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Abstract. Autonomous driving in winter weather conditions has always
been a unique challenge, and as such it is an interesting research topic.
Due to reasons related to safety and local laws, simulators have become
one of the first choice for the required research. This paper extends the
capabilities of the 3DCoAutoSim simulation platform with a realistic
simulation environment for the study of autonomous driving with ROS-
controlled vehicles in adverse weather conditions such as snow-covered
roads. The weather-related details of the environment such as snow fall
and car tracks on the snow were implemented by using Unity3D’s physics
and graphics engine. A series of autonomous driving experiments based
on behavioral cloning were performed to test the performance of the
environment and its scalability for ROS-based machine learning applica-
tions. Results from the experiments conducted to validate the approach
demonstrated a good driving performance. Moreover, results from the
model trained with the data set generated in the snowy environment,
showed that car tracks features in the snow promoted the learning and
generalization steps in the machine learning process.
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1 Introduction

In autonomous driving scenarios, driving in winter weather conditions, with
snow-covered roads, is particularly challenging because snow covers the visual
features of the ground, in addition to the fact that any kind of driving in snow
can also be more dangerous as it affects breaking and it can lead to accidents.
At the same time, vehicles passing by will add a new feature to the snow-covered
road, fresh car tracks, which can affect the visual features of the road and create
issues with vehicle handling. In order to more conveniently study such problems,
a simulator that can replicate the real world and simulate the laws of physics
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is always one of the first choices for researchers. In the past few years, we have
developed the flexible, modular tailored 3DCoAutoSim simulation tool to inves-
tigating the effect of automation and V2X communication on drivers [1]. The
platform is linked to Unity3D, the traffic microscopic Simulation of Urban MO-
bility (SUMO) and the Robot Operating System (ROS) [2], and it has been used
to address several research questions such as interaction with pedestrians [3] or
other vehicles on the road [4]. The excellent graphic performance and physics
of Unity3D as the core part of the 3DCoAutoSim simulation platform makes
it possible to address the tasks necessary for examining the issues mentioned
above. Robot Operating System (ROS) is currently one of the most popular
intelligent vehicle control systems. Its use is not only limited to robots in the
narrowest sense of the word, such as delivery robots, but can also be used for self-
driving cars and unmanned aerial vehicles. Many previous works have studied
the simulation of robots combining ROS and Unity3D [5–7].

This work aims to extend the capabilities of the 3DCoAutoSim to create a
realistic simulation environment for the study of autonomous driving with ROS-
controlled vehicles in snow-covered roads. To this end we use Unity’s particle
system to create the snow falling effect, and use technologies such as tessella-
tion, Unity RenderTexture, Unity Shader programming to achieve the function
of leaving car tracks on the snow. In addition, we also design an architecture
combined with ROS-based machine learning and vehicle control based on our
previous works.

We then perform a series of autonomous driving experiments based on behav-
ioral cloning and assess the performance of the environment and its scalability
for ROS-based machine learning applications.

The remainder of this paper is organized as follows: Section 2 introduces the
previous works in the field. The basic architecture and implementation method of
the entire system as well as the experimental environment is presented in Section
3. Then, we describe the experiments performed to validate the whole design in
Section 4. In Section 5, the results are presented and interpreted. Finally, Section
6 concludes the paper and presents possible future work.

2 Related Work

In previous work, we developed the 3DCoAutoSim simulation platform that links
a driver-centric Unity3D-based simulator with the SUMO traffic simulator incor-
porating communication capabilities [8, 9]. It can also simulate ROS-based intel-
ligent vehicles and robots [2, 10] by adapting and extending the ROSBridgeLib
library [11]. Driving simulation platforms that replicate winter weather condi-
tions often rely on replacing texture maps, such as the Develter [12] and CarSim
simulator [13]. This process affects not only the level of realism, but also makes
difficult to simulate complex snow trace changes, especially when there are mul-
tiple vehicles in the simulated environment, or a single vehicle repeatedly passes
through a certain location. In the case of being the simulation platform intended
for machine learning research aimed at autonomous driving, the inability of real-
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time interaction and the dynamic simulation environment conditions will greatly
reduce the generalization ability of the final machine learning model. Other tech-
niques such as adding a map to make the snow look natural and replicate snow
bump add a certain realism to the environment [14], however this approach is not
able to reproduce the conditions to provide a real-time interaction that bases on
snow traces. Unity3D can provide powerful physics and graphics effects, which
are essential for the simulation of realistic driving conditions in snow-covered
roads. In this context, they can be achieved by manipulating the plane meshes
in real time. We rely on this approach and also use particle effects commonly
used in game engines to replicate the effect of snowfall.

It is worth mentioning that Unity3D has already been used in machine learn-
ing research, and its development team has also added packages for implementing
machine learning functions [15–17]. However, studies that combine its machine
learning capabilities with intelligent vehicles are scarce and existing studies such
as [18, 19] are rather theoretical and difficult to apply to practical situations due
to the fact that existing vehicle control systems have not been considered. Our
approach however, contributes to the state of the art by replicating drivers skills
in the simulator by means of behavioral cloning, resulting thus the model trained
on the data set generated in the simulation environment in a direct application
for the control of real vehicles.

This behavioral cloning technique has been applied in the field of autonomous
driving in several works [20][21]. In addition, the Gazebo advanced robotics
simulator [22] is often used in the simulation research of ROS-based intelligent
vehicles, and many teams have developed machine learning projects based on it
[23–25].

We rely on [20] to implement our approach and refer to some of the Gazebo
architecture designs to achieve the replication of snow-covered roads and be able
to interact with ROS and the ROS-based machine learning module.

3 Methodology

This section describes the implementation of snow fall and the car tracks on
snow. We additionally present the architecture of the 3DCoAutoSim extension,
as well as some important components and parameters in the simulation, to
finalize with the description of the simulator architecture combining ROS and
the machine learning algorithms.

3.1 Simulation Implementation

To replicate roads covered with snow, we designed a mountain road that con-
sisted of a two-way four-lane ring road, with fences and trees on the side of the
road. The background was mainly mountains and a small number of buildings.
Mountains, trees, terrain and part of the road surface were added with white
textures to simulate the appearance of snow, which enhanced the sense of im-
mersion and realism. The track was designed to include left and right turns to
avoid biased data.
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The effect of snowfall was achieved through the Unity’s Particle System. The
approach allowed 2D or 3D models to be released as particles within a range with
certain rules and density. The trajectory and speed of the particles could also be
controlled after they were released (Fig 1 shows the implemented scenario with
snowfall).

To investigate whether and how the machine learning model would be af-
fected after several laps of driving tests in the snow we developed a scenario
with multiple car tracks as follows: We first applied a plane to the corresponding
white texture and normal map to resemble its appearance to a snow ground. We
then performed the tessellation process on the mesh of the plane to increase the
triangles on the mesh, resulting this in an detailed representation of the snowy
environment with bumps, hills and valleys. This technique made it possible to
better replicate the snow ground plane to simulate the effect of the depression
after the snow was compressed, as well as the folds of the snow. Next, we incor-
porated a camera and the corresponding RenderTexture to record the path of
the wheel passing on the plane. To this end, we added the wheel with an addi-
tional Unity material (Shader), so that the camera could record its trajectory
through the car body from above. Finally, we developed and executed a script
to make the “meshes where the wheels pass” on the plane sink down to form a
car track. Fig 2 shows the result. After this final step we covered the road in the
entire simulation environment by the such planes.

Fig. 1. Illustration of the snowfall effect
in the simulated environment

Fig. 2. Visualization of the vehicle tracks
on the developed snow plane

3.2 Architecture and Settings

The basic architecture of the implemented 3DCoAutoSim extension is shown in
Fig 3, and mainly consists of two parts. Unity is responsible for simulating the
experimental scene and the vehicle itself and various physical effects. ROS is
responsible for providing a stable middleware, while the neural networks (NNs)
are responsible for learning and control. The neural network is built through the
ROS Python API, so it actually runs under the ROS framework, therefore we
can also consider it as a part of ROS.

Within the present work we aimed at investigating vision-based autonomous
driving in snowy conditions. To this end we just required a color camera which
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Fig. 3. Basic architecture of the implemented 3DCoAutoSim extension

we installed in the front of the simulated vehicle. Each frame of the camera
image are cached by the Unity’s RenderTexture and then sent to ROS with a
frame rate of 15 fps, and a resolution of 128×96. Data such as the speed and the
angle of the steering wheel, etc. can be directly read from the Unity system which
connected with the hardware components. Further details regarding transmitting
these data can be found in [2] and [10].

3.3 ROS and Behavioral Cloning

We used behavioral cloning (BC) to test the reliability of the 3DCoAutoSim
simulation extension. Fig 4 depicts a high-level overview of the overall architec-
ture of the BC model. Initially the car is operated by a human driver through the
3DCoAutoSim cockpit (steering wheel and the foot pedals for braking/accelerating).

The collected data points are divided into a training set and a validation set
(ratio 8:2). An approximate time synchronization was afterwards implemented to
correctly map the images with the prediction values. The data set was recorded
by leveraging the rosbag, and cv bridge ROS python API.

Fig. 4. High-level overview of the overall architecture of the behavioral cloning model

Pre-processing was applied by normalizing the image and re-scaling it to
66 × 200 pixels. The pre-processed images and the ground truth value for the
steering angle were then utilized to build the base for the BC model. The trained
model was next used as a control system for the vehicle inside the simulation
environment by predicting the required steering angle. The priority of ROS con-
trol commands is lower than that of human control, so the driver can take over
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autonomous driving at any time. To enable the model to imitate the human
driving behavior in winter weather conditions, to smoothly perform autonomous
driving, while also being able to stay in the corresponding lane, we followed the
approach for data collection, training and testing described in the next section.

4 Experimental Setup and Data Analysis

4.1 Data Collection and Training

We invited several drivers to participate in the creation of the data set. They were
required to drive as safely as possible, and to stay on lane. The road was covered
by snow. We created a total of 35 minutes ROS bag, where a normal driving lap
took about 2 minutes. The relevant parameters to their driving performance such
as the angle of the steering wheel, the strength of the throttle, etc. were then
sent to ROS together with the correspondent video records to build the data
set. The data was initially recorded as ROS bag and saved for later transmission
through ROSBridge Next, in order to transform the data into a more readable
format, the images were extracted and a csv file containing the path to each
image with the corresponding ground truth values was saved to the local hard
drive.

We used video recordings and steering wheel angles for the training process.
To this end, the throttle and the brake were set to a constant value or were con-
trolled by the 3DCoAutoSim to be able to manually control the vehicle speed and
verify the performance of the model for dealing with the lane keeping problem
in the snowy environment at different speeds.

4.2 Experiments Design and Development

After the training phase was completed, we used the models to perform the
pertinent tests and compare the experimental results of different situations. The
first autonomous driving experiment was conducted on a road completely covered
with snow. The acceleration and brake values were set as manually adjustable
constants. The upper limit of the speed of the vehicle model was set to 50 km/h.

When the vehicle speed was low, although the lane could not be seen, the
vehicle could still be stabilized in the correct lane range. This shows that the
model could correctly imitate the driver’s driving mode, keeping the vehicle
within the corresponding lane. Fig 5 shows part of the car tracks left on the
snow after the vehicle had driven several laps autonomously with low speed.
The car trajectory overlapped almost completely with the previous tracks. It
should be noted that when the experiment started, there were no car tracks on
the snow.

Then, a second experiment was carried out in which a lot of car tracks were
added in advance to simulate more complex snowy road conditions. Fig 6 shows
that the vehicle could still maintain a centered position on the lane. To verify
that the model did not completely ignore the road surface, we removed the snow.
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Fig. 5. Initial low-speed experiment
showing that the car trajectory over-
lapped almost completely with the
previous tracks on the snow

Fig. 6. Second low-speed test with previ-
ously added multiple car tracks. Results
show the centered vehicle position on the
lane.

In this case the autonomous driving model could no longer generate a reasonable
output.

Next, the experiment was performed at a higher speed. The results showed
that a vehicle could stay in the correct lane range most of the time. However,
when turning at a larger angle, the trajectory of the vehicle shifted significantly.

This behavior seemed to be due to the model being unable to control the
speed of the vehicle. When the turning angle was too large, the excessively fast
speed caused the vehicle to deviate from the lane. We noticed that since the
neural network we used only had a single image input and no storage capacity,
it could not perceive or record the current state of the vehicle itself. Therefore,
gas and brake inputs could not participate in training. In order to verify that the
model could output an accurate steering wheel angle under a real-time control-
lable speed, we involved the real drivers again to drive cooperatively with the
trained model. This time the drivers were requested to only control the acceler-
ator and brake without steering. The limit of the vehicle’s speed was canceled
so that the speed could be freely controlled.

4.3 Data Analysis

To evaluate the results of the above experiments, we recorded and compared the
positions of the vehicle in the four sets of experiments with regards to devia-
tion from the center of the lane. The distances from the center were calculated
by using linear interpolation to synchronize the number of sample points and
calculate the absolute value between each pair of samples.

5 Results

The average and maximum deviation of the vehicles in each group of experi-
ments relative to the center of the lane is quantified and listed in Table 1. Since
the width of the lane is about 3.5 m, and the virtual vehicle model used in the
experiment is about 1.73 m wide, the experimental results showed that the ve-
hicle could maintain a centered position on the lane under low speed and semi
auto conditions.
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Table 1. Comparison of the lateral deviation from the center of the lane in the 4
performed experimental conditions

Maximum distance [m] Average distance [m]

Initial Experiment 2.28 0.97

Second Experiment 2.28 0.97

With Higher Speed 3.99 1.51

Semi Auto 2.47 1.16

Results from the initial and semi auto experimental showed a good model
performance as the trajectories overlapped (Fig 7 and Fig 8). As previously
mentioned, at higher speeds however, the vehicle deviated from the center of the
lane (depicted by the green dashed line in Fig 7). The purple trajectory depicted
in Fig 8, represents the results of the low-speed experiment with several vehicle
tracks, which is visualized in Fig 6. In this case the purple and red lines (initial
experiment) overlap almost everywhere, showing that the model performs well
in different snow conditions.

Fig. 7. Trajectories’ deviation from the
center of the lane at different speeds

Fig. 8. Visualization of the impact of dif-
ferent car tracks on snow

6 Conclusion and Future Work

In this work we extended the 3DCoAutoSim simulation platform to create a
realistic simulation environment for the study of autonomous driving with ROS-
controlled vehicles under snowy weather conditions. Behavioral cloning was used
to assess the approach. We carried out multiple experiments in different snowy
environments, and analyzed the impact on the performance of the newly imple-
mented modules. Experimental results showed that the single visual input model
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makes it possible for the vehicle to maintain its position on the lane in snow-
covered roads if vehicle speed is kept within a certain range. We showed that car
tracks features in the snow promoted the learning and generalization steps in
the machine learning process and therefore conclude that the proposed approach
is appropriate to develop simulations under snowy conditions. In future work,
light snow will be added to the system, as it may lead to false conclusions such
as the existence of traffic congestion [26]. More complex scenarios such as more
diverse surroundings, other vehicles, etc. will also be investigated additionally to
reinforcement learning capabilities.
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