
Vehicle-Pedestrian Interaction in SUMO and Unity3D

Leyre Artal-Villa1 and Cristina Olaverri-Monreal2[0000-0002-5211-3598]

1 Public University of Navarra, Dept. Electrical and Electronic Engineering,

Campus de Arrosadía s/n 31006 Pamplona, Spain.

leireartalvilla@gmail.com
2 Johannes Kepler University Linz, Austria, Chair for Sustainable Transport Logistics 4.0

Altenberger Straße 69, 4040 Linz, Austria

 cristina.olaverri-monreal@jku.at

Abstract. Road fatalities that involve Vulnerable Road Users (VRU) outnumber

in some countries and regions ones that involve vehicular drivers and passengers.

As most vulnerable road user fatalities happen in urban areas, where the traffic

conditions are more demanding and an increased pedestrian interaction can result

in unpredictable scenarios, it is imperative to study solutions to reduce the high

rate of accidents in which pedestrians are involved. To this end, we present in

this paper a simulation framework that provides a framework to generate a vari-

ety of pedestrian demands to simulate vehicle-pedestrian interaction and vice

versa. A Transmission Control Protocol (TCP) connection combines the game

engine Unity 3D with the Simulation of Urban Mobility (SUMO) open source

traffic simulator. After creating the 2D scenario SUMO was connected with

Unity 3D by using the Traffic Control Interface (TraCI) Protocol and TraCI as a

Service (TraaS) library. The motion in Unity took place after instantiating the

pedestrians retrieved from SUMO. The system was evaluated by detecting and

visualizing pedestrians and vehicles that were within a specific range.

Keywords: VRU, P2V, V2P, SUMO, Unity 3D

1 Introduction

According to the World Health Organization, 85 000 people die annually from road

traffic injuries in the European Region [1]. Urban areas have more complex intersec-

tions and a higher number of pedestrians and cyclists that might be overseen by drivers

[2], particularly if they are involved in non-driving tasks. Due to the increased com-

plexity in urban road and traffic scenarios, vulnerable road users (VRUs) are involved

in more fatalities.

Pedestrians are especially vulnerable as road users because an armored vehicle does

not protect them, nor do they wear any protective helmets [3]. Addressing the risk of

death in road traffic is fundamental to achieve the Sustainable Development Goals

 Corresponding author

This is a pre-copyedited version of a contribution published in New Knowledge in Information
Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and
Computing, vol 931, Rocha Á., Adeli H., Reis L., Costanzo S. (eds) published by Springer,
Cham. The definitive authenticated version is available online via https://
doi.org/10.1007/978-3-030-16184-2_20

2

(SDGs), by targeting efficient transportation services that do not affect health security.

Therefore, it is essential to reduce mortality and injuries derived from road crashes [4].

In this context, P2V (Pedestrian-to-Vehicle) and V2P (Vehicle-to-Pedestrian) commu-

nication technologies have become crucial.

We present a platform to evaluate P2V and a V2P communication in a simulated 3D

environment that includes the microscopic modeling of vehicles and pedestrians relying

on the recent release of the last version of Simulation of Urban Mobility (SUMO) and

TraaS (TraCI as a Service).

Next section outlines related literature in the field. Section 3 delineates the proposed

work and describes the pedestrian modeling, creation of the scenario in SUMO and the

connection of SUMO with Unity 3D. Section 4 describes the 3D simulation in Unity

3D and Section 5 presents the process to evaluate the implemented system. Finally,

Section 6 concludes the work.

2 Related Literature

Communication targeting VRU protection addresses the use of smart devices to send

Personal Safety Messages (PSM), over a wireless communication channel. This ap-

proach is also known as General Packet Radio Service (GPRS)-based, since the smart

devices use the latitude and longitude coordinates, which are then transformed into lo-

cal coordinates to estimate the relative position of the communicating pedestrians and

vehicles [5]. Vehicle-to-Pedestrian (V2P) and Pedestrian-to-Vehicle (P2V) communi-

cation or a combination of them rely on GPRS.

Pedestrian detection has been the focus of research in many works. For example, by

using AdaBoost and support vector machine algorithms [6] or by detecting and tracking

pedestrians using cameras, (i.e. from a moving vehicle using both Histogram of Ori-

ented Gradients (HOG) and Kalman filter [7] or by using the back-camera of a mobile

device using image-processing techniques [8, 9]).

By using both P2V and V2P communication, the authors in [10] developed an ap-

plication based on a collision-prediction algorithm. The proposed application broadcast

the device’s position to the vehicles nearby, and reciprocally broadcasts the vehicular

position to the pedestrians nearby.

As far as simulation tools are concerned, PARAMICS, VISSIM, AIMSUM and

SUMO stand among the most recognized simulators, which use microscopic models

and allow the inclusion of pedestrian flow in the simulation [11]. For example,

PARAMICS has its own software to simulate pedestrian behavior in real word envi-

ronments. VISSIM allows making a 3D simulation with pedestrians, but it fails in the

calibration process of certain parameters and it is a difficult pro-gram to handle [12].

AIMSUM enables pedestrian-vehicle interactions at uncontrolled, actuated-controlled

or fixed-controlled intersections, but it is not convenient for navigating between differ-

ent periods and it does not provide background maps [13].

SUMO is an open source, highly portable, microscopic and continuous road traffic

simulation package designed to handle large road networks [18]. The recent release

from December 2017 of the last version (0.32.0) together with the last version of TraaS

3

from August 2017 reveal the possibility of performing a remote-controlled realistic 3D

traffic scenario, which includes pedestrians. The aforementioned version of SUMO im-

plements Traffic Control Interface (TraCI) which provides the necessary commands for

both remotely retrieving and changing the state of pedestrian objects.

By means of TraaS library and the above mentioned methods, authors in [14] re-

trieved the information (vertices, length, width, type) of lanes and cars (speed, position,

angle) from SUMO and instantiated them as game objects in Unity 3D. Authors in [15,

16] reused the translated library and connected the traffic light system data from SUMO

into Unity 3D.

As the integration of pedestrians in current implemented simulators add realism to the

scenarios and use cases, we focus on developing a 3D visualization of traffic, which

includes both pedestrians and vehicles from a driver centric perspective simultaneously.

3 Framework Implementation

Relying on the work presented in [10] we implemented a scenario in order to establish

connections between vehicles and pedestrians and vice versa as part of the SUMO OSM

environment, an option in the CoAutoSim3D simulation platform [17]. The CoAu-

toSim3D simulator is independent from the operating system and always up-to-date

with the latest version of Unity 3D. When running 3DCoAutoSim the user can choose

among several environments. One of them is the SUMO OSM environment: a dynamic

and configurable environment by the user. It allows for one to take advantage of the

benefits provided by a microscopic 2D traffic-modeling tool (SUMO) and a powerful

game-engine (Unity 3D). In fact, due to the flexibility provided by this option, the user

can perform a 3D realistic simulation of any area of interest. Furthermore, the 3D re-

constructed map presented in [14] was used to maintain the high quality visualization

provided by the implemented environment.

When the user selects the SUMO OSM environment, the simulator accesses a

SUMO configuration file (.cfg or .SUMOcfg) that contains all the necessary

information to conduct the simulation in SUMO and performs the Transmission Control

Protocol (TCP) connection to SUMO. SUMO acts as a server and Unity 3D as a client.

The simulation can be performed by loading the configuration file in Unity 3D. To

implement the 3D simulation with the pedestrian-detection system we proceeded as

follows.

3.1 Pedestrians Modeling in SUMO

Pedestrians in SUMO need dedicated lanes and areas, which differ from the rest of the

elements of a scenario in terms of attributes that determine their behavior.

For example, when walking along an edge, pedestrians use sidewalks if they are

available. With respect to zebra crossings, there are two possible cases:

 If the network contains walking areas, pedestrians may only cross a street whenever

there is a pedestrian crossing.

4

 However, if the network does not include walking areas, pedestrians will move be-

tween any two edges that allow pedestrians at an intersection.

Pedestrian crossing behavior does not only depend on the type of roads, but also on

the vehicles. SUMO contains rules to mimic ideal traffic scenarios by targeting the

avoidance of collisions between vehicles and pedestrians. Therefore, pedestrians will

only use a crossing if the whole length of the crossing is free of vehicles for the whole

time needed to cross. This behavior is not expected and not occurring in real life. If a

vehicle occupies the whole width of the lane and gets too close to a pedestrian, the

pedestrian may briefly move to the side of the lane in order to let the vehicle pass.

The last version of SUMO provides a framework to generate a variety of pedestrian

demands both in an explicit and random fashion, defined as follows:

 Explicit: manually defining the pedestrian movement in an .xml file.

 Random: using the tool randomTrips.py with the option --pedestrian that

supports generating random pedestrian demand.

3.2 Simulation in SUMO: 2D Scenario

The approach taken for explaining the generation of the 2D scenario consists of four

steps:

 Generation of a realistic network from OSM data

 Edition of the network with netedit and netconvert

 Generation of the vehicle routes and the pedestrian demand

 Executing a simulation with pedestrians in SUMO-GUI

In order to have a realistic scenario, a network was imported from Open Street Map

(OSM). Since the conversion process included some imperfections that made the sim-

ulation differ from reality, the network was edited with netedit, which is a Graphical

User Interface (GUI) application for editing traffic networks. It can be used to create

networks from scratch and to modify all aspects of existing networks. Fig. 1 shows the

.net file obtained from the OSM WebWizard before editing. Fig. 2 represents an ex-

ample of pedestrian topology in netedit before and after edition.

Netconvert is a network generator that provides SUMO-format networks. After

obtaining the network file (.net file) and generating both the vehicle routes and the

pedestrian demand, the simulation was executed in SUMO-GUI, which is the same ap-

plication as SUMO, just extended by a graphical user interface.

5

Fig. 1. .net file obtained from OSM WebWizard before editing.

A) B)

Fig. 2. Pedestrian topology in netedit before (A) and after (B) edition.

3.3 Connecting SUMO with Unity 3D: TraCI Protocol and TraaS library

As previously mentioned 3DCoAutoSim connects both a microscopic traffic simulator,

SUMO, and a powerful 3D Graphic Engine, Unity 3D, by setting a TCP connection

between them. TraCI is the Application Programming Interface (API) used for that pur-

pose. It is based on a client/server architecture and it enables the retrieval of values

from simulated objects from the server (SUMO) to the client (Unity 3D) and their be-

havior manipulation on-line, as well as to execute the simulation from the client side.

A TraaS library with a class for pedestrians that contained the necessary TraCI meth-

ods and which could be imported in Unity 3D was required for retrieving and changing

information about pedestrian objects between SUMO and Unity 3D without changing

the internal logics and structure of the already implemented and evaluated 3DCoAu-

toSim simulator. The implemented class made it possible to use the available com-

mands to retrieve the values of each person from TraCI.

6

4 Simulation in Unity

The 3D simulation contains buildings created with the 3D city editing and visualization

tool CityEngine. In addition it consist of the following objects that were retrieved from

SUMO: car lanes, vehicles, sidewalks, pedestrian crossings, pedestrians, manually

placed traffic lights and road markings, a user-controlled vehicle, a bidirectional com-

munication system between cars and pedestrians using P2V and V2P and as many GPS

as the number of pedestrians in the simulation. The motion of the pedestrians in the

simulation occurred after their instantiation as follows.

The SUMO-retrieved-objects are instantiated in Unity 3D as Game-Objects. In order

to have each SUMO pedestrian correctly classified in Unity, a class Pedestrian is cre-

ated, which has the following attributes: position, id, speed and angle. The class Pe-

destrian also contains some getters that allow to get both X and Z coordinates

of the position of each pedestrian (getX() and getZ()), the angle (getAngle()),

the speed (getSpeed()) and the ID (getId()).

When the connection between both programs has been established and all the lanes

retrieved from SUMO have been read, the function ReadPedestrians() is called

(every 5 frames in Unity in order to match the SUMO timestamp), which is in charge

of creating a list of pedestrians that will be further printed and moved in the environ-

ment (in PrintPedestrians()). The code below depicts which parameters are

received from SUMO and how information of every pedestrian in the Unity list is up-

dated each time-step.

Thus, every time there is a change in SUMO, the list is updated and filled with the

pedestrians existing in that time-step. The position, the ID, the speed and the angle for

every pedestrian is retrieved from SUMO using TraCi commands contained in the so-

called “person value retrieval”.

Then, a pedestrian-object is created in Unity 3D for each simulated pedestrian in SUMO

and its attributes position, id, speed and angle are set to the SUMO 2D position, the

SUMO id, the SUMO speed and the SUMO 2D angle (in degrees, with respect to the

Y axes) of every simulated pedestrian respectively. The created pedestrian object is

added to the list of pedestrians in the last position. It should be noted that until now,

nothing has been displayed in Unity 3D, as the information about the simulated pedes-

trians is in Unity, but it cannot be seen in the game view or in the scene view until all

the pedestrians from the list are printed in Unity and moved in PrintPedestri-

ans().

Function ReadPedestrians() SUMOmanager.cs

//-Reading the retrieved pedestrians from SUMO-

public void ReadPedestrians()

{

//Start with an empty list every SUMO time-step

pedlist.Clear();

//Read the ID-s of the pedestrian in the current time-

step

7

pedIDs = (SumoStringList)sumoTraciConnection.do_job_get(

Person.getIDList());

//For every pedestrian in the list

foreach (string perid in pedIDs)

{

//--Retrieving information from SUMO-

//SUMO 2D position of this pedestrian

positionperson =

(SumoPosition2D)sumoTraciConnection.do_job_get(Per-

son.getPosition(perid));

//SUMO speed of this pedestrian

speedperson=

((java.lang.Double)sumoTraciConnection.do_job_get(

Person.getSpeed(perid))).doubleValue();

//SUMO angle of this pedestrian

angleperson =

((java.lang.Double)sumoTraciConnection.do_job_get(

Person.getAngle(perid))).doubleValue();

//Create the pedestrian object with the SUMO information

of this pedestrian

pers = new Pedestrian(positionperson, perid, speedperson,

angleperson);

//add this pedestrian object to the list

pedlist.Add(pers);

}

//Create the pedestrian game-object in Unity 3D

// if it has not been previously created or update

// the game-object if it has been previously created

PrintPedestrians();

//Perform another time-step in SUMO

sumoTraciConnection.do_timestep();

}

5 System Evaluation Procedure

To evaluate the framework we implemented a bidirectional communication between

vehicles and pedestrians and detected whether they were within the specific range of

40m.

To visualize that the V2P communication had been achieved in the simulated 3D

environment, the pedestrians were color-coded, pedestrians’ detection (P2V communi-

cation) by the vehicle was visualized through an object-bounding box. Fig. 3 shows an

example for the pedestrians’ detection visualization.

The list of all the simulated pedestrians was iterated and an array of renderers was

created for every person-object. A renderer is what makes an object appear on the

8

screen. In this case, renderers were used to access and modify the person-objects. The

array stored all renderers of each person-object as a component in its children elements.

Then, the difference between the position of each pedestrian and the position of the

user-controlled car was obtained. After that, the list of all the simulated cars was iter-

ated.

For each pedestrian i, a subtraction was calculated and vice versa between the posi-

tion of that pedestrian and the position of each simulated car. At this point, if the dis-

tance of pedestrian i and any simulated car or the distance of the pedestrian i and the

user-controlled car was less than 40m, the color of the pedestrian object i, which repre-

sents the pedestrian with id=i in SUMO, was changed in the 3D environment from

the initial color (white) to red. If the distance was more than 40m and the ith pedestrian

had been previously red colored, the pedestrian object was reversed to white. This pro-

cedure helped to represent the pedestrians that were aware of the presence of vehicles

in the surroundings.

To establish a P2V communication, a pedestrian list was iterated. Since the function

OnGUI() is called every frame, the variable pedlist contained all the pedestrians

that existed at a given time in SUMO and therefore all the pedestrians that had been

instantiated as Game-Objects in Unity. For every pedestrian the difference between its

position and the position of the user-controlled vehicle was obtained by subtracting

both 3D positions and computing the norm of the three dimensional vector obtained

because of the mentioned subtraction.

The above describe strategy has been proved to be effective to establish the bidirec-

tional communication between the pedestrians and the vehicles in the surroundings.

Fig. 3. Example of pedestrians’ detection by using an object-bounding box.

6 Conclusion and Future Work

We proposed in this work a system to detect VRU and vehicles in the vicinity as a

means to enhance road safety. The system has the potential to assist both drivers and

9

pedestrians in a variety of situations in which technology used by both parties is eval-

uated. The implementation of a framework that relies on the linking through a TCP

connection of the game engine (Unity 3D) to access data from the SUMO open source

traffic simulator has been proved to be capable of simulating vehicle-pedestrian and

pedestrian-vehicle interaction. Future work will be pursued by validating the simulation

framework in a variety of use cases.

Acknowledgments. This work was supported by the BMVIT endowed Professorship

Sustainable Transport Logistics 4.0 and the Erasmus Program, code A WIEN 20.

References

1. Jackish, J., Sethi, D., Mitis, M., Szymañski, T., Arra, I. European facts and the Global status

report on road safety 2015. Copenhagen: WHO Regional Office for Europe; 2015

http://www.euro.who.int/__data/assets/pdf_file/0006/293082/European-facts-Global-Sta-

tus-Report-road-safety-en.pdf?ua=1, last accessed 13 October 2018.

2. BrainonBoard.ca Vulnerable Road Users: Pedestrians and Cyclists [Online]. Available:

http://brainonboard.ca/program_resources/VulnerableRoadUsersPedestrian-

sandCyclists_Fact_Sheet_Eng_4.pdf last accessed 13 Oct 2018.

3. Olaverri-Monreal, C., Pichler, M., Krizek, G. C., Naumann, S. Shadow as Route Quality

Parameter in a Pedestrian-Tailored Mobile Application, In IEEE Intelligent Transportation

Systems Magazine. Volume: 8, Issue: 4, pp. 15-27 (2016)

4. World Health Organization Europe Road Safety: Fact sheets on sustainable development

goals: health targets, http://www.euro.who.int/__data/assets/pdf_file/0003/351444/3.6-

Fact-sheet-SDG-Road-safety-FINAL-10-10-2017.pdf?ua=1, last accessed 2 Oct 2018.

5. Rostami, A., Cheng, B., Lu, H., Gruteser, M., Kenney, J .B. Reducing Unnecessary Pedes-

trian-to-Vehicle Transmissions Using a Contextual Policy, In: Proc. 2nd ACM Int. Work.

Smart, Auton. Connect. Veh. Syst. Serv. - CarSys ’17, pp. 3–10 (2017).

6. Guo, L., Ge, P. S. , Zhang, M. H., Li, L. H., Zhao, Y. B. Pedestrian detection for intelligent

transportation systems combining AdaBoost algorithm and support vector machine, In: Ex-

pert Syst. Appl., vol. 39, no. 4, pp. 4274–4286 (2012).

7. Nkosi, M.P., Hancke, G.P., dos Santos, R.M.A. Autonomous pedestrian detection. In:

AFRICON IEEE 10.1109/AFRCON.2015.7332014. (2015)

8. Allamehzadeh, A., Olaverri-Monreal, C. Automatic and manual driving paradigms: Cost-

efficient mobile application for the assessment of driver inattentiveness and detection of

road conditions. In: IEEE Intell. Veh. Symp. Proc., pp. 26–31 (2016).

9. Allamehzadeh, A., Urdiales de la Parra, J., Garcia, F., Hussein, A. and Olaverri-Monreal, C.

Cost-Efficient Driver State and Road Conditions Monitoring System for Conditional Auto-

mation, In: Proceedings IEEE Intelligent Vehicles Symposium, Los Angeles, USA, pp.

1497-1502 (2017).

10. Hussein, A., García, F., Armingol, J. M., Olaverri-Monreal, C. P2V and V2P communication

for pedestrian warning on the basis of autonomous vehicles. In: IEEE Proceedings Intelli-

gent Transportation Systems Conference (ITSC), pp. 2034–2039 (2016).

11. Kokkinogenis, Z., Sanchez Passos, L., Rossetti, R., Gabriel, J. Towards the next-generation

traffic simulation tools: a first evaluation, 6th Iber. Conf. Inf. Syst. Technol., pp. 15–18

(2011).

http://www.euro.who.int/__data/assets/pdf_file/0006/293082/European-facts-Global-Status-Report-road-safety-en.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0006/293082/European-facts-Global-Status-Report-road-safety-en.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0003/351444/3.6-Fact-sheet-SDG-Road-safety-FINAL-10-10-2017.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0003/351444/3.6-Fact-sheet-SDG-Road-safety-FINAL-10-10-2017.pdf?ua=1

10

12. Koh S.Y. Doina., Chin H.C, Traffic Simulation Modelling: VISSIM,

https://docplayer.net/9916680-Traffic-simulation-modeling-vissim-koh-s-y-doina-1-and-

chin-h-c-2.html, last accessed 14 Nov. 2018.

13. Salgado, D., Jolovic, D., Martin, P. T., Aldrete, R. M. Traffic Microsimulation Models

Assessment - A Case Study of International Land Port of Entry, In: Procedia Comput. Sci.,

vol. 83, no. Ant, pp. 441–448 (2016).

14. Biurrun-Quel, C., Serrano-Arriezu, L., Olaverri-Monreal, C. Microscopic Driver-Centric

Simulator: Linking Unity 3D and SUMO, In: Rocha Á., Correia A., Adeli H., Reis L., Cos-

tanzo S. (eds) Recent Advances in Information Systems and Technologies. AISC, volume

569, pp. 851-860, Springer, Cham (2017).

15. Olaverri-Monreal, C., Errea-Moreno, J., Díaz-Álvarez, A. Implementation and Evaluation

of a Traffic Light Assistance System in a Simulation Framework based on V2I Communi-

cation, Journal of Advanced Transportation, vol. 2018, Article ID 3785957, 11 pages, 2018.

https://doi.org/10.1155/2018/3785957.

16. Olaverri-Monreal, C., Errea-Moreno, J., Díaz-Álvarez, A., Biurrun-Quel, C., Serrano-Ar-

riezu, L., Kuba, M. Connection of the SUMO Microscopic Traffic Simulator and the Unity

3D Graphic Engine to Evaluate V2X Communication-Based Systems. Sensors Journal, vol.

18, number 12, pages=439, doi:10.3390/s18124399, Multidisciplinary Digital Publishing

Institute (2018)

17. Hussein, A., Diaz-Alvarez, A., Armingol, J. M., Olaverri-Monreal, C. 3DCoAutoSim: Sim-

ulator for Cooperative ADAS and Automated Vehicles. In: Proceedings 21st International

IEEE Conference on Intelligent Transportation Systems, ITSC2018, Hawaii, pp. 3014-3019,

(2018).

18. SUMO - Simulation of Urban Mobility http://sumo.dlr.de/index.html, last accessed 2 Dec

2018.

https://docplayer.net/9916680-Traffic-simulation-modeling-vissim-koh-s-y-doina-1-and-chin-h-c-2.html
https://docplayer.net/9916680-Traffic-simulation-modeling-vissim-koh-s-y-doina-1-and-chin-h-c-2.html

