve the generalization, randomly selected neurons were ignored during 

training, following a dropout approach with a probability of 0.1. The training process was stopped after 

106 epochs.

Results 

After a training process of 22 architectures, the best results after the tests are described in Table 2. 
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Table 2 – Top-3 CNN architectures. 

Network Topology 

𝐶𝑁𝑁1 c16-4-18-v d128 

𝐶𝑁𝑁2 c64-5-36-v c256-3-5-v d256-d128-d16 

𝐶𝑁𝑁3 c16-3-18-v c32-3-18-v c64-2-18-v d128 

Being 𝑐𝐹-𝑊-𝐻 a convolution layer with F size filters of 𝑊 × 𝐻 and 𝑑𝑁 a fully connected 

layer of 𝑁 neurons. Figure 7 shows the evolution of the accuracy during training. 

(a) (b) 

Figure 7 - Evolution of accuracy by time for (a) training, validation and (b) test sets. X-axis indicate the 

time (in thousands of epochs) and the ordered the precision reached. 

A relatively large network was needed to exceed the limit imposed by the random classification. From 

these the 𝐶𝑁𝑁1 model is the one that gives the best results in the training phase. The horizontal lines 

show the error in the test set of the architectures. The specific values are shown in Table 3. 

Table 3 - Accuracy of trained models with training, validation and test sets. 

Network 
Accuracy 

Training Validation Test 

𝐶𝑁𝑁1 0.589 0.576 0.573 

𝐶𝑁𝑁2 0.506 0.531 0.518 

𝐶𝑁𝑁3 0.561 0.569 0.554 

Confusion matrices were to check the specific types of errors associated with misclassifications. Figure 

8 shows the matrices for immediate prediction and for 2.5𝑠 ahead prediction, time that we considered 

enough to associate a lane change with an action, pattern, behaviour? that was known intuitively by the 

network. 
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Predicted 

L N R 

R
ea

l 

L 32.44 47.11 20.45 

N 5,76 60.50 33.74 

R 12.31 70.30 17.39 

(a) 

Predicted 

L N R 

R
ea

l 

L 42.86 36.69 20.45 

N 5.76 60.50 33.74 

R 12.31 45.13 42.56 

(b) 

Figure 8 - Confusion matrices for (a) instant prediction, and (b) after 2.5 seconds (units in %). 

As previously mentioned, the results indicated a slight bias of the network towards a no lane change 

behaviour when it came to immediate prediction. However, increasing the time window to 2.5𝑠, also 

increased the accuracy on the lane changes prediction This calculation was been made by counting as 

matches only those cases where there was only one change to the desired lane, and not those cases in 

which the change is subsequent to a change to the opposite lane. 

Conclusions 

We can conclude that the obtained results in this work are promising. On one hand, the models mimic 

human behaviour in similar surrounding environments. Therefore, they can be used to reproduce driving 

behavioural patterns of drivers in a real world setting with autonomous vehicles. Future work will aim 

at enhancing the present approach by increasing the number of subjects who participated in the study.  

Further, a reduction of noise will be striven through an increment in the amount of artificial data 

generated. According to [19], a substantial improvement in quality was observed by increasing the data 

with the two techniques described. In future research, the data set will increasingly incorporate routes 

to calibrate the extent to which these augmentation techniques are no longer having a positive impact. 

Another interesting aspect for the future is the evaluation in extra-urban environments, where speeds are 

higher, manoeuvres are different, and lane changes to the left or right differ. 
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